文档库 最新最全的文档下载
当前位置:文档库 › 关于驻波若干问题

关于驻波若干问题

关于驻波若干问题
关于驻波若干问题

关于驻波若干问题

1. 驻波中能量的转化

驻波中各质点的能量包括动能和势能。在最大位移时,波腹和波节中各质点的瞬时速度为0,动能均为0,此时各质点的形变达到极大,其中波节的形变最大,所以能量以势能存在,势能主要集中于波节处。在平衡位置时,波腹和波节中各质点瞬时速度达到极大,动能达到极大值,但波腹处的振幅最大,故动能主要集中在波腹处,此时各质点形变为0,故势能为0。

纵观这1/4周期过程,能量在波腹和波节之间转移,各质点的势能转化为动能,波节处的势能逐渐转移到波腹处变为波腹的动能。

该过程类似于一个小球左右两端各连接一根橡皮绳,橡皮绳水平放置,两绳的另外一端固定,然后将小球竖直方向拉起一段距离,再放手。让球在橡皮绳拉力作用下上下来回摆动。如下图:

在最大位移时,弹簧的形变最大;在平衡位置时弹簧的形变最小。

2.驻波中能流的问题

课件中关于“驻波中没有净能量传递,能流密度为0”的表述容易引起误解。事实上,从上面的分析我们可以看出,在波腹和波节之间还是有能量转移的。但是平均起来看,的确没有净能量的传递,各处的平均能流密度为0,这是因为驻波是由两列等振幅相向的干涉波叠加而成,它们的平均能流密度大小相等,但方向相反。

详细研究后,我们会发现能流在波腹和波节之间来回流动,但没有能流通过波节和波腹转移出去。关于这点,我们可以从驻波各点的能流密度看出。 假设形成驻波的两个相向波分别为:

最大位移

平衡位置

12

cos ()cos ()x x u y A t y A t ωω=-???=+?? 则,这两列波的能流密度分别为:

22212221sin ()sin ()

x u x u i A u t i A u t ρωωρωω?=-??=-+?? 驻波上某点能流密度为二者之合: 2222122222[sin ()sin ()]

sin 2sin 24sin

sin 2x x u u x i i i A u t t A u t A u x t ρωωωρωωωπρωωλ=+=--+=-=- 可见,在4x k ππλ=,即4x k λ

=时0i =。这意味着在波节和波腹处能流均为0,

能流只能在波腹和波节之间来回转换。

对于波节处能流密度为0(没有能流经过它向前传播),我们还有一个很好的理解,那就是驻波的波节始终不动。

3. 半波损失

产生两列传播相反的波形成驻波,通常依靠反射。波在均匀介质中传播时是不反射的,但在介质的边界面上就会发生反射。

波从波疏介质进入波密介质时,分界面处反射会有半波损失(或相位突变

π)

;而从波密介质进入波疏介质时,分界面处反射则不会由半波损失。为了理解这一点,我们必须引入“阻抗”的概念,每一种介质都有阻抗,我们用z 来表示。波从一个介质传播到另一介质,我们把前者的阻抗记为c z ,后者视作一个负载

L z 。对于自由端点,负载阻抗0L z =,而对于固定端点,L z →∞。波在介质面上反射时,反射波与入射波复振幅之比记为A R A ≡反

入。分析发现 c L c L

z z R z z -=+ 当||1R =时,波在分界面发生全反射,入射波与反射波形成驻波;当||0R =,即负载阻抗L c z z =时,分界面不发生反射,全部能流为负载所吸收,此时称为

负载匹配状态。事实上,这种情形就相当于波在均匀介质中传播一样,没有介质分界面;介于二者之间,即0||1R <<,波在分界面部分反射,反射波和入射波叠加形成驻波和行波的混波状态。

有了以上知识,就很容易理解为什么固定端点反射有半波损失,而自由端点没有,以及波疏到波密有,而波密到波疏没有半波损失。

(1)端点固定

此时,L z →∞,所以1R =-,波在端点处全反射,但位相跃变π(A A =-反入)。

(2)端点自由

此时,0L z =,所以1R =,波在端点处全反射,没有位相跃变。

(3)从波疏介质进入波密介质

此时,L c z z >,0R <,部分反射,但反射波有位相跃变π。

(4)从波疏介质进入波密介质

此时,L c z z <,0R >,部分反射,反射波与入射波同位相。

对于(3)和(4)我们还可以这样去理解:

① 波从波疏介质进入波密介质,假设没有反射波,介质面上没有能量损失,则波密介质中波强应与波疏介质中的波强相等,即2212

I I uA ρω==疏密。波密介质的u ρ较波疏的大,因此A A <密疏。介质分界面可视作波密介质的波源,亦即

此处的振幅要比波疏介质中下。为了满足这一点,只能在分界面处产生一列反射波,它在分界面处与入射波在这里的振动反位相,与入射波在分界面处叠加时能够使振幅始终减弱,这个减弱的振动又作为波密介质的波源。

这样,在从波疏进入波密介质分界面上有反射波,而且有相位π的突变就是必然的了。

②波从波密介质进入波疏介质,与上面的分析类似,此时介质分界面处的振幅必须增大。只能通过在分界面处产生一列反射波,它在分界面处与入射波在这里的振动同位相,与入射波在分界面处叠加时能够使振幅始终加强,这个增强的振动作为波疏介质的波源。因此,此时没有半波损失。

