文档库 最新最全的文档下载
当前位置:文档库 › 2006-环氧丙基三甲基氯化铵

2006-环氧丙基三甲基氯化铵

2006-环氧丙基三甲基氯化铵
2006-环氧丙基三甲基氯化铵

Preparation,characterization and antimicrobial activity of quaternized

carboxymethyl chitosan and application as pulp-cap

Liping Sun a ,Yumin Du a,*,Lihong Fan a ,Xiao Chen b ,Jianhong Yang a

a

Department of Environmental Science,College of Resource and Environmental Science,Wuhan University,Wuhan 430072Hubei,China b

College of Biologic and Environmental Engineering Science,Zhejiang University of Technology,Hangzhou 310014Zhejiang,China

Received 16September 2005;received in revised form 15January 2006;accepted 22January 2006

Abstract

Quaternized carboxymethyl chitosan (QCMC)was prepared from which carboxymethyl chitosan (CMC)was prepared from chitosan ?rst,then N -quaternary ammonium group was introduced by the reaction of CMC with 2,3-epoxypropyl trimethylammonium.The structures of the derivatives were characterized by FT-IR,XRD,13C NMR,1

H NMR and gel permeation chromatography.In vitro antimicrobial activities of

QCMC were evaluated against Escherichia coli ,which is a Gram-negative bacterium,and Staphylococcus aureus ,which is a Gram-positive

bacterium.In compared with carboxymethyl chitosan (CMC)and quarternary chitosan (QC)of the same degree of substitusion (DS),we found that QCMC has stronger antimicrobial activity.Then we went deep into study of the relationship between their structure and antimicrobial activity,found that the DS of CMC do little effect to their antimicrobial activity,but as the increase of their DS of quaternization or the decrease of their molecular weight,the antimicrobial activity of QCMC become stronger.QCMC was complexed with calcium hydroxide as pulp-cap.

Animal experiment results indicated that QCMC can strongly induce reparative dentine formation and showed a better ability in dentin inducing

compared with calcium hydroxide.

q 2006Elsevier Ltd.All rights reserved.

Keywords:Quaternized carboxymethyl chitosan;Antimicrobial activity;Structure–function relationship

1.Introduction

Chitosan (CS),originated from chitin,the second most abundant natural biopolymer only to cellulose,is a nontoxic copolymer consisting of b -(1,4)-2-acetamido-2-deoxy-D -glu-copyranosyl and b -(1,4)-2-amino-2-deoxy-D -glucopyranosyl units [1].CS has attracted more and more researchers due to its multiple bioactivities [2]such as antimicrobial [3–5],antitumor [6]and immune enhancing effects [7].The antimicrobial and antifungal activities of CS have been followed with great interest.CS inhibits the growth of a wide variety of bacterial and fungi showing broad spectra of antimicrobial activity,high-killing rate and low-toxicity toward mammalian cells.CS (p K a Z 6.8),however,exhibits its antimicrobial activity only in an acidic medium because of its poor solubility above pH 6.5.Thus,water-soluble chitosan derivatives soluble to both acidic and basic physiologic circumstances may be good candidate for the polycationic

bibyeocide [1].Because the antimicrobial activity of chitosan is very limited,various efforts have been taken to improve it.Some researchers studied the effect of the molecular weight,degree of deacetylation,solvent,pH,etc.[3,4]on the

antimicrobial activity of chitosan,so as to enhance the activity by adjusting these factors.Other researchers have set out to modify chitosan to gain derivatives with higher activity such as

N -sulfonated and N -sulfobenzoyl chitosan [8],carboxymethyl-chitosan [9],quaternary ammonium salt of chitosan [10],etc.In an attempt to improve antimicrobial activity of chitosan,our papers report the preparation of quaternized carboxymethyl chitosan (QCMC)in which carboxymethyl group and quaternary ammonium group contemporaneously introduced onto chitosan molecular chain.CMC and QC which represent a family of very important derivatives of chitosan,respectively,have been found to possess many bioactivities [11–13].Since,

antimicrobial mechanism of chitosan has suggested that the trace metal cations selectively chelated by the chitosan could be necessary for the microorganism’s growth and therefore could inhibit the proliferation of the microbial [14],it would be interesting to investigate if carboxymethyl chitosan,which possesses negative charges on the carboxyl groups making itself an excellent chelating host for metal cation substrate,

Polymer 47(2006)1796–1804

https://www.wendangku.net/doc/2c11906735.html,/locate/polymer

0032-3861/$-see front matter q 2006Elsevier Ltd.All rights reserved.doi:10.1016/j.polymer.2006.01.073

*Corresponding author.Tel.:C 862768778501;fax:C 862768778501.E-mail address:duyumin@https://www.wendangku.net/doc/2c11906735.html, (Y.Du).

渗透层析

环氧丙基氢氧化钙

牙质引起修补脱乙酰作用

磺化

苯甲酰CMC

QC 壳聚糖抗菌

机制是螯合了微生物生

长必须的金

属离子

could show any antimicrobial activities.By now almost no study has been conducted on their interaction on antimicrobial activity.Here,we wish to report in this paper the preparation of chemically modi?ed carboxymethyl chitosan and the anti-microbial activities of these chitosan derivatives against a Gram-positive bacterium Staphylococcus aureus and a Gram-negative bacterium Escherichia coli ,measured by the agar plate method.The preparation of carboxymethyl chitosan and its quaternized derivatives is presented as Scheme 1.

Direct pulp capping is considered a valid treatment method in today’s endodontics,because successful capping can preserve tooth vitality in an exposed pulp cavity.Calcium hydroxide preparations are normally used as capping materials [15–18].The main advantage of calcium hydroxide is its biological activity.It presents antimicrobial and anti-in?am-matory activities principally due to the high pH value of the surrounding environment (around 12.5)following its dissol-ution.Most bacteria do not resist a pH above 9.5,and the alkalinity allows the resolution of the exudates,which maintain the in?ammatory state.Calcium hydroxide acts as a chemical buffer because of this alkalinity and as a thermal buffer towards metallic materials because of its low-thermal conductivity.Finally,it does not inhibit the polymerization of composite.Calcium hydroxide also presents some drawbacks:(i)it provokes pulp necrosis during the ?rst days,then the pulp reacts by establishing an atubular tertiary dentine bridge,but this dentine formation is made to the detriment of the pulpal volume with long-term biological consequences;(ii)when the paste is only calcium hydroxide,its application in the root canal system is easy but the low hardening and the retraction by drying do not allow tight ?llings,consequently it is only used as temporary material in this indication for which hermeticity is a priority;(iii)to get round this disadvantage,i.e.to increase the crushing strength and to decrease the setting time,polymeric bases were added,but under these conditions the setting time is too short to use these materials as root canal ?lling.We complexed QCMC with calcium hydroxide as pulp-cap agent,in order to keep the advantages of calcium

hydroxide while minimizing its drawbacks.The carboxy-methyl group which has been introduced to the chitosan chain was easy to combine with Ca 2C which increased the combination with outer Ca(OH)2while the quaternary group makes it has much stronger antimicrobial ability.The complex which can reduce the destroy of Ca(OH)2to the pulp of a tooth,induce reparative dentine formation is an excellent biological pulp capping material worthy to study more deeply.2.Experimental

2.1.Materials and methods

Chitosan was supplied by Yuhuan Aoxing biochemistry Co.Ltd in Zhejiang province in China,with a deacetylation degree of 87%(determined by elemental analysis [19])and the molecular weight (M w )calculated from the GPC method was about 4.5!105.Standard pullulans for GPC were purchased from Showa Denko,Tokyo,Japan;2,3-epoxypropyl trimethy-lammonium chloride was prepared in the lab.All other chemicals were of reagent grade and were used without further puri?cation as received.A Gram-positive bacterium S.aureus and a Gram-negative bacterium E.coli were provided by China center for type culture collection (CCTCC in Wuhan University)and inoculated on a gel containing 1%peptone,2%agar,3%meat extract and 0.5%NaCl.Calcium hydroxide was purchased from Densply Co.Female Wistar rats,12weeks old,240–260g,were used for this experiment.2.2.Preparation of quaternized carboxymethyl chitosan 2.2.1.Carboxymethl chitosan

Chitosan (10g)suspended in NaOH (15ml)was kept K 208C overnight.The frozen alkali chitosan was transferred to 2-pripanol (100ml)and ClCH 2CO 2H was added in portions.Stirring at room temperature for 4h and HOAC was added to the mixture to adjust the pH to 7.0.The carboxymethyl chitosan (CMC)salt was ?ltered and washed with EtOH.

After

Scheme 1.Synthesis of carboxymethyl chitosan and quaternized carbosymethyl chitosan.

L.Sun et al./Polymer 47(2006)1796–18041797

dialyzing against deionized water for4days,the product was vacuum dried at room temperature.By changing the alkali concentration,a series of CMC with various degree of substitution was prepared.

2.2.2.Quaternization of carboxymethl chitosan

The quaternization of CMC was conducted as follows. Concentrated hydrochloric acid(0.1mol)was dropped into the solution of trimethylamine(0.1mol)at48C to avoid gasi?cation of trimethylamine in the latter reaction.When it was stirred for about10min,the resulting solution was added by epoxy chloropropane(0.086mol)at318C.After homogen-ization,the mixing solution was heated to518C,and was then trickled slowly by aqueous NaOH(0.1mol)solution in order to maintain trimethylamine hydrochloride to slowly decompose into trimethylamine,which easily react with epoxy chloropro-pane.The addition of NaOH was performed within1–1.5h, after another2h of stirring,the reaction mixture was re?ned by vacuum distillation at508C.