对于课件中推导半波损失的过程,有些学生提出既然反射波可能存在相位突

变,能否在反射波方程中加上一个未知位相?,写为22cos[()]x y A t u

ω?=-+ 这样也是可以的,只是要注意,这样改写后2A 只能取正值,并且在固定端

点反射时,为全反射,所以21A A =。这样推导与课件推导的结果一致。

铁芯损耗中的磁滞损耗和涡流损耗的区分

1 变压器铁芯损耗中的磁滞损耗和涡流损耗的区分 (盐城师范学院, 江苏 盐城 224002) [摘要] 本文介绍了用测试手段区分变压器铁芯损耗中的磁滞损耗和涡流损耗的基本方法,着重阐述了测试原理,测试装置和测试方法以及测试数据处理方法. [Summary] The text emphatically expounded testing principle, testing device, testing method and the method of dealing with testing data. This article introduced the basic method of distinguishing the magnetic resistance wastage and eddy current wastage of transformer core wastage by testing. 关键词 磁滞损耗 涡流损耗 区分方法 0 引言 在变压器铁芯损耗中包含着磁带损耗和涡流损耗,即:()()()c h FC P P P 涡流损耗磁滞损耗铁损+= 通常的电机测试(如变压器铜铁损的测量)仅是测出总的铁损FC P ,而不能进一步区分出其中的磁滞损耗分量和涡流损耗分量。 本文将简要地介绍一下我们用测试的方法来区分铁芯损耗中的磁带损耗和涡流损耗测试原理,采用测试装置,设计的测试方法以及测试结果的验证方法。 1 测试原理 在通常情况下,铁芯损耗的计算公式为: V B f V fB P P P m c m h c a FC 22 2 σσ+=+= (1) 上式是一经验公式,式中h σ,c σ均为与铁芯材料性质有关的系数,f 为电源频率,m B 为铁芯中磁感应强度的最大值,V 为铁芯材料的体积。 令(1)式中的A V B m h =2 σ,B V B m c =2σ,得: 2Bf Af P Fe += (2) 可见,当维持m B 不变时,A 、B 均与频率无关的常数。则有: Bf A f P FC += (3) 依据(3)式,在中心频率为50Hz 附近取一系列不同的频率值,分别测出其对应的Fe P 值,采用线性回归法对测试数据进行处理,即可得到(3) 式中的两个常数A 和B 。由Af P h =和2 Bf P c =即可区分出对应于某一f 值的Fe P 中的h P 分量和 c P 分量。 2 测试装置 1.被测样品:TB 单相变压器。(原边额定电压为220伏,副边为36伏。原边绕组匝数为1000匝,副边绕组匝数为180匝,额定容量为500V A 。) 2.变频电源:SDF-1型直流电动同步发电机组及KGT-1型可控调速器。 3.频率表:Hz D ?3型频率表。 4.功率表:W D ?34型低功率因数瓦特表。测试采用该表的300伏电压档和0.5安电流档。 5.电压表:V D ?26型电压表及MF-10万用表。本次测试采用上述两表的300伏档和50伏档,分别用于测量测试电路中的1U 值和2U 值。 6.电流表:A D ?26型电流表,本次测试采用该表的0.5安档。 3 测试方法 1. 实验装置的电路原理图如下: 2. 在测试中,在改变f 值时应始终保持m B 值不变。

弦上驻波实验-实验报告

实验名称:弦上驻波实验 目的要求 (1)观察在两端被固定的弦线上形成的驻波现象。了解弦线达到共振和形成稳定驻波的条件。 (2)测定弦线上横波的传播速度。 (3)用实验的方法确定弦线作受迫振动时的共振频率与驻波波长,张力和弦线线密度之间的关系。 (4)对(3)中的实验结果用对数坐标纸作图,用最小二乘法作线性拟合和处理数据,并给出结论。 仪器用具 弦音计装置一套(包括驱动线圈和探测器线圈各一个,1Kg砝码和不同密 度的吉他线,信号发生器,数字示波器,千分尺,米尺)。 实验原理: 1.横波的波速 横波沿弦线传播时,在维持弦线张力不变的情况下,横波的传播速度v与张力F T及弦线的线密度(单位长度的质量)p之间的关系为: 2.两端固定弦线上形成的驻波

考虑两列振幅,频率相同,有固定相位差,传播方向相反的间谐波u i(x,t)=

A cos( kx - wt -扪和 U2 (x, t) = A cos( kx+ st)。其中k 为波数,? 为 u i 与 U2 之间的相位差叠加,其合成运动为: t t) + 就0 = 2J1 cos(fcx —-)cos(wf + )由上可知,时间和空间部分是分离的,某个x点振幅不随时间改变: 川£)= \2A cos(A-.r —< 振幅最大的点称为波腹,振幅为零的点,为波节,上述运动状态为驻波。驻波中振动的相位取决于cos(kx- ?/2)因子的正负,它每经过波节变号一次。所以,相邻波长之间各点具有相同的相位,波节两侧的振动相位相反,即相差相位n。对两端固定的弦(长为L),任何时刻都有: O J1 + T' ?._G—及则rns( —= 0 =Or 则cu^(kL—^) = 0 由上式知,? = n意味着入射波U1和反射波U2在固定端的相位差为n,即有半波损。?确定后,则有kL = n冗(n = 1 , 2, 3, 4)或入=2 +,驻波的频 率为: , a kt v f = — = — = n - J2TT刼2L fn三讪三"金=(佥)£ 式中f i为基频,f n (n>1 )为n次谐波。 3.共振条件:对于两端固定的弦线上的每一列波在到达弦的另一端时都被反射,

代维处理驻波比告警方法

代维处理驻波比告警方法 一。4G驻波: 驻波故障在网管的告警名称为:下行驻波比告警;驻波比全称为电压驻波比。移动规范:驻波比值〈1.4. 1:处理驻波比故障需要准备的工具:Sitemaster表;壁纸刀;斜口钳;扳手;馈线街头;普通期间(功分器及耦合器);馈线。 2:出告警后,系统自动派发故障工单,先由后台受累,在转排给分账户,维护人员受理分账户工单,受理前往站点处理。 3:下站途中电话联系后台监控查看发生驻波的RRU是那一台,根据提供的信息查看图纸RRU安装对应的位置。 4:到站联系业主进站,迅速找到对应的故障点。 5:先看设备VSWR灯是否亮红灯,出现驻波告警,此灯都会亮红灯。 6:用Sitemaster表进行测试,对故障点进行定位。 常见引起驻波故障的原因:馈线接头,器件老化;馈线弯曲较大,馈线破损;天线损坏。 A.在故障点处,拧下馈线接头,负载堵上在接头出,查看馈线接头有无问题。如果堵负载后还是有驻波重新做馈线接头,反之继续排查。 B.继续排查,在器件后堵负载,判断是否为器件故障导致,如果为器件故障,更换器件,反之继续处理。 C.继续排查,排查馈线是否弯度过大或损坏,如果线缆故障,跟换馈线, 反之继续处理。 D.检查天线是否故障,如果天线故障更换天线。 7:处理完后查看VSWR是否熄灭,熄灭后和后台核对告警是否清除。 8:后台核对清除后进行回单,对于更换馈线,馈线接头,重新做馈线街头,选择系回单;对于更换期间选择:系统 硬件(对故障情况进行描述)回单。 二。2G驻波: 外接天馈设备的驻波比升高,会造成基站的告警。检查时可查看以下几个方面: 1.天线与馈线的接头处是否密封好,有无进水现象。 2.可检查馈线是否有损伤及扭曲。 3.测试天线的驻波看是否正常。 驻波告警定位方法 1、驻波告警1(VSWR1) 1)检查CDU有故障 利用测试手机测试基站收发信号功能是否正常。 若收发信信号功能正常,利用CDU强制复位功能来确定CDU是否误告警。如果CDU复位后故障不重现, 那么说明CDU有误告警,更换CDU。否则,CDU没有误告警,此时可通过“置换”等方法来确定是否CDU有故 障。若CDU没有故障,说明天馈系统有故障,转第(2)步。 若如果收发信号不正常或信号不通,那么说明天馈系统+CDU的上下行通道可能有问题,在第一步中通 过“置换”法确认CDU没有问题后转第(2)步。 2)检查天馈系统是否故障。

大红点驻波表使用说明

“大红点”驻波表使用说明书 一、功能指标 1、正/反向功率P: 测量范围:±0.0~±120W,误差±5%。 最大承受功率:<120W。 最小0.1W出数据。1W数据比较准确。 2、电压驻波比S(但为与“5”区别实际显示时改用“Γ”): 测量范围:1.00~1.99,2.0~19.9。 驻波系数大于19.9后显示:1._._ 3、使用频率: 驻波:100MHZ~500MHZ。 功率:V段(145MHZ为中心),U段(435MHZ为中心)。 4、温度范围: 0℃~60℃  5、电源消耗: AAA碱性电池:3粒 LCD背光关闭:<1.3mA LCD背光开启:<15mA 6、外形尺寸(不计突出物): 67*69*37(mm) 7、接头类型:

N型座 8、净重: 270g(不含电池) 二、测量原理 本仪器驻波和功率的测量,是基于微带耦合器取得正反向信号电压,经检波器、滤波器,进入A/D转换,得到正比于信号电压的数字量,再经过适当的算法和补偿,得到对应的正反向功率,和此时的电压驻波比,以上过程每10mS采样一次,并经过数字平滑滤波后每200mS刷新一次显示,由于采用普通数字万用表的3 1/2 位的LCD,因此在软件上增加了液晶段信号所需的异或逻辑驱动,驻波、正向功率、反向功率按每2S间隔轮换显示,也可以通过按键锁定某一显示状态,或立即转换显示。 本仪器设计的特点是,尽量降低硬件的复杂程度和成本,能用软件做的就用软件,因此硬件电路上很简单,一个按键就实现了:电源的开、关,显示状态的切换、保持,LCD背光的开启、关闭,操作起来很简单,没有来回拨动开关,调节旋钮的过程,只要一按设备的发射键,直接就可从LCD上读到驻波和正/反向功率值。 由于采用了高性能微控制器,同时具备ICP/ISP功能,因此软件的更新升级都极为方便,以后可以不断改进其性能,不断对测量精度进行数字补偿,改变和增加功能,例如:实现有信号就显示、没信号就关闭,延时自动开关机,增加显示反射系数等,增加HF的驻波和功率测量要有部分硬件配合实现。