CMC(5g)was dissolved in20ml distilled water and2, 3-epoxypropyl trimethylammonium chloride was added with different mole ratio to glucosamine unit.The mixture was reacted at808C for8h with stirring then dialyzed for4days and?nally lyophilized to give QCMC as a yellow power. 2.2.3.Degradation of quaternized carboxymethyl chitosan

QCMC powder(5g)was suspended in250ml deionized water,after stirring at408C for2h,hydroperoxide of a desired volume was added for predetermined time to yield QCMC of various molecular weights.

2.3.Characterization

FT-IR spectra were recorded with KBr pellets on a Nicolet FT-IR360spectrophotometer.Sixteen scans at a resolution of 4cm K1were averaged and referenced against air.

X-ray diffraction patterns of the degraded chitosan fractions were measured by a Shimadzu Lab XRD-6000diffractometer and used a Cu K a target at40kV and50mA at208C.The relative intensity was recorded in the scattering range(2q)of 5–408.13C and1H NMR spectra were recorded on a Varian mercury VX-300spectrometer and chemical shifts were given by taking methanol as reference in D2O at323K.

Weight-average molecular weights(M w)of samples were measured by GPC.The GPC equipment consisted of connected columns(TSK G5000-PW and TSK G3000-PW),TSP P100 pump and RI150differential refractometer and Jiangshen Workstation.Each sample was dissolved in0.1mol/l aq NaCl which was the eluent,then?ltered through0.45m m Millipore ?lters.The?ow rate was maintained at1.0ml/min.The sample concentration was0.4mg/ml.the weight-average molecular weight(M w)was calculated by the following equation:

lgeM wTZ K0:4383Ve C8:9236(1) DS of carboxymethyl group of each sample was estimated from potentiometric titration[20].Samples were dissolved in 0.1mol/l hydrochloric acid(50ml)in the presence of0.1mol/l sodium chloride and titrated with0.1mol/l sodium hydroxide. The alkalimetric curves were recorded on a DELTA-320-S pH meter.

The degree of substitution of the quaternization group was determined by the potentiometry[21].Potentiometric titration of the chloride ion on QC and QCMC was carried out with the aqueous silver nitrate,using a calomel electrode as the reference,and a silver electrode for the measurement.DS is calculated as follows:

DS Z

C!V

1000

C!V

1000

C W K2

1000

M1

(2)

where C(mol l K1)is the concentration of AgNO3solution,V (ml)is the volume of AgNO3solution,W(g)is the weight of quaternary chitosan,M1(mol g K1)is the molar mass of glucosamine and M2(mol g K1)is the molar mass of quaternary chitosan.

2.4.Evaluation of antimicrobial activity in vitro

The agar plate method was used to determine the minimum inhibition concentration(MIC)of CMC,QC and QCMC as follows:the samples were prepared at a concentration of1% (w/v),then they were autoclaved at1218C for25min. Duplicate two-fold serial dilutions of each sample were added to nutrient broth(beef extract5g,peptone10g to 1000ml distilled water,pH7.0)for?nal concentration of0.1, 0.05,0.025,0.0125,0.00625,and0.00313%.Some samples were prepared and diluted by the same way except for?nal concentration of0.00065and0.00033%.The culture of each bacterium was diluted by sterile distilled water to105–106 CFU/ml.A loop of each suspension was inoculated on nutrient medium with sample or control added.After inoculation,the plates were incubated at378C for72h,and the colonies were counted and the MIC values were obtained.

The minimum inhibitory concentration(MIC)was con-sidered to be the lowest concentration that completely inhibited against on agar plates comparing,disregarding a single colony or a faint haze caused by the inoculum[22].

2.5.Animal test

Each animal was anesthetized with an intraperitoneal injection of sumianxin(0.08ml/100g).Electrosurgery of the gingival tissue was carried out to prepare an access to the mesial aspect of the right and left upper?rst molars.V-like cavities were then prepared in the cervical third of the mesial aspect of the?rst upper molars with a high-speed contra-angle. Two teeth per rat were prepared.The left one is controlled group,which the cavity was prepared but?lled only with calcium hydroxide and compound resin.The right one is the test group,which was?lled with the complex of QCMC and calcium hydroxide and the compound resin.So that after7,14, and21days,respectively,six rats per group were killed by perfusion of the?xative solution(10%neutral formaline)

L.Sun et al./Polymer47(2006)1796–1804

1798

电位滴定

电位测定

through the heart.Block sections including the three molars,bone,and gingival were immersed in the ?xative and kept at 48C for 24h.They were demineralized either with sodium formiate or with 10%EDTA and embedded in paraplast.Serial sections of 5mm were stained with H&E [18].3.Results and discussion

3.1.Structure characterization of CMC and QCMC

3.1.1.FT-IR spectra

Fig.1presents the FT-IR spectra of CS,CMC and QCMC.The absorption bands at 1655,1593,1323,1381cm K 1in the spectrum of CS assigned to amides I,II,III and –CH 3vibration bends [23].Two strong peaks at 1605and 1419cm K 1(in CMC spectrum)and 1603and 1415cm K 1(in QCMC spectrum)were observed due to the asymmetrical and symmetrical stretching of COO–group.In the spectrum of CMC,the C–O stretching band at 1030cm K 1corresponding to the primary hydroxyl group disappears,verifying a high carboxymethyla-tion of OH-6.The characteristic peak of second hydroxyl group at 1080cm K 1was not https://www.wendangku.net/doc/2c11906735.html,pared with CS,QCMC showed the disappearance of the NH 2-associate band at 1593cm K 1,which can be ascribed to the characteristic peak of primary amine N–H vibration deformation and appearance of a new peak at 1480cm K 1,which was attributed to the methyl groups of the ammonium.It was indicative of the formation of N -(2-hydroxy,3-trimethylammonio)-propyl chit-osan chloride at –NH 2.The IR spectrum was in agreement with the reported spectra [10,24].

3.1.2.X-ray analysis

The X-ray diffractograms of CS,CMC and QCMC are shown in Fig.2.It could be seen that there were some differences of peak height,width and position between them.

CS consisted of two major peaks at 2q 12and 21,while CMC exhibited two characteristic peaks at 2q 11and 20.The X-ray diffraction pattern of CS and CMC coincided with the pattern of the L-2polymorph of shrimp chitosan reported by Sato and Kim [25,26].Compared with CS,which showed relatively,narrow peak at 2q 20,CMC had a relatively broader peak at 2q 20and the peak at 2q 12signi?cantly weaken.In diffraction spectrum of QCMC the peak at 2q 12was even disappeared and the peak at 2q 20became even broader and it became amorphous.It is well-known that the width of X-ray diffraction peak is related to the size of crystallite,the broadened peak usually results from small crystallites [27].Hence,in this reaction,the carboxymethylation reaction ?rst took place preferentially in the amorphous region and then proceeded very moderately from the edge to the inside of the crystalline region [28]and with further quaterization,the crystalline structure was destroyed and the crystallinity disappeared.

3.1.3.13C NMR and 1H NMR

NMR method is the most effective technique concurrently to determine the structure of chitosan derivatives [21,29].Fig.3depicts the 13C NMR spectrum of QCMC.The peak at d Z 54.3ppm was attributed to the carbons of the trimethylammo-nium group (C-d).The signal for –COOH substituted on –OH is obvious at 178ppm.The peaks at d Z 101.5,62.6,72.4,77.9,74.9and 60.8ppm were attributed to the C-1,C-2,C-3,C-4,C-5and C-6,respectively.The peaks at d Z 51.7and 68.7ppm were attributed to C-a and C-c ,respectively.The peak appearing at 64.4ppm was attributed to C-b .The peaks at d Z 22.5ppm was attributed to the carbons of the residual CH 3acetyl.The results were in agreement with Qin et al.[24].Fig.4shows the 1H NMR spectrum of QCMC.The peak at d Z 1.83ppm was assigned to the proton of residual CH 3acetyl.The most intensive signal at d Z 3.04ppm was attributed to the protons of the methyl groups of the quaternary ammonium salt.The peaks at d Z 4.58,2.66,3.52,3.71,3.59and 3.74ppm were attributed to H-1,H-2,H-3,H-4,H-5and H-6,respectively.The peak at d Z 4.37ppm was attributed to the CH 2at carboxymethyl group.The peaks at d Z 2.42, 4.14

and

Fig.1.FT-IR spectra of CS,CMC and

QCMC.

Fig.2.X-ray diffraction patterns of CS,CMC and QCMC.

L.Sun et al./Polymer 47(2006)1796–18041799

3.23ppm were attributed to the H-a ,H-b and H-c ,respectively.The results were consistent with the reported spectra [24].3.1.

4.DS and M w

A series of carboxymethylation and quaternization reactions were conducted in this paper to get samples with various degree of substitution of carboxymethyl group and quaternary group.As shown in Table 1,alkali concentration was the most important factors to regulate carboxymethylation of chitosan.Work by Tokura and co-workers demonstrated that the DS value of CMC-chitosan increased with NaOH concentration changing from 20to 40%[30].And in the present work,when NaOH concentration increased from 40to 60%,the DS value increased from 0.56to 0.86.At lower NaOH concentration,the rigid crystalline structure of chitosan was dif?cult to disrupt to ensure penetration of the ClCH 2CO 2H into the interlocking polymer chains.

In order to obtain quaternary chitosan derivatives with different DS,several conditions were tried.It was found that the DS was affected by the ratio of 2,3-epoxypropyltrimethyl ammonium chloride to chitosan.This result was consistent with Jia et al.[10].Under optimal conditions,Q and QCMC with different DS were obtained.The characteristics of them are listed in Table 1.