任意频率正弦波条件下铁磁材料损耗的计算

任意频率正弦波条件下铁磁材料 损耗的计算 崔杨,胡虔生,黄允凯 (东南大学电气工程学院,江苏省南京市四牌楼2号 210096)Iron Loss Prediction in Ferromagnetic Materials with Sinusoidal Supply CUI Yang,HU Qian-sheng,HUANG Yun-kai (School of Electrical Engineering, Southeast University, Nanjing 210096, China) 摘要:本文首先介绍了铁耗分立计算模型,随后采用标准规定的用爱泼斯坦方圈测硅钢片损耗的方法对铁磁材料进行损耗实验,对实验结果数据进行回归分析计算出了铁耗分立模型中的未知参数。并分析了参数的特性,将其应用于铁耗计算中,所得出的结果非常接近于实际值。在此基础上进一步分析了铁耗各分量随频率、磁密变化的规律。结论对于铁耗分析有非常重要的参考意义。 关键字:铁耗;铁磁材料;回归分析;爱泼斯坦方圈 Abstract: The paper presents loss separation model, then the method of iron loss measurement by means of an Epstein frame prescripted in standard is employed to the loss experiment, parameters in the model are calculated through a method called regression, using the experiment result. Parameters are used in predicting iron loss, there is hardly any discrepancy between the computed and the measured results. In the meantime the relationship bitween the loss contribution and frequency, flux density is discussed based on the computed result. Conclution is very valuable for the loss prediction. Keywords: Iron loss; Ferromagnetic material; Regression; Epstein frame 1 引言 随着电力电子技术的发展,各种新型电机在各行各业得到了广泛的应用,电机铁耗的准确计算也成为越来越重要的课题,引起不少学者的注意。目前在国内设计电机中是假设硅钢片内磁场分布均匀,利用硅钢片供应商提供的硅钢片在工频正弦波电源下的损耗曲线和经验公式来近似计算铁耗。对于一般电机,用此方法进行铁耗计算基本可以满足要求。但是在各种特种电机特别是高速电机中,往往是由高频、非正弦电源供电,如果电机的铁耗计算仍停留在采用工频时的方法,主要频率损耗值通过简单缩放比例形式确定,势必会存在较大的误差。 基金项目:国家自然科学基金项目(50477021) Project Supported by National Natural Science Foundation of China(50477021) 在国外,已经有不少学者提出了铁耗计算的两种方向,一种是采用有限元法来分析硅钢片内磁场的分布,进而计算损耗;另一种是通过研究铁磁材料的磁特性,提出铁耗的模型及计算和测量方法。第一种方法虽然准确,但计算工作量巨大,且没有通用性。另一种方法计算方便,其中以Bertottti铁耗分立计算模型[2][3][4]应用最为广泛。用这种模型计算出来的结果与实测数据相差不大。它的主要问题在于模型中存在未知参数,且难于确定,参数的大小将直接影响到损耗计算的结果,要求参数的计算必须非常准确。而国内目前在这方面没有专门研究。 在传统电机设计方法中使用的损耗曲 线在低频条件下是按照国家标准GB/T 3655—2000《用爱泼斯坦方圈测量电工钢片(带)磁性能的方法》 [5]中所规定的方法测量出来的,中频条件下的测试则参照GB 10129—88

施工中基站天馈系统驻波比告警产生原因分析

[提要]:不论是对建设单位还是施工单位,驻波比告警是一个影响通信质量及考核的问题,作为施工单位在基站设备施工中却不可避免的会碰到驻波比告警等问题,如何避免此类问题的发生就是本文的目的所在。 [关键词]:驻波比告警 1、引言 作为施工单位在设备施工中不可避免的碰到如驻波比告警等基站告警,本文不牵涉因设备引起的驻波比告警,就由于天馈施工方面而产生的驻波比告警加以分析,并引以为戒,从根本上杜绝此类问题的产生。 2、正文 2.1、什么是驻波比 驻波比全称为电压驻波比,又名VSWR和SWR,为英文V oltage Standing Wave Ratio的简写。在无线电通信中,天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会产生反射折回,并与前进的部分干扰汇合发生驻波,其相邻电压最大值和最小值之比就是电压驻波比。为了表征和测量天线系统中的驻波特性,也就是天线中正向波与反射波的情况,人们建立了“驻波比”这一概念: SWR=R/r=(1+K)/(1-K) 反射系数K=(R-r)/(R+r) (K为负值时表明相位相反) 式中R和r分别是输出阻抗和输入阻抗。当两个阻抗数值一样时,即达到完全匹配,反射系数K等于0,驻波比为1。这是一种理想的状况,实际上总存在反射,所以驻波比总是大于1的。 2.2、为什么产生驻波比告警? 驻波比值反应了无线电波在空中损耗大小,同时也反应了无线电波被接收机所接收电波好坏程度。由于驻波比高会直接影响天线的有效发射功率,降低了覆盖区域,必然会降低了接通率,调话率,切换成功率,而且电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。 为了保证设备及系统的正常运行和安全性,需要对驻波比设置一个允许范围,超过这个范围就产生驻波比告警。驻波比的国标是小于1.5,一般运营商要求都是1.4或1.3以下,设备厂家的要求基本都是1.4以下。驻波比告警是在BTS主设备里设置的,通过中心机房进行监控,如BTS中的一个小区你设置驻波比是1.3,该小区的TRx的驻波比超过1.3就会产生告警。

REDOT 功率测试仪操作说明

大红点REDOT-5010型已升级为5011,增加突发瞬时最大功率检测,这样就可以测网卡了. 测量原理 根据WiFi使用2.4GHZ频段,突发数字调制,本数字驻波表设计工作频带为2.3GHZ~2.5GHZ,采用微带定向耦合器,中心工作频率2.4GHZ,配合微波检波器及突发信号的捕捉,取得对应于正反向微波脉冲信号,经脉冲整形调理,选取合理的采样时机,送入A/D转换,变成数字量,在经过数字滤波,非线性补偿及适当算法得出功率和驻波大小,送给LCD显示。

主要技术参数 1、最大功率:33dbm 2、使用频率:2.3~2.5GHZ(WiFi) 3、定向性:20db 4、插损:<1.5db 5、驻波范围:1.00~19.9 6、功率范围:0.0dbm~33dbm 7、显示功率:+0.00~+33dbm 8、功耗:AAA*3(7#),<10mA 9、接头类型:N-KF(Famale) 操作方法 1、对于便携应用,本仪器使用的是电池供电。卸下后盖的四个M3螺丝,打开后可以看到电池盒,按电池盒所标极性装入AAA(7#)碱性电池三节,盖好后盖,装上螺丝并旋紧。 2、本仪器标有“TX”的一端连接发射设备,如:AP。标有“ANT”的一端连接被测负载,如:天线。 3、按一下仪器正面的红色按钮,电源即可打开。首先LCD段测试,显示“+1.8.8P”和背光,2秒后进入正常测试。 4、测量显示的缺省方式是以2秒为间隔,轮换显示驻波和功率,按一下红色钮,则停止轮换,连续显示当前状态,再按一下红色钮,则继续轮换显示, 5、红色按钮具有多个功能,按下并保持>0.5秒,可以打开或关闭LCD背光,按下保持的时间超过2秒则,抬起后关闭电源。本仪器的全部功能均由这个红色按钮完成,因此,大家将我所设计的这一系列驻波表称做“大红点儿”。 6、数据显示有三个页面: I.驻波比简称驻波SWR,是无量纲的比值,显示形式为“1.45Γ”即当前驻波比为1.45。“1._._Γ”表示驻波大于19.9或无信号。 II突发平均功率,“+17.5P”表示的有信号发射期间的平均功率,单位是分贝毫瓦dbm,即+17.5dbm。“+1._._P”表示功率过大溢出。“-1._._P”表示功率太小仪表捕捉不到信号(<0dBm 即1mW)。 III.瞬时峰值功率,“+28┛”表示的是有信号发射期间发射功率达到的最大值,单位是分贝毫瓦dbm,即+28dbm。“+1._._ ┛”表示功率过大溢出。“-1._._ ┛”表示功率太小仪表捕捉不到信号(<0dBm即1mW)。

传输线巴伦的原理设计、制作及测试

传输线平衡器(巴伦)的原理、设计、制作及测试 一、平衡器(巴伦)的由来 平衡器即Balancing Device,其主要作用是完成由单端传输(如:同轴线、微带线等)变换为差分传输(如:半波振子天线,推挽电路等)之间的变换,又称为平衡-不平衡变换器即Balance-Unbalance,英文将其合并缩写成一个新词Balun,音译为巴伦。以下文中所提到的平衡器、平衡-不平衡变换器、巴伦,都是指这一类器件。 巴伦在无线电中有着广泛的用途,由于其原理结构多种多样,并且可以互相组合,使得许多朋友在自制巴伦时有无从下手的感觉,哪种结构适合?如何选择材料?如何计算制作参数?如何衡量巴伦的性能?对于我们业余爱好者,主要就是用在天线的馈电和高频功放中,完成平衡-不平衡及阻抗变换的作用,工作在短波1.8MHZ~30MHZ,并要求取材和制作容易。结合我对巴伦的认识理解,认为传输线结构的巴伦,更适合短波通信,其性能好、取材方便、制作容易,但其理论不易理解,造成很多朋友将其搞成了磁耦合变压器结构,出现频带窄、功率容量小、驻波不平坦的问题,结果当然达不到传输线变换器的效果。下面就我个人对传输线变换器的粗浅理解,简单描述一下做巴伦的情况,如需要更深入的了解可以参考有关文献资料,有不当之处,还请各位前辈指正,谢谢!

二、传输线平衡器(巴伦)的简单原理 平衡器有很多种,按平衡条件可以分为四大类:扼流式(扼制不平衡电流)、对称式(对地阻抗平衡)、倒相式(电压倒相)、磁耦合式(电流共扼)。我这里主要描述一下基于传输线变换器的平衡-不平衡变换,同时具备阻抗变换作用的巴伦,兼有扼流式和磁耦合式的特征。

(完整版)变压器空载损耗与负载损耗的计算方法及公式

变压器空载损耗与负载损耗的计算方法及公式 电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。 1、电力变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ------(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β ——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;

(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。 2、电力变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损https://www.wendangku.net/doc/2811831258.html,/耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)×供电时间(小时)