Weight average molecular weights of degraded samples determined by GPC are shown in Table 2,together with reaction conditions.The molecular weight of samples studied varies from 4.72!105to 1.1!104.All samples obtained by degradation are white free-?owing powders.3.2.Antimicrobial activity of CMC and QCMC

The antimicrobial activities of CMC,QC and QCMC are shown in Tables 3and 4.It was found that these samples showed effectively antimicrobial activities against not only E.coli but also S.aureus which were used in the test,although differences existed among them.Generally,the samples had more effective inhibition on S.aureus than E.coli .The fact may be attributed to their different cell walls.S.aureus ,a typical Gram-positive bacterium,its cell wall is fully composed of peptide polyglycogen.The peptidoglycan layer is composed of networks with plenty of pores,which allow foreign molecules to come into the cell without dif?culty.But E.coli ,a typical Gram-negative bacterium,the cell wall of which is made up of a thin membrane of peptide

polyglycogen

Fig.3.

13

C NMR spectrum of

QCMC.

Fig.4.1H NMR spectrum of QCMC.

Table 1

Carboxymethyl chitosan (CMC),quatery chitosan (QC),QCMC of different degree of substitution Sample no.

NaOH conc.(%)Mole ratio of

functional reagent to glucosamine units DS of CMC DS of QC

CMC 350–0.73–CMC 130–0.45–CMC 240–0.56–CMC 460–0.86–QC 1–3:1–0.78QC 2–2:1–0.59QC 3

–1:1–0.32Q 1CMC 3503:10.730.78Q 2CMC 3502:10.730.59Q 2CMC 3501:10.730.32Q 2CMC 1302:10.450.59Q 2CMC 2402:10.560.59Q 2CMC 460

2:1

0.86

0.59

L.Sun et al./Polymer 47(2006)1796–1804

1800

and an outer membrane constituted of lipopolysaccharide,lipoprotein and phospholipids.Because of the bilayer structure,the outer membrane is a potential barrier against foreign molecules.

Compared with CMC,QC and QCMC in Table 3,QCMC had much better antimicrobial activities,whose MIC values were 4–8times lower than those of CMC and 2–4times lower than those of QC.It was noticed that the introduction of carboxymethyl group and quaternized group to the chitosan chain greatly enhanced the antimicrobial activity of the QCMC.We can deduce that carboxymethyl group and quaternary ammonium group are in synergistic effect.

As shown in Table 4,compared with Q 2CMC 1,Q 2CMC 2,Q 2CMC 3and Q 2CMC 4,which have same degree of substi-tution of quaternized group,we found that no clear effect of DS value of carboxymethyl group on antimicrobial https://www.wendangku.net/doc/2c11906735.html,pared with Q 1CMC 3,Q 2CMC 3and Q 3CMC 3,which have same degree of substitution of carboxymethyl group,it can be observed that the antimicrobial activities of them enhanced with increasing of the DS of https://www.wendangku.net/doc/2c11906735.html,pared with Q 2CMC 3-1,Q 2CMC 3-2,Q 2CMC 3-3and Q 2CMC 3-4,which have same degree of substitution of both carboxymethyl group and quaternized group,the results demonstrated that anti-microbial activity of them was affected by its molecular weight remarkably.Lower molecular weight resulted in better antimicrobial ability,and when molecular weight was below

1!104,the antimicrobial activity of QCMC was strong and the MIC values reached to 0.00313%.

The antimicrobial mechanisms of these derivatives suggested to being on one hand,the positive charge of the group at C-2resulted in a polycationic structure which can be

expected to interacted with the predominantly anionic

components (lipopolysaccharides,proteins)of the microor-ganisms’surface [31].The interaction resulted in great alteration of the structure of outer membrane which caused release of major proportion of proteinaceous material from the cells [32]when the quaternized group was introduced onto the molecular chain,the positive charge was strengthened.On the other hand,when carboxymethyl group was introduced along the molecular chain,the presence of a molecular with hydrophilic ends and forming weak interaction between hydrophilic ends and chitosan enhances the antimicrobial activity.More work is needed to con?rm this hypothesis.The exact mechanism of the antimicrobial action of chitosan and its derivatives is still unknown,but different mechanisms have been proposed.As chitosan and derivatives with large molecular weight,they cannot directly access to the intracellular parts of the cells and can be expected to interact with cell surface.While chitosan and derivatives with low-molecular weight can enter into the intracellular parts of the cells,combine with DNA,restrain mRNA from combining with protein,and as a result destroy the transcribe of DNA [33].

Table 2

Reaction conditions and molecular weights of degraded QCMC Sample no.Reagent Conc.(%)Volume (ml)Time (h)T (8C)M w (!105)Q 2CMC 3K 1untreated 4.72Q 2CMC 3K 2H 2O 23010.540 2.28Q 2CMC 3K 3H 2O 2302 1.5500.45Q 2CMC 3K 4

H 2O 2

30

3

6

50

0.11

Table 3

The antimicrobial activity of chitosan (CS),carboxymethyl chitosan (CMC),quarternized chitosan (QC)and quarternized carboxymethyl chitosan (QCMC)Samples DS of CMC DS of QC M w (!105)Escherichia coli Staphylococcus aureus CMC 0.46– 4.300.050.1QC –0.60 3.890.01250.025QCMC

0.45

0.59

4.51

0.00625

0.0125

Table 4

The antimicrobial activity of QCMC with different molecular structure factor Samples DS of CMC DS of QC M w (!105)Escherichia coli Staphylococcus aureus Q 2CMC 10.450.59 4.510.006250.0125Q 2CMC 20.560.59 4.640.006250.0125Q 2CMC 30.730.59 4.720.006250.00625Q 2CMC 40.860.59 4.660.006250.0125Q 1CMC 30.730.78 4.210.01250.0125Q 3CMC 30.730.32 4.83!0.006250.00625Q 2CMC 3-10.730.59 4.720.006250.0125Q 2CMC 3-20.730.59 2.280.006250.00625Q 2CMC 3-30.730.590.450.003130.00313Q 2CMC 3-4

0.73

0.59

0.11

!0.00313

0.00313

L.Sun et al./Polymer 47(2006)1796–1804

1801

脂多糖

阳离子

主要的阴离子

3.3.Animal pulp-cap experiment

The normal pulp tissue structure of the Wistar rat was shown in Fig.5(a)and (b).

After 7days,in the test group (Fig.5(c,)(e)and (g)),pulp cells were grouped near the perforation area,Unidenti?ed in?ammatory cells and hyperplasia cell differentiation were observed.The pulp tissue was normal far from the perforation area.Dentin debris was pushed by the probe inside the pulp.In the controlled group,the capping induced an in?ammatory reaction at the surface of the pulp.At the border between implanted material and pulp,continuous or discontinuous ?brous structures began to form,underlined by an odontoblast-like palisade.(Fig.5(d,f,h)).

After 14days,in the test group (Fig.6(a),(c),and (e)),there was already some tendency to self-repair some distance away from the wound,mostly in the cervical junction between the pulp chamber and root canal.This reparative dentine

formed

Fig.5.(a)and (b)are normal pulp tissue;(c)–(h)are 7days after operation;(c),(e)and (g)are test group (d),(f)and (h)are calcium hydroxide group;(c)and (d)(magni?cation:5!),(e)and (f)(magni?cation:10!),(g)and (h)(magni?cation:20!).

L.Sun et al./Polymer 47(2006)1796–1804

1802

integrated barrier structure,which separated the in?ammatory tissues to the normal pulp tissues.Above the barrier,in?ammatory cells were also observed near the perforation area while under the barrier there was no evidence in?ammation,and the hyperplasia and differentiation of the cells were active which approach to the normal tissues.In the controlled group (Fig.6(b),(d)and (f)),a certain degree formation of reparative dentine was also detected near the perforation,but the barrier structure was not formed.After 21days,in the test group (Fig.6(g)),a mixture of large areas of reparative dentine and osteodentin aggrades along the pulp wall and forms reparative barrier structure near or beneath the pulp chamber and there was also some weak in?ammation.In the controlled group,reparative dentine was also formed and there was no evidence in?ammation,but the putrescence of the pulp was detected which indicated that the putrescence and collapse region was formed partly (Fig.6

(h)).

Fig.6.(a)–and (f)are 14days after operation;(g)and (h)are 21days latter;(a),(c),(e)and (g)are test group;(b),(d),(f)and (h)are calcium hydroxide;(a)and (b)(magni?cation:5!),(c)and (d)(magni?cation:10!),(e)–(h)(magni?cation:20!).

L.Sun et al./Polymer 47(2006)1796–18041803

Calcium hydroxide has been used in dentistry as a major capping material having the capacity to induce the formation of a mineralized dentin bridge,but it has no direct inducing effect to the pulp cells.QCMC can stimulate the formation of a thick reparative dentin layer,strongly induce reparative dentine formation and plays an important role in the formation of reparative dentin after implantation into the pulp.This is the ?rst time that such a novel bioactive property showing stimulation of reparative dentin formation was reported, opening new perspectives for future therapy bone-inductive capacity.

4.Conclusions

From these studies,we successfully prepared a series of QCMC.We demonstrate that antimicrobial activities of QCMC were affected by the DS of quaternary group and the molecular weight while no clear effect of DS of carboxymethyl group on the antimicrobial activity was observed.When QCMC was complexed with calcium hydroxide as pulp-cap, animal experiment results indicated that QCMC can strongly induce reparative dentine formation and showed a better ability in dentin inducing compared to calcium hydroxide. Acknowledgements

We are grateful for the?nancial support of this research from National Natural Science Foundation of China(Grant No.29977014).

References

[1]Li Z,Zhuang XP,Liu XF,Guan YL,Yao KD.Polymer2002;43:1541–7.