驻波实验报告

实验目的: 1、观察弦振动及驻波的形成; 3、在振动源频率不变时,用实验确定驻波波长与张力的关系; 4、在弦线张力不变时,用实验确定驻波波长与振动频率的关系; 4、定量测定某一恒定波源的振动频率; 5、学习对数作图法。 实验仪器: 弦线上驻波实验仪(FD-FEW-II型)包括:可调频率的数显机械振动源、平台、固定滑轮、可动刀口、可动卡口、米尺、弦线、砝码等;分析天平,米尺。 实验原理: 如果有两列波满足:振幅相等、振动方向相同、频率相同、有固定相位差的条件,当它们相向传播时,两列波便产生干涉。一些相隔半波长的点,振动减弱最大,振幅为零,称为波节。两相邻波节的中间一点振幅最大,称为波腹。其它各点的振幅各不相同,但振动步调却完全一致,所以波动就显得没有传播,这种波叫做驻波。驻波相邻波节间的距离等于波长λ的一半。 如果把弦线一端固定在振动簧片上,并将弦线张紧,簧片振动时带动弦线由左向右振动,形成沿弦线传播的横波。若此波前进过程中遇到阻碍,便会反射回来,当弦线两固定端间距为半波长整数倍时,反射波与前进波便形成稳定的驻波。波长λ、频率f和波速V满足关系:V = fλ (1) 又因在张紧的弦线上,波的传播速度V与弦线张力T及弦的线密度μ有如下关系:(2) 比较(1)、(2)式得:(3) 为了用实验证明公式(3)成立,将该式两边取自然对数,得: (4) 若固定频率f及线密度μ,而改变张力T,并测出各相应波长λ ,作ln T -lnλ图,若直线的斜率值近似为,则证明了的关系成立。同理,固定线密度μ及张力T,改变振动频率f,测出各相应波长λ,作ln f - lnλ图,如得一斜率为的直线就验证了。 将公式(3)变形,可得:(5) 实验中测出λ、T、μ的值,利用公式(5)可以定量计算出f的值。 实验时,测得多个(n个)半波长的距离l,可求得波长λ为:(6) 为砝码盘和盘上所挂砝码的总重量;用米尺测出弦线的长度L,用分析天平测其质量,求出弦的线密度(单位长度的质量):(7) 实验内容: 1、验证横波的波长λ与弦线中的张力T 的关系(f不变) 固定波源振动的频率,在砝码盘上添加不同质量的砝码,以改变同一弦上的张力。每改变一次张力(即增加一次砝码),均要左右移动可动卡口支架⑤的位置,使弦线出现振幅较大而稳定的驻波。将可动刀口支架④移到某一稳定波节点处,用实验平台上的标尺测出④、⑤之间的距离l,数出对应的半波数n,由式(6)算出波长λ。张力T改变6次,每一T下测2次λ,求平均值。作lnλ- ln T图,由图求其斜率。

驻波表

驻波表—功率计 王海峰(BD2EZ)整理 天线系统的驻波比的大小对发射效率有很大影响,驻波比过大就会有很大的功率被反射,在馈线中有往返传输,造成额外损耗,或者异常电压或者异常电流,是发射机不能正常工作甚至损坏。 衡量反射大小的量称为反射系数,常用γ或ρ表示,为了讨论简单,我们假设负载阻抗为纯电阻。反射系数定义为:反射电压波比入射电压波。参考图1,ρ还可定义为下式: ρ=(RL-RO)/(RL+RO) 其中,RO为传输特性阻抗,RL为负载阻抗。 当RO=RL,则ρ=0,称为匹配状态。 如果RL为开路或短路,则ρ分别等于+1或-1,称为全反射。 用反射系数可以完善地描述传输系统的匹配状态,但测量其驻波比(SWR)更为简单和直观。 我们知道,在匹配状态下,高频电磁能量全部流入负载,不存在反射。这时传输线上的各个位置上的电压振幅不变,不存在驻波,称为行波状态。因而在失配时,由于有反射波与入射波在传输线上互相叠加,使线上各点的振幅呈现有规律的起伏,称驻波状态,如图2所示。 驻波比定义为:SWR=U最大/U最小,SWR与的关系为: SWR=(1+︱ρ︱)/(1-︱ρ︱) 当无反射时,SWR=1, 当全反射时,SWR=∞。 当RO=50Ω时,则RL=100Ω或RL=50Ω都会使SWR=2,此时,ρ=1/3,相当于有1/3的入射电压被反射回来。 测量驻波比的方法有测量线法、反射计法、网络分析仪法及高频阻抗电桥法等,但这些仪器往往不适于在线连续测量天(天线)馈(馈线)系统。专用于测量天馈系统的仪器是驻波表及功率计。下面就介绍这种仪器的原理、制作、校准及其使用方法。 驻波表是基于交流电桥的原理,与常规电桥不同之处是:驻波表是按被测传输系统的特性阻抗值(例如50Ω)而设计的;它可以读出入射功率和反射功率,可以串接在发射机与天馈线之间而不必取下来。其基本原理如图3所示。 交流互感器T为电桥的一个臂,C1和C2组成的分压器为电桥的另一个臂。跨与C2上的电压与传输线上的电压相同。如果所加负载等于电桥的设计电阻值,则C2及R上的电压相等,相位相同,于是高频电压表指示为零(即SWR=1)。这时,电桥满足了平衡条件。 由于分布参数影响设计的准确程度,常选C1或C2为可调电容。 当所接负载偏离电桥的设计阻抗时,电桥平衡条件会因Z的改变而被破坏,电表就产生读数。这个读数和反射电压的绝对值有对应关系。

变压器损耗计算公式

变压器损耗 分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗, 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK -------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK -------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ ----(3)Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取

系统最小负荷时,其无功当量KQ=0.1kW/kvar;(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。

弦振动实验报告

弦振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系, 并进行测量。 三、 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程

分别为: Y1=Acos2π(ft-x/ λ) Y2=Acos[2π (ft+x/λ)+ π] 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2π(x/ λ)+π/2]Acos2πft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2π(x/ λ)+π/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2π(x/ λ)+π/2] |=0 2π(x/ λ)+π/2=(2k+1) π/ 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=kλ /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)λ/2-kλ / 2=λ / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2π(x/ λ)+π/2] | =1 2π(x/ λ)+π/2 =kπ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)λ/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=nλ/ 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: λ=2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=λf,将⑤式代入可得弦线上横波的

LDG_at100(at200)pro -2_中文说明书

LDG AT-100PRO-2 自动天调简易说明书 规格: 0.1-125W,SSB、CW峰值功率,100W 数字通信模式及6米波段; 超低功率闭锁继电器; 2000个存储点; 内置记忆操作频率计; 易识别的LED显示驻波及操作状态; 工作频率1.8-54MHz; 调谐6-1000欧姆负载(6M为16-150),使用4:1巴伦时为6-4000欧姆; 水平天线,垂直天线,Vees,Beams或者其他同轴馈电天线; 可选的外置巴伦允许调谐任意长度长线及梯形馈电天线; 提供ICOM电台控制线(Yaesu控制线为选配件,自制很简单); 电源需求:直流7-16V,调谐时最大电流250mA,闲时25uA; 外形尺寸:8.0”L*5.0”W*1.75”H;203.2L*127W*44.45H--mm 重量:1lb,6oz.(630克),无内置电池时。 前面板: Func:瞬间按下配合其他按键,为选择其他按键的第二功能; C Up/C Dn:手动增加减少电容; L Up/L Dn: 手动增加减少电感; Tune:启动一个调谐周期,或者将天调置为旁路模式; 1.5, 2.0,and> 3.0 LEDs:显示驻波(SWR); Tune LED:指示调谐过程。

后面板: Ant:连接天线 Tx:连接发射机(电台Ant接口) Gnd:接地(改善天调性能,增加安全性)Radio:和发射机联动 Power:2.5*5.5mm电源插座,内正外负。安装:

操作: 基本操作: LDG Z-11Pro2通过前面板的6个按键进行操作。每个按键拥有一个或更多相关功能。前面板的标签显示了按键的主要和第二功能。通过瞬间按下或者长按相关按键可以选择主要功能。通过短按FUNC 然后按下其他相关按键,可以选择第二功能。如果FUNC意外被按下,该操作可以通过第二次按下FUNC取消,或者只需要等待它时间到自动退出。 按下Func后LED从左到右闪烁,然后Tune闪烁。 取消Func或者时间到时,LED从右向左闪烁然后熄灭。 基本的调谐: LDG Z-11Pro2拥有2种调谐模式:全自动调谐,半自动调谐。 全自动调谐:当有前向功率,且检测到驻波超过预设值时开始调谐。 半自动调谐:只有当按下Tune键时才开始调谐。

驻波比告警及分级接收告警的原因及常规处理办法

驻波比告警及分级接收告警的原因及常规处理办法 外接天馈设备的驻波比升高,会造成基站的告警。检查时可查看以下几个方面: 1.天线与馈线的接头处是否密封好,有无进水现象。 2.可检查馈线是否有损伤及扭曲。 3.测试天线的驻波看是否正常。 驻波告警定位方法 1、驻波告警1(VSWR1) 1)检查CDU有故障 利用测试手机测试基站收发信号功能是否正常。 若收发信信号功能正常,利用CDU强制复位功能来确定CDU是否误告警。如果CDU复位后故障不重现, 那么说明CDU有误告警,更换CDU。否则,CDU没有误告警,此时可通过“置换”等方法来确定是否CDU 有故 障。若CDU没有故障,说明天馈系统有故障,转第(2)步。 若如果收发信号不正常或信号不通,那么说明天馈系统+CDU的上下行通道可能有问题,在第一步中通过“置换”法确认CDU没有问题后转第(2)步。 2)检查天馈系统是否故障。 可以通过测试(室外)天馈系统的驻波比来检查(室外)天馈系统有无故障。在与CDU 模块TX/RX ANT 端口相连接的1/4"跳线接头处,测试天馈系统的驻波比,同时晃动1/4"跳线和机柜顶1/2"跳线,观察仪器显示的驻波比数值是否变化很大。如果驻波比数值变化很大,那么说明电缆接触不良。如果驻波比大于1.5,那么可判断天馈系统有故障,按“步步为营”等方法处理。 !!当有塔放时,必须先切断塔放馈电,防止短路现象和其它损坏测试仪表的现象发生,再测试CDU TX/RX ANT端口驻波是否严重超标。 3)上述步骤一般能定位CDU 过驻波告警1(VSWR1)故障原因;当上述步骤不能定位CDU 过驻波告警1 (VSWR1)故障原因时,按CDU驻波告警处理功能不稳定或CDU TX/RX ANT接头与1/4"跳线接头匹配不良处 理。前者更换CDU,后者更换CDU和1/4"跳线。 4)若TRX上报驻波比告警,则需要首先检查TRX发射端口(TX)到CDU的连线是否正常及接头是否拧紧,同 时可以通过更换TRX来检查是否是TRX误告警。 2、驻波告警2(VSWR2) 1)当CDU 发生过驻波告警2(VSWR2)时, CDU会上报告警给后台。, 当该告警持续一段时间(一分钟)后, CDU将向后台上报驻波严重告警。此时操作维护单元(TMU)在接收到驻波严重告警后,将自动向TRX 发命 令关掉功放。 2)定位告警故障原因,参见过驻波告警1(VSWR1)问题定位的一般方法。 分集接收告警的故障分析与处理 在GSM基站维护中,分集接收丢失是一种出现较为频繁的故障,是影响网络指标的一个重要因素。而许多维护人员并不是很认真的去思考这一问题,只是简单的将TRU复位,有的甚至去更换天线做一些无用功。产生分集接收丢失时,一个或多个TRU在50分钟内至少有12db的差异,由此接收机的灵敏度会减少