[2]Wu CS.Polymer2005;46:147–55.

[3]Yoon JP,Yong ML,Si NP,Seung YS,Chong PC,Seung JL.Biomaterials

2000;21:153–9.

[4]Jeon YJ,Park PJ,Kim SK.Carbohydr Polym2001;44(1):71–6.

[5]No HK,Park NY,Lee SH.Int J Food Microbiol2002;74:65–72.

[6]Suzuki K,Mikami T,Okawa Y.Carbohydr Res1986;151:403–8.

[7]Sugano M,Yoshida K,Hashimoto M.Advances in chit and chitosan.

London:Elsevier;1992p.472–8.

[8]Chen C,Liau W,Tsai G.J Food Prot1998;61:1124–8.

[9]Chen LY,Du YM,Liu Y.J Wuhan Univ(Nat Sci Ed)2000;46:191–4.

[10]Jia ZS,Shen DF,Xu WL.Carbohydr Res2001;333:1–6.

[11]Chen LY,Du YM.Biomaterials2004;25(11):3725–32.

[12]Sun LP,Du YM.Acta Polym Sinica2004;2:191–5.

[13]Xu YM,Du YM.Biomaterials2003;24(27):5015–22.

[14]Hagiwara K,Kuribayashi Y,Iwai H.Carbohydr Polym1999;39:245–8.

[15]Siham S,Pierre M,Jacques M,Bruce B,Philippe B.J Mater Sci:Mater

Med2002;13:125–31.

[16]Ranly DM,Godoy FG.J Dentistry2000;28:153–61.

[17]Souza CCA,Nascimento AB,Teixeira HM,Fontana UF.Dent Mater

2001;17:230–40.

[18]Six N,Decup F,Lasfargues JJ.J Mater Sci:Mat Med2002;13:225–32.

[19]Xu J,Mccarthy SP,Gross RA.Macromolecules1996;29:3436–40.

[20]Muzzarelli RAA,Tanfani F,Emanuelli M.Carbohydr Res1984;126:

225–31.

[21]Domard A,Rinaudo M,Int.J Biol Macromol1986;8:105–7.

[22]Speciale A,Musumeci R,Blandino G,Milazzo I,Caccamo F,Nicoletti G.

Int J Antimicrob Agents2002;19:111–8.

[23]Zong Z,Kimmura Y,Takahashi M.Polymer2000;41:899–906.

[24]Qin CQ,Xiao L,Du YM,Shi XW,Chen JW.React Funct Polym2002;50:

165–71.

[25]Sato H,Tabeta R.Macromolecules1987;20:2424–30.

[26]Kim JH,Lee YM.Polymer1993;34:1952–7.

[27]Gao QW,Shao ZZ,Sun YY,Lin H.Polym J2000;32:269–74.

[28]Qin CQ,Du YM,Xiao L.J Polym Degrad Stab2002;76:211–8.

[29]Lebouc F,Dez I,Madec PJ.Polymer2005;46:319–25.

[30]Nishimura S,Ikeuchi Y,Tokura S.Carbohydr Res1984;134:305–12.

[31]Helander IM,Nurmiaho E,Ahvenainen R,Rhoades J,Roller S.Int J Food

Microbiol2002;71:235–44.

[32]Helander IM,Latva KK,Lounatmaa K.Microbiology1998;144:385–90.

[33]Sudharshan NR,Hoover DG,Knorr D.Food Biotechnol1992;6:257–72.

L.Sun et al./Polymer47(2006)1796–1804 1804

【CN109824715A】一种加成法合成三(3三甲氧基硅丙基)异氰脲酸酯的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910165243.3 (22)申请日 2019.03.05 (71)申请人 荆州市江汉精细化工有限公司 地址 434000 湖北省荆州市沙市区锣场镇 (沙市区经济技术开发区内) (72)发明人 靳军 王灿 阮少阳 陈圣云  甘俊 甘书官  (74)专利代理机构 荆州市亚德专利事务所(普 通合伙) 42216 代理人 蔡昌伟 (51)Int.Cl. C07F 7/18(2006.01) (54)发明名称 一种加成法合成三(3-三甲氧基硅丙基)异 氰脲酸酯的方法 (57)摘要 本发明涉及一种加成法合成三(3-三甲氧基 硅基丙基)异氰脲酸酯的方法; 属有机硅精细化学品合成领域。本发明通过对原料三甲氧基氢硅 烷中和处理以及自制的铂催化剂的使用,有效的 提高了异氰脲酸酯类含氮烯烃硅氢加成的反应 活性,降低了生产成本,具有产品外观好、含量 高、游离氯低、 无有害异氰酸酯单体残留的特点。权利要求书1页 说明书4页CN 109824715 A 2019.05.31 C N 109824715 A

权 利 要 求 书1/1页CN 109824715 A 1.一种加成法合成三(3-三甲氧基硅基丙基)异氰脲酸酯的方法,其特征在于,它包括以下步骤: 1)、将六水合氯铂酸、异丙醇、乙二胺四乙酸铁钠按质量比1:30:2~4混合,并升温至40-50℃反应4-5h,然后滤除生成的少量氯化钠盐,得,铂催化剂;备用; 2)、向酸性的三甲氧基氢硅烷中加入质量比为0.5%-1%的环氧环己烷,在常温下放置4-6h,直至三甲氧基氢硅烷的游离氯下降到小于15ppm; 3)、向反应器中加入三烯丙基异三聚氰酸酯,加入备用的铂催化剂,升温到100℃后开始滴加经过中和处理的三甲氧基氢硅烷,进行加成反应,加成反应中控制反应温度在100-110℃,进料完后,保持100-110℃老化反应1h,然后降温至常温;得, 三(3-三甲氧基硅基丙基)异氰脲酸酯粗品; 4)、将粗品导入蒸馏装置蒸馏去除未反应完的三甲氧基硅烷,蒸馏温度为85-95℃,真空度要求大于0.098MPa,蒸馏6h后,降温,在氮气保护下,经正压过滤器过滤,得;三(3-三甲氧基硅基丙基)异氰脲酸酯成品; 所述的酸性三甲氧基硅烷的总氯在200-400ppm; 所述的铂催化剂的用量占三烯丙基异三聚氰酸酯投料质量的0.3%-0.5%; 所述的反应原料三甲氧基氢硅烷与三烯丙基异三聚氰酸酯摩尔比为3.06-3.12:1.0。 2

十二烷基三甲基溴化铵

品名CAS号分子式 十二烷基三甲基溴化铵1119-94-4 C12H25(CH3)3 NBr 十二烷基三甲基氯化铵112-00-5C12H25(CH3)3 NCl 十四烷基三甲基溴化铵1119-97-7C14H29(CH3)3NBr 十四烷基三甲基氯化铵4574-04-3C14H29(CH3)3 NCl 十六烷基三甲基溴化铵57-09-0C16H33(CH3)3 NBr 十六烷基三甲基氯化铵112-02-7C16H33(CH3)3 NCl 十八烷基三甲基氯化铵112-03-8 C18H37(CH3)3NCl 十八烷基三甲基溴化铵1120-02-1 C18H37(CH3)3NBr 苯扎氯铵63449-41-2 C17H30NCl 苯扎溴铵7281-04-1 C21H38BrN 四甲基氯化铵75-57-0(CH3)4NCl 四甲基溴化铵64-20-0(CH3)4NBr 四甲基硫酸氢铵103812-00-6(CH3)4NHSO4 四甲基醋酸铵10581-12-1(CH3)4CH3COON 四甲基碘化铵75-58-1(CH3)4NI 四乙基溴化铵71-91-0(C2H5)4NBr 四丙基氯化铵5810-42-4(C3H7)4NCl 四丙基溴化铵1941-30-6(C3H7)4NBr 四丁基氯化铵37451-68-6(C4H9)4NCl 四丁基溴化铵1643-19-2(C4H9)4NBr 四丁基硫酸氢铵32503-27-8(C4H9)4NHSO4

四丁基氟化铵87749-50-6(C4H9)4NF 四丁基醋酸铵10534-59-5(C4H9)4CH3COON 四丁基碘化铵311-28-4(C4H9)4NI 甲基三乙基氯化铵10052-47-8CH3(C2H5)3NCl 甲基三丁基氯化铵56375-79-2CH3(C4H9)3NCl 甲基三辛基氯化铵5137-55-3CH3(C8H17)3NCl 甲基三辛、癸基氯化铵63393-96-4CH3[(CH2)7CH3]3NCl 甲基三辛基氯化铵水溶液5137-55-3CH3(C8H17)3NCl 双十烷基二甲基氯化铵7173-51-5 (C10H21)2(CH3)2NCl 双十二烷基二甲基氯化铵3401-74-9 (C12H25)2(CH3)2NCl 双十八烷基二甲基氯化铵107-64-2 (C18H37)2(CH3)2NCl 双十烷基二甲基溴化铵2390-68-3 (C10H21)2(CH3)2NBr 双十二烷基二甲基溴化铵3282-73-3 (C12H25)2(CH3)2NBr 双十八烷基二甲基溴化铵3700-67-2 (C18H37)2(CH3)2NBr

制备3-氯-2-氨甲基-5-三氟甲基吡啶的方法(09.02)