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

SX-200驻波表使用说明

钻石SX-200 驻波表使用说明 1 仪表表头、开关、端口功能 仪表表头、开关、端口位置见图1 ①表头:用于指示发射功率、反射功率、驻波比及单边带应 用时峰值包络功率的数值。 表头上共有5道刻度。从上往下,第1、2道刻度为驻波比刻度值,第一道刻度右侧标有“ H” ,当电台输出功率大于5W时,应从该刻度上读取驻波比值;第二道刻度右侧标有“ L” ,当电台输出功率小于5W时,应从该刻度上读取驻波比值;第3、4、5道刻度为功率值刻度,分别对应功率值满量程200W、20W、5 W档位。 ②RANGE(量程开关 选择功率测量量程,共三档,分别为200W、20W、5W。 ③FUNCTION(测量功能选择开关 置于“ POWER” 时,进行发射功率(FWD)、反射功率(REF)测量。' 置于“ CAL” 时,进行驻波比(SWR)测量前的校准。 置于“ SWR” 时,进行驻波比(SWR)测量 ④CAL(校准旋钮) 进行驻波比(SWR)测量前(被测电台处于发射状态下),用此旋钮进行校准,应将指针调到表头第一道刻度右侧标有“ ” 处。 ⑤POWER(功率测量选择开关 置于“ FWD” 时,进行电台发射功率测量。 置于“ REF” 时,进行反射波功率测量。 置于“ OFF” 时,停止对电台各种功率的测量。

⑥AVG、PEP MONI(平均值或峰值包络功率测量选择开关) 测发射功率、反射波功率、驻波比时,该开关应弹起,呈“ ■” 状态,此时表头所指示的是功率的平均值(AVG)。 作为单边带峰值包络功率(PEP MONI)监视器时,该开关应按下,呈“ ━” 状态。 ⑦零点调整螺钉 用于表头指针的机械调零,测量前调整该螺钉可使指针指示到零位。 ⑧TX(与电台发射机相连端口)可同时参见图1及图 用50Ω 同轴电缆将该端口与电台天线端(ANT)相连。 ⑨ANT(与电台使用的天馈线连接端口) 将电台实际使用天馈线的馈线(50Ω )端口(或50Ω 阻性的标准 负债)与该端口相连。 ⑩DC138V(表头照明直流电源输入端口) 表头照明直流电源输入端口,直流电源电压范围为11~15V,红线接电源“ +” ,黑线接电源“ -” ,主要是用于夜间的野外场合。

磁性材料术语解释及计算公式

磁性材料术语解释及计算公式 起始磁导率μi 初始磁导率是磁性材料的磁导率(B/H )在磁化曲线始端的极限值,即 μi = 01μ× H B ?? ()0→?H 式中 μ0为真空磁导率(m H /7104-?π) ?H 为磁场强度的变化率(A/m ) ?B 为磁感应强度的变化率(T ) 有效磁导率μe 在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表示磁芯的性能。 e μ = Ae Le N L 20?μ 式中 L 为装有磁芯的线圈的电感量(H ) N 为线圈匝数 Le 为有效磁路长度(m ) Ae 为有效截面积 (m 2) 饱和磁通密度Bs (T ) 磁化到饱和状态的磁通密度。见图1。

Hc H 图 1 剩余磁通密度Br(T) 从饱和状态去除磁场后,剩余的磁通密度。见图1。 矫顽力Hc(A/m) 从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁感应强度减为零,此时的磁场强度称为矫顽力。见图1。 损耗因子tanδ 损耗系数是磁滞损耗、涡流损耗和剩余损耗三者之和。 tanδ= tanδh + tanδe + tanδr 式中 tanδh为磁滞损耗系数 tanδe为涡流损耗系数 tanδr为剩余损耗系数 相对损耗因子 tanδ/μi 比损耗因子是损耗系数与与磁导率之比: tanδ/μi(适用于材料) tanδ/μe(适用于磁路中含有气隙的磁芯) 品质因数 Q

品质因数为损耗因子的倒数: Q = 1/ tan δ 温度系数αμ( 1/K) 温度系数为T1和T2范围内变化时,每变化1K 相应的磁导率的相对变化量: αμ= 1 12μμ-μ.12T T 1- 式中 μ1为温度为T1时的磁导率 μ2为温度为T2时的磁导率 相对温度系数αμr(1/K) 温度系数和磁导率之比,即 αμr = 211 2μμ-μ.1 2T T 1- 减落系数 DF 在恒温条件下,完全退磁的磁芯的磁导率随时间的衰减变化,即 DF = 212 121μ1T T log μμ?- (T2>T1) μ1为退磁后T1分钟的磁导率 μ2为退磁后T2分钟的磁导率 居里温度Tc (℃) 在该温度时材料由铁磁性(或亚铁磁)转变为顺磁性,见图2。

相关文档