专利人:李波 专利申请号:201310467331.1 文献出处:盐城市志达化工有限公司 本发明提供了一种制备3-氯-2-氨甲基-5-三氟甲基吡啶的方法,包括以下步骤:(a)使式(I)化合物甘氨酸乙酯盐酸盐与二苯甲酮在有机溶剂中发生 反应,得到式(II)化合物二苯亚甲基甘氨酸乙酯;(b)使式(II)化合物与式(III)化合物2, 3-二氯-5-三氟甲基吡啶在有机溶剂中发生反应,得到式(IV)化合物;(c)使式(IV)化合物与盐酸在20~25℃下发生反应,得到式(V)化合物;(d)使式(V)化合物与盐酸在90~110℃下发生反应,得到式(VI)化合物3-氯-2-氨甲基-5-三氟甲基吡啶;本发明的方法原料廉价易得,反应过程绿色环保,溶剂和二苯甲酮均可回收,成本低而产率高,非常适合于工业化生产; 。

1. 一种制备3-氯-2-氨甲基-5-三氟甲基吡啶的方法,其特征在于,包括以下步骤: (a)使式(I)化合物甘氨酸乙酯盐酸盐与二苯甲酮在有机溶剂中,在碱存在和催化剂作用的条件下发生反应,得到式(II)化合物二苯亚甲基甘氨酸乙酯,所述反应的温度为90~110℃,所述碱选自三甲胺、三乙胺、异丙基胺、二异丙基乙基胺、丙二胺、丁胺、苯胺、苄胺、二甲基苯胺中的一种或几种,所述催化剂选自邻甲苯酚、对甲苯酚、苯磺酸、磺基水杨酸、对甲苯磺酸、邻甲基水杨酸、对氯邻甲苯酚中的一种或几种; (b)使步骤(a)中得到的式(II)化合物二苯亚甲基甘氨酸乙酯与式(III)化合物2, 3-二氯-5-三氟甲基吡啶在有机溶剂中,在碱存在和催化剂作用的条件下发生反应,得到式(IV)化合物,所述反应的温度为90~110℃,所述碱选自氢氧化钠、碳酸钠、碳酸氢钠、氢氧化钾、碳酸钾中的一种或几种,所述催化剂选自苄基三乙基氯化铵、四乙基溴化铵、四丁基溴化铵、四丁基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵、十四烷基三甲基氯化铵中的一种或几种; (c)使步骤(b)中得到的式(IV)化合物与盐酸在20~25℃下发生反应,得到式(V)化合物; (d)使步骤(c)中得到的式(V)化合物与盐酸在90~110℃下发生反应,所得产物经碱中和得到式(VI)化合物3-氯-2-氨甲基-5-三氟甲基吡啶;

3-异氰酸酯基丙基三甲氧基硅烷

Product name: SILQUEST? A-LINK(TM) 35 SILANE 1. PRODUCT AND COMPANY IDENTIFICATION Product name:SILQUEST? A-LINK(TM) 35 SILANE Chemical name:Gamma-Isocyanatopropyltrimethoxysilane Supplier:GE Silicones 3500 South State Route 2 Friendly, WV 26146, USA Contact numbers:CHEMTREC (24 hours): 800-424-9300 GE Silicones Emergency Response (24 hours): 800-809-9998 GE Silicones Emergency Response (24 hours): 304-926-8418 For Product Safety Inquiries: 304-652-8446 For MSDS only: 304-652-8155 Customer Service: 800-523-5862 2. COMPOSITION / INFORMATION ON INGREDIENTS C OMPONENT CAS#C ONCENTRATION Isocyanatopropyltrimethoxysilane15396-00-6> 95.0 % Aminoalkylsilane ester derivative Trade secret< 5.0 % Methanol67-56-1< 0.5 % Note(s):Additional methanol may be formed by reaction with moisture. See Section 15 for chemicals appearing on Federal or State Right-To-Know lists. 3. HAZARDS IDENTIFICATION EMERGENCY OVERVIEW DANGER! HARMFUL OR FATAL IF SWALLOWED. CAUSES EYE AND SKIN BURNS. CORROSIVE IF SWALLOWED. HARMFUL IF INHALED. HARMFUL IF ABSORBED THROUGH SKIN. MAY CAUSE EYE DAMAGE AND BLINDNESS IF SWALLOWED. ASPIRATION MAY CAUSE LUNG DAMAGE. MAY CAUSE ALLERGIC RESPIRATORY OR SKIN REACTION. MAY CAUSE DIZZINESS AND DROWSINESS. MAY CAUSE HEART MUSCLE DAMAGE. MAY CAUSE LIVER AND KIDNEY DAMAGE.

表面活性剂常用英文缩写

A a-SAA 阴离子表面活性剂 AACG 烷基两性羧基甘氨酸盐 AACP 烷基两性丙氨酸盐 AAG 烷基两性甘氨酸盐 AAOA 烷基酰胺丙基氧化胺 AAP 烷基丙氨酸盐 AAPB 烷基酰胺丙基甜菜碱 AASB 烷基酰胺丙磺基甜菜碱 ARS 支链烷基苯磺酸盐 AEO(n) 脂肪醇聚氧乙烯醚(n) AEC 醇醚羧酸盐 AS 烷基硫酸盐 AESS 脂肪醇聚氧乙烯醚琥珀酸酯磺酸钠AE 脂肪醇聚氧乙烯醚 AES 脂肪醇聚氧乙烯醚硫酸盐 ABS 硬性苯磺酸盐 AOS 烯基磺酸盐 AG 烷基甘氨酸盐 AGS 烷基甘油醚磺酸盐 APG 非离子烷基糖苷 AIDA 烷基亚氨基二乙酸盐 AIDP 烷基亚氨基二丙酸盐 Ale(2)S 月桂醇醚(2)硫酸铵盐 ALs 月桂醇硫酸酯铵盐 Am/DIFAG乙酸甘油单、二酸酯 AMT 长链酰基-N-甲基牛磺酸钠(1gepon T) AOS a -烯烃磺酸盐 APAC 长链烷基低聚氨基酸,烷基聚胺羧酸盐APG 烷基低聚糖苷 APES 烷基酚聚氧乙烯醚硫酸盐 C CAPG 阳离子烷基糖苷 CHSB 十六烷基羟基磺丙基甜菜碱 CAPB 椰油酰胺丙基甜菜碱 CAB 椰油酰胺甜菜碱 CAMA 椰油基咪唑啉甜菜碱 CAPO 椰油酰胺丙基氧化胺 CoACG 椰油基两性羧基甘氨酸盐 c-SAA 阳离子表面活性剂 CCACP 椰油基两性羧基丙氨酸盐 CoAG 椰油基两性甘氨酸盐 CoAHSB 椰油酰胺丙基羟基磺基甜菜碱CoAP N-椰油基-b-丙氨酸盐

CoAPB 椰油酰胺丙基甜菜碱CoASB 椰油酰胺磺丙基甜菜碱CoB 椰油基甜菜碱 CoDEA 椰油基二乙醇酰胺 CoIDP 椰油亚氨基二丙酸盐CCMEA 椰油单乙醇酰胺 CoMT 椰油酰基-N-甲基牛磺酸钠CoNnAa 椰油基低聚丙基甘氨酸CoSB 椰油基磺丙基甜菜碱 CM/DFAG 柠檬酸甘油单、二酸酯CPC 十六烷基氯化吡啶 CSB 十六烷基磺基甜菜碱 CAPG 阳离子烷基糖苷 CMEA 椰油酸单乙醇酰胺 CAPB 椰油酰胺丙基甜菜碱 CAB 椰油酰胺甜菜碱 CAMA 椰油基咪唑啉甜菜碱 CTAB 十六烷基三甲基溴化铵CTAC 十六烷基三甲基氯化铵 D DAC5 十二烷基两性羧基甘氨酸盐DAES 十二胺乙基磺酸钠 DAP N-十二烷基-b-丙氨酸盐DAPB 十二酰胺丙基甜菜碱DAPSB 十二酰胺丙基磺基甜菜碱DB 十二烷基甜菜碱 DDBAC 十二烷基二甲基苄基氯化铵DDEAC 双十烷基双甲基氯化铵DDG 十二烷基二(氨乙基)甘氨酸DEACG 癸基两性羧基甘氨酸盐DEAP N-十烷基-b-丙氨酸盐 DEB 十烷基甜菜碱 DEEO(n) 十烷基聚氧乙烯醚(n) DEO(n) 十二醇聚氧乙烯醚(n) DETAC 十烷基三甲基氯化铵 DG 十二烷基甘氨酸 DHSB 十二烷基羟基磺丙基甜菜碱DIC 十二烷基咪唑啉阳离子 DIDP 十二烷基亚氨基二丙酸盐DMBB 十二烷基甲基苄基甜菜碱DMG 十二烷基氨乙基甘氨酸 DMT 十二酰基-N-甲基牛磺酸钠DOA 十二烷基二甲基氧化胺 DPB 十二烷基二甲基丙基甜菜碱

常用洗涤剂表面活性剂性质

常用洗涤剂表面活性剂性质 品名化学名称功能 磺酸工业直链烷基苯磺酸良好的去油、起泡能力 AES 脂肪醇聚氧乙烯醚硫酸钠良好的去污、起泡能力、刺激 性低 K12 十二烷基硫酸钠良好的去污力,丰富的泡沫 AOS α-烯基磺酸盐良好的去污、起泡能力、抗硬 水性强 MES 脂肪醇聚氧乙烯醚磺基琥珀酸二钠 盐 温和表面活性剂、泡沫丰富 BS-12 十二烷基二甲基甜菜碱温和表面活性剂、泡沫丰富BS-12 十二烷基甜菜碱温和表面活性剂、泡沫丰富CAB 椰油酰胺丙基甜菜碱温和表面活性剂、泡沫丰富LAO 椰油酰胺丙基氧化胺温和表面活性剂、泡沫丰富6501 椰子油二乙醇酰胺良好的去污力、增稠剂AEO-9 脂肪醇(12-15)聚氧乙烯醚(9mol)去污力强 638 聚乙二醇6000双硬脂酸酯增稠剂 三乙醇胺三乙醇胺中和LAS,刺激性低 甘油丙三醇保湿剂 EDTA 乙二胺四乙酸二钠鳌合剂、软化硬水 柠檬酸柠檬酸酸度调节剂、鳌合剂 片碱氢氧化钠酸度调节剂 五钠三聚磷酸钠洗涤助剂、鳌合剂 织物洗涤剂原料 品名化学名称功能 磺酸直链烷基苯磺酸良好的去油、起泡能力 AES 脂肪醇聚氧乙烯醚硫酸钠良好的去污、起泡能力、刺激 性低 K12 十二烷基硫酸钠良好的去污力,丰富的泡沫 AOS α-烯烃磺酸盐良好的去污、起泡能力、抗硬 水性强 MES 脂肪醇聚氧乙烯醚磺基琥珀酸二钠温和表面活性剂、泡沫丰富

盐 6501 椰子油二乙醇酰胺良好的去污力、增稠剂AEO-9 脂肪醇(12-15)聚氧乙烯醚(9mol)去污力强 三乙醇胺三乙醇胺中和LAS,刺激性低EDTA 乙二胺四乙酸二钠鳌合剂、软化硬水柠檬酸柠檬酸酸度调节剂、鳌合剂片碱氢氧化钠酸度调节剂 五钠三聚磷酸钠洗涤助剂、鳌合剂化妆品原料 品名化学名称用途 AES 脂肪醇聚氧乙烯醚硫酸钠洗发水、沐浴露、洗手液主料AESA 脂肪醇聚氧乙烯醚硫酸铵洗发水、沐浴露、洗手液主料K12 十二烷基硫酸钠洗发水、沐浴露、洗手液主料K12A 十二烷基硫酸铵洗发水、沐浴露、洗手液主料AOS α-烯基磺酸盐洗涤剂、泡沫丰富、刺激性低 MES 脂肪醇聚氧乙烯醚磺基琥珀 酸二钠盐 温和表活、泡沫丰富 咪唑啉椰油两性醋酸钠温和表活、泡沫丰富BS-12 十二烷基二甲基甜菜碱温和表活、泡沫丰富CAB 椰油酰胺丙基甜菜碱温和表活、泡沫丰富LAO 椰油酰胺丙基氧化胺温和表活、泡沫丰富6501 椰子油脂肪酸二乙醇酰胺去污、增稠剂CMEA 椰子油脂肪酸单乙醇酰胺去污、增稠剂PEG-400 聚乙二醇400 保湿剂、增容剂638 聚乙二醇6000双硬脂酸酯增稠调理剂1631 十六烷基三甲基氯化铵调理、抗静电剂1831 十八烷基三甲基氯化铵调理、抗静电剂甘油丙三醇保湿剂 硬脂酸硬脂酸膏霜基质

季铵盐

1.1 季铵盐化合物 1.1.1 结构与性质 季铵盐(又称四级铵盐)是中的4个都被取代后形成的的[3]。季铵盐有4个碳原子通过共价键直接与氮原子相连,阴离子在烃基化试剂作用下通过离子键与氮原子相连,其分子通式为: 结构中4个烃基R可以相同,也可以不相同。取代的或非取代的,饱和的或不饱和的,可以有分支或没有分支,可以为环状结构或直链结构,可以包含醚、酯、酰胺,也可以是芳香族或芳香族取代物。通过离子键与氮原子相连的多为阴 -、RCOO-等),以氯和溴最为常见[4]。离子(F-、Cl-、Br-、I-)或酸根(HSO 4 1.1.2 合成与分析方法 1.1.3 应用研究概况 季铵盐化合物特有的分子结构赋予其乳化、分散、增溶、洗涤、润湿、润滑、发泡、消泡、杀菌、柔软、凝聚、减摩、匀染、防腐和抗静电等一系列物理化学作用及相应的实际应用[8],这些独特性能使其在造纸、纺织、涂料、染色、医药、农药、道路建设、洗化与个人护理用品和高新技术等领域均显示出了良好的应用前景。 1.2 季铵盐杀生剂研究进展 在季铵盐化合物的诸多独特性能及相应的实际应用中,优异的杀生性能是其中发现最早、应用最广的性能。目前,具有广谱高效、低毒安全、长效稳定等优点的季铵盐杀生剂已在工业、农业、建筑、医疗、食品、日常生活等众多领域得到广泛应用。例如,水处理[43]、造纸[44]、皮革[45]、纺织[46]、印染[47]、采油[48]、涂料[49]等行业的杀菌灭藻、防腐防霉、清洗消毒;农产品和农作物的防霉防病[50];养殖和畜牧的防病杀菌[51];木材和建材的防虫防腐[52];外科手术和医疗器械的杀菌消毒[53];禽蛋肉类和食品加工的清洗个人家庭和公共卫生的洗涤消毒[55]等均要用到季铵盐杀生剂。 1.2.1 发展历程 人们对季铵盐化合物的认识是从其所具有的杀菌作用上开始的,该类化合物在发展初期主要就是用作杀菌剂[13]。Jacobs W A等于1915年首次合成了季铵盐化合物,并指出这类化合物具有一定的杀菌能力,翻开了季铵盐杀生剂的历史篇章。然而,该研究成果一直未被人们所重视。此后直到1935年,Domagk G[56]发现了烷

二甲基十八烷基[3-(三甲氧基硅基)丙基]氯化铵

名称十八烷基二甲基三甲氧基硅烷基丙基氯化铵 CAS 27668-52-6 EINECS 248-595-8 分子式C26H58CLNO3SI 分子量496.28 密度0.89 沸点22.3°C 闪点15 °C EP-DC5700是有机硅季铵盐抗菌防霉剂,它具有广谱的抑菌、杀菌作用。经抗菌检测,对各种细菌如金黄色葡萄球菌(革兰氏阳性细菌代表)、大肠杆菌(革兰氏隐性细菌代表)、真菌、断发毛癣菌(常见皮肤菌代表)和分枝毛菌(常见霉菌代表)均有很强的抑制、杀灭作用,且其与织物结合后,具有很好的耐洗性和稳定性,经洗涤50次和放置1年以上其抑菌、杀菌作用仍在90%以上。其总体作用是对细菌的作用效果与国内外同类产品(美国道康宁公司的DC-5700)相当,而对真菌的作用效果大大优于国内外同类产品。EP-DC5700是目前成功研制的最佳抗菌剂之一,可广泛用于床单、枕巾、枕芯、内衣、内裤、袜子、鞋垫及女性卫生用品的卫生整理及木材、水泥混凝土的防霉处理,船舶的防藻抗菌处理等。使这类产品具有长期的抑菌、杀菌、防霉等功能,使人们生活的环境卫生得到大大改善。本产品经检测、试用,证明安全无毒,对人体皮肤无刺激性。 据报导,近年来,有机硅季铵盐抗菌剂已经非常广泛的应用于木材、皮革、塑料、橡胶、陶瓷、金属等的抗菌防霉处理。由于其带阳电荷,并且带有三个活性基团,能自交联与基材化学结合形成耐洗的抗菌膜。在医院,有机硅抗菌剂除用于白大褂、床单、枕套等的抗菌整理外,还可用于长凳、靠椅、楼梯栏杆的抗菌洗涤,只要在水中加入少量的本产品,用抹布沾水擦抹桌椅长凳,就能杀死病菌。有报导用有机硅季铵盐处理过滤水用的填料,就能杀死大部分有害微生物。用该产品喷涂在室内墙壁上能净化室内空气,防霉及杀死有害微生物。 主要技术指标: 成分…………………3-(三甲氧基硅烷基)丙基二甲基十八烷基氯化铵浓度………………………………… 80%有效成分 外观……………………………………淡琥珀至深琥珀色液体 折光指数78.8℉(26℃)…………………………………1.390 闪点…………………………………………………52℉(11℃) 浊点…………………………………………………26℉(-3℃) 溶解度…………可与任何比例的水、醇类、酮类、酯类、烃 类和氯化烃类相混溶。 热稳定性…………………………在257℉(125℃)以下稳定

表面活性剂专业缩写词及国内代号

表面活性剂专业缩写词及国内代号 平平加A-20 脂肪醇聚氧乙烯醚,HLB值为16 添加剂AC 脂肪胺聚氧乙烯醚 ADI 每人每天允许摄人量 ADMA 烷基二甲胺 AEO 脂肪醇聚氧乙烯醚 AEEA 羟乙基乙二胺 AES 脂肪醇聚氧乙烯醚硫酸盐 AGO 氨基酸锗氧化物 AGS N—酰基谷氨酸盐 Alfol 脂肪醇名,美国大陆油品公司商标 AMP 氨基甲基丙醇(喷发胶) 净洗剂AN 脂肪醇聚氧乙烯醚 匀染剂AN 脂肪胺聚氧乙烯醚(尼凡丁) AOS α-烯基磺酸盐 AP 烷基磷酸酯 APE 千基酚聚氧乙烯醚 APG 烷基多糖苷 AR617精炼剂油酸钠、碳酸钠和三聚磷酸钠为主的混合物 AS 脂肪醇硫酸钠 AS-33 含33%脂肪醇硫酸钠的水溶液 ASEA 烷基硫酸酯单乙醇胺盐 ASTM 美国标准试验方法 AV 酸值 BHT 3,5-叔丁基对甲酚;2,6-二叔丁基对甲基苯酚(抗氧剂) 匀染剂BOF 烷基苯酚聚氧乙烯醚 BS—12 甜菜碱;十二烷基二甲基氨基己酸钠 BSL 4,4-二氨基蓖-2,2-二磺酸的三氮杂苯基衍生物(荧光增白剂) BX 拉开粉;丁基萘磺酸钠 Nekal BX 烷基萘磺酸钠 CDE 椰子油脂肪酸二乙醇酰胺 Cmc 临界胶束浓度 CMC 羧甲基纤维素 HEC 羟乙基纤维素 CME 椰子油脂肪酸单乙醇酰胺 Tmc 临界胶束温度 匀染剂CN 阳离子表面活性剂复合物 扩散剂CNF 亚甲基苄基萘磺酸钠 分散剂CS 纤维素硫酸酯钠盐 CTAB 溴化十二烷基三甲基铵

CTAC 氯化十二烷基三甲基铵 5881D 十二烷基磺酸钠、拉开粉、磷酸氢钠和松节油为主的混合物(渗透剂) DAH 磺化油 DAN 硫酸化蓖麻子油 分散剂DAS 烷基联苯醚磺酸盐 DBS 十二烷基磺酸钠 匀染剂DC 氯化十八烷基二甲基苯乙基铵 D&C 美国药用化妆晶用标准 DCCA 氯异氰尿酸 DDB 十二烷基苯 DDBS 十二烷基苯磺酸盐 DEG 二羟乙基甘氨酸 DETA N,N-二乙基间甲苯甲酰胺(驱虫剂) DHA 脱氢乙酸(防腐剂) DMF N,N-二甲基甲酰胺 DMP 邻苯二甲酸二甲酯(驱虫剂) DSDMAC 氯化双十八烷基二甲基铵 DTPA 二亚乙基三胺五乙酸五钠(整合剂) 渗透剂EA 脂肪醇聚氧乙烷醚(1:1.6) EDTA 乙二胺四乙酸(二钠、四钠) EGF 表皮细胞生长因子(化妆晶添加剂) EL 蓖麻油聚氧乙烯醚 EMPA 标准棉布的预污布(测去污力的布样) EO(n) 环氧乙烷(加合数) 柔软剂ES(EST)咪唑啉阳离子表面活性剂 净洗剂FAE 第二不皂化物醇制成的AE08 FAS 脂肪醇硫酸钠 FD&C 美国食用、药用、化妆品用标准 FFA 游离脂肪酸 乳化剂FO 脂肪醇聚氧乙烯醚(1:0.8) FWA 荧光增白剂 柔软剂GC 脂肪酸聚氧乙烯酯 GLC 气液相色谱 CMS 甘油单硬脂酸酯 匀染剂GS 芳基醚硫酸酯和烷基醚基酯的混合物 H501 羟基亚乙基二膦酸 HA 透明质酸(化妆品添加剂) 促进剂HDF 脂肪酸衍生物 HEDP 1-羟基乙烷-1,1-二膦酸四钠(螯合剂) HEDTA 羟乙二胺四乙酸(螯合剂) HOEDTA 羟乙二胺三乙酸三钠(螯合剂) HRBO 氢化米糠油 Hyaminel622 氯化二异丁基苯氧基乙氧基乙基二甲基苄基铵 IgeponT 牛脂酸—N-甲基牛磺酸酰胺

2-氯乙基三甲基氯化铵CETA作为粘土稳定剂的研究

第20卷第4期油田化学V o l.20N o.4 2003年12月25日O i l f i e l d C h e m i s t r y25D e c, = ============================================================== 2003文章编号:1000-4092(2003)04-0295-04 2-氯乙基三甲基氯化铵C E T A作为 粘土稳定剂的性能研究? 严高云1,姜娜1,张蕊2,朱维群2 (1.中国石化胜利油田公司孤岛采油厂,山东东营257231;2.山东大学胶体与界面化学教育部重点实验室,山东济南250100)摘要:实验测定了2-氯乙基三甲基氯化铵(简称C E T A)作为粘土稳定剂的某些性能。随C E T A浓度的增大,钙蒙脱石在水中的z e t a电位增大,在浓度约为2.5g/L时z e t a电位为零,z e t a电位增大是C E T A吸附的结果。C E T A在钙蒙脱土上的饱和吸附量为0.54m m o l/g。以乙醇作为基准液,吸附和未吸附C E T A的钙蒙脱土粉末上水的相对润湿接触角分别为89.3≠和98.1≠,吸附C E T A使钙蒙脱土的水湿性略有增大。当C E T A的吸附量由0逐步增大到 0.53m m o l/g时,钙蒙脱土的晶层间距由1.5713n m逐渐减小到1.4244n m。页岩在0.1%、0.2%、0.3%的 C E T A水溶液中的一次、二次回收率,大体上分别相当于在1%、2%、3%K C l水溶液中的相应回收率。C E T A作为 粘土稳定剂,可用于水基钻井液,油气层防膨处理及阳离子聚合物驱油前的地层预处理。图3表2参10。 关键词:有机季铵盐;2-氯乙基三甲基氯化铵(C E T A);钙质蒙脱土;溶液吸附;z e t a电位;晶层间距;表面润湿性;粘土稳定剂 中图分类号:T E39:T E254+.4:O647.3文献标识码:A 蒙脱土是自然界中普遍存在的一种2:1型层状粘土矿物,单位晶胞由两片顶角朝里的S i—O四面体中间夹一片A l—O或M g—O八面体形成一结构层,层与层之间没有共用的氧或羟基,层间结合力很弱,同晶置换现象很普遍,因而具有负电荷[1]。根据电中性原理,层间必然出现相应数量的阳离子。当在蒙脱土悬浮液中加入有机阳离子时,阳离子可以插入晶层之间或吸附在表面上,引起蒙脱土性质的一系列变化,这些变化可以从吸附等温线、z e t a电位、润湿角的测定和X射线衍射分析等得到。 在油田钻井中蒙脱土是水基钻井液的重要组成部分,而在钻井过程中钻井液的稳定性与井壁的稳定性始终是一对不易解决的矛盾。以往为了保证钻井液的稳定性必须增加钻井液的负电性,而为了保证粘土井壁的稳定性,必须加入带正电的页岩稳定剂或抑制剂来抑制地层粘土矿物的水化、分散和膨胀。在上世纪80年代,正电胶钻井液的出现为这一 难题的解决带来了福音,但正电胶钻井液价格昂贵,运输不方便。而大分子量的阳离子聚合物类粘土稳定剂又往往会加重对低渗透油层渗透率的伤害。 正电性钻井液可能从根本上解决这个问题,而效果显著的阳离子系列化合物则成为科学工作者的研究热点[2]。我们研制了小分子量的有机季铵盐粘土稳定剂C E T A,并从吸附、z e t a电位变化、相对润湿接触角、X R D方法和页岩回收率等方面考察了C E T A/蒙脱土体系的基本性质,本文报道这一研究结果。 1实验部分 1.1实验材料 蒙脱土,山东省安丘膨润土厂产品,主要成分为钙质蒙脱土,国家一级膨润土,阳离子交换容量为84.8m m o l/100g,粒径小于0.074m m;2-氯乙基三 ?收稿日期:2003-05-05;修改日期:2003-11-25。 作者简介:严高云(1969-),男,工程师,石油大学(华东)物探专业学士(1992),现从事油田开发工作,通讯地址:257231胜利油田有限公司孤岛采油厂作业一大队,电话:0546-8885554;朱维群(1963-),男,山东大学教授,大连理工大学工学博士(1998),现于 胜利油田博士后流动站从事油田化学方面的研究工作,通讯地址:250100山东济南山东大学胶体与界面化学教育部重点实 验室,电话:138********。

3-氯丙基三乙氧基硅烷MSDS

第1部分化学品及企业标识 化学品中文名:3-氯丙基三乙氧基硅烷 化学品英文名:3-Chloropropyltriethoxysilane 企业名称: 企业地址: 邮编: 传真: 联系电话: 电子邮件地址: 产品推荐及限制用途: 第2部分危险性概述 对水环境危害-慢性类别3 皮肤刺激】类别2 特定靶器官毒性-单次接触,呼吸道刺激类别3 易燃液体,类别3 严重的眼刺激/眼睛刺激性类别2 皮肤刺激类别2 标签要素: 象形图: 警示词:警告。 危险性说明:易燃液体和蒸气, 防范说明: ——远离热源、火花、明火、热表面。禁止吸烟。 ——保持容器密闭。 ——容器和装载设备接地、等势联接。 ——使用防爆的电气、通风、照明设备。 ——只能使用不产生火花的工具。 ——采取防止静电放电的措施。 ——戴防护手套、戴防护眼罩、戴防护面具。 事故响应:

——如果皮肤(或头发)接触:立即除去∕脱掉所有沾污的衣物。用水清洗皮肤、淋浴。 ——食入:就医 ——火灾时:用干砂,干粉或抗溶性泡沫扑灭。 安全储存: ——在阴凉、通风良好处储存 废弃处置: ——将内装物/容器送到批准的废物处理厂处理 物理和化学危险:易燃液体和蒸气,与强氧化剂能产生强烈反应,流速过快,容易产生和积聚静电。蒸气比空气中能在较低处扩散到相当远地方,遇火源会着火回燃。 健康危害:引起严重的眼睛刺激,引起皮肤刺激并可能引起呼吸道刺激。 环境危害:对水生生物有害并具有长期持续影响, 第3部分成分/组成信息 第4部分急救措施 急救: 吸入: 如果吸入,请将患者移到新鲜空气处。 皮肤接触: 脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。如有不适感,就医。 眼晴接触: 分开眼睑,用流动清水或生理盐水冲洗。立即就医。 食入: 漱口,禁止催吐。立即就医。 对保护施救者的忠告: 将患者转移到安全的场所。咨询医生。出示此化学品安全技术说明书给到现场的医生看。 对医生的特别提示:无资料。 第5部分消防措施 灭火剂: 用水雾、干粉、泡沫或二氧化碳灭火剂灭火。 避免使用直流水灭火,直流水可能导致可燃性液体的飞溅,使火势扩散。 特别危险性:易燃液体和蒸气,然后产生氯化氢,一氧化碳,二氧化碳等有毒气体 在火场中,容器内压增大有开裂和爆炸的危险。 灭火注意事项及防护措施: 消防人员须佩戴携气式呼吸器,穿全身消防服,在上风向灭火。 尽可能将容器从火场移至空旷处。 处在火场中的容器若已变色或从安全泄压装置中发出声音,必须马上撤离。 隔离事故现场,禁止无关人员进入。收容和处理消防水,防止污染环境。

易制毒化

易制毒化学品目录

易制毒化学品的分类和品种目录 剧毒品名称 1 氰氰气 2 氰化钠山奈 3 氰化钾山奈钾 4 氰化钙 5 氰化银钾银氰化钾 6 氰化镉 7 氰化汞氰化高汞;二氰化汞 8 氰化金钾亚金氰化钾 9 氰化碘碘化氰 10 氰化氢氢氰酸 11 异氰酸甲酯甲基异氰酸酯

12 丙酮氰醇丙酮合氰化氢;2- 基异丁腈;氰丙醇 13 异氰酸苯酯苯基异氰酸酯 14 甲苯-2,4-二异氰酸酯2,4-二异酸甲苯酯 15 异硫氰酸烯丙酯人造芥子油;烯丙基异硫氰酸酯;烯丙基芥子油 16 四乙基铅发动机燃料抗爆混合物 17 硝酸汞硝酸高汞 18 氯化汞氯化高汞;二氯化汞;升汞 19 碘化汞碘化高汞;二碘化汞 20 溴化汞溴化高汞;二溴化汞 21 氧化汞一氧化汞;黄降汞;红降汞;三仙丹 22 硫氰酸汞硫氰化汞;硫氰酸高汞 23 乙酸汞醋酸汞 24 乙酸甲氧基乙基汞醋酸甲氧基乙基汞 25 氯化甲氧基乙基汞 26 二乙基汞 27 重铬酸钠红矾钠 28 羰基镍四羰基镍;四碳镍 29 五羰基铁羰基铁 30 铊金属铊 31 氧化亚铊一氧化(二)铊 32 氧化铊三氧化(二)铊 33 碳酸亚铊碳酸铊 34 硫酸亚铊硫酸铊 35 乙酸亚铊乙酸铊;醋酸铊 36 丙二酸铊丙二酸亚铊 37 硫酸三乙基锡 38 二丁基氧化锡氧化二丁基锡 39 乙酸三乙基锡三乙基乙酸锡 40 四乙基锡四乙锡 41 乙酸三甲基锡醋酸三甲基锡 42 磷化锌二磷化三锌 43 五氧化二钒钒(酸)酐 44 五氯化锑过氯化锑;氯化锑 45 四氧化锇锇酸酐 46 砷化氢砷化三氢;胂 47 三氧化(二)砷白砒;砒霜;亚砷(酸)酐 48 五氧化(二)砷砷(酸)酐 49 三氯化砷氯化亚砷 50 亚砷酸钠偏压砷酸钠 51 亚砷酸钾偏亚砷酸钾 52 乙酰亚砷酸铜祖母绿;翡翠绿;巴黎绿;帝绿;苔绿;维也纳绿;草地绿;翠绿 53 砷酸原砷酸

烷基三甲基氯化铵生产工艺

十二烷基三甲基氯化铵产品生产工艺 一、产品说明 1、中文名称: 十二烷基三甲基氯化胺 2、英文名称: Dodecayl trimethyl amine chloride 3、国外同类产品名称: IPC-DTMA-Cl 4、分子式: C15H34ClN 5、结构式: 6、规格:% 7、执行标准 : GB 26369-2010 8、物化性质: 无色或淡黄色透明胶体,可溶于水和乙醇,与阳离子、非离子 表面活性剂有良好的配伍性,忌与阴离子表面活性剂配用,100°C以下稳定,不宜在120°C以上长时间加热。化学稳定性好,耐热、耐光、乃压、耐强酸强碱。具有优良的渗透、乳化、杀菌性能。 9、包装: 净含量50公斤/塑桶。 10、贮存:应密封贮存在室内,在运输和贮藏过程中,应小心轻放、防撞、 防冻、以免损漏。

11、保质期:2年 12、用途: 1、乳化剂:建筑防水涂料乳化剂;护发素、化妆品乳化剂;油田 钻凿深井时,用作抗高温油包水乳化泥浆的乳化 2、杀菌剂:油田用作油气井的杀菌剂;工农业用杀菌 3、纺织助剂:织物柔软剂、合成纤维的抗静电剂 4、其他:乳胶工业的防粘剂和隔离剂。 二、执行标准 GB 26369-2010 季铵盐类消毒剂卫生标准 1 范围 本标准规定了季铵盐类消毒剂的原料要求、技术要求、应用范围、使用方法、检验方法、标志和包装、运输和贮存、签标和明说书及注意事项。 本标准适用于季铵盐类消毒剂。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单 (不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T5174 表面活性剂洗涤剂阳离子活性物含量的测定 GB/T6368 表面活性剂水溶液 pH值的测定电位法 GB 食品工具、设各用洗涤消毒剂卫生标准

Anderson型双亲催化剂(C21H46N)3[CoMo6O24H6]的制备及其应用

[在此处键入] [在此处键入] 文章编号: DOI: Anderson 型双亲催化剂(C 21H 46N)3[CoMo 6O 24H 6]的制备及其应 用 摘 要: 本文利用一系列含硫量为500ppm 的模型化合物进行了研究。合成了一系列Anderson 型双亲催化剂(C 21H 46N)3[CoMo 6O 24H 6],并在H 2O 2/(C 21H 46N)3[CoMo 6O 24H 6]体系下研究了影响氧化脱硫效果的因素。并结合实验结果进行了分析。通过实验探索出十八烷基三甲基氯化铵是最合适的表面活性剂;水乙醇相合成的(C 21H 46N)3[CoMo 6O 24H 6]在反应2h 后二苯并噻吩的脱硫率可以达到92.68%。红外光谱分析结果表明:H 2O 2/(C 21H 46N)3[CoMo 6O 24H 6]体系可以将油品中的噻吩类硫化物氧化成相应的砜或者亚砜。 关 键 词: 杂多酸;Anderson 型催化剂;氧化脱硫 中图分类号: TQ139.1 文献标识码: A The Preparation and applications of the Anderson-type amphiphilic catalyst (C 21H 46N)3[CoMo 6O 24H 6] Abstract: In this paper, a series of model compounds were used with the sulfur content of 500ppm. Ander-son type amphiphilic catalyst (C 21H 46N )3[CoMo 6O 24H 6] was synthesized. and used as a catalyst to study the oxidative desulfurization of the sulfur-containing compounds.The experimental results show that Octadearyl di-methyl ammonium chloride is the most appropriate surfactant ;(C 21H 46N )3[CoMo 6O 24H 6] synthesized in the water-ethanol is the best preparation methods .,The the DBT conversion value can reach 92.68% in reaction for 2h.Infrared spectrum analysis results showed: in the H 2O 2/(C 21H 46N)3[CoMo 6O 24H 6] system the sulfide com-pounds in oils could be oxidized into the corresponding sulfones. Key words: Heteropolyacids;Anderson-type Catalyst;Oxidative Desulfurization 近年来在日益严格的环保要求趋势下,各国的汽柴油标准在不断改进。因此,油品的清洁生产成为我们追求的目标,含硫量也成为衡量原油及其产品质量的重要指标之一。如何实现既经济而又有效地清洁油品生产是石油炼制者们最大的挑战之一,非加氢脱硫技术逐渐成为突破口。目前,国内为有文献[11-5]报道的汽柴油非加氢脱硫工艺主要有氧化脱硫(ODS )、萃取脱硫(EDS )、吸附脱硫(ADS )、生物脱硫(DBS )和离子液体脱硫等。其中ODS 为国内外研究的热点。 自从1972年12-钨硅酸催化丙烯水合制异丙醇在日本成功工业化,杂多酸化学的研究越来越受到各国重视。1984年,Pope 等[6]采用各种季铵盐,将杂多阴离子转移到非极性溶剂中。针对杂多酸与油接触不充分会影响脱硫效果的问题,杂多酸季铵盐作为相转移催化剂是一个很好的解决方案。后来,杂多酸季铵盐类催化剂被越来越广泛的应用于各类两相、三相反应中,并取得了一定的进展,并被视为一种环境友好型酸催化剂。目前研究较多的是Keggin 结构杂多酸,但是对于Anderson 型研究较少,而将其应用到油品的氧化脱硫的报道更少,而 它也是杂多酸盐一种常见的类型并具有以下其优点:合成方法简单以及合成周期短、可将过渡金属引入形成双金属型杂多酸阴离子簇。李灿等[7]人利用杂多酸和季铵盐合成的相转移催化剂对柴油进行了氧化脱硫。合成的催化剂是双亲性催化剂,它们可以介于在由氧化剂H 2O 2水溶液和柴油组成的相界面上。氧化反应的条件较温和,柴油中的含硫分子能完全转化成相应的砜或亚砜,在氧化脱硫体系中双亲催化剂具有良好的催化性能。氧化后的柴油经处理后硫含量由526μg/g 降低到小于10μg/g 。因此选择合成(NH 4)3[CoMo 6O 24H 6]利用不同烷基链的铵盐对其进行包裹得到Anderson 型杂多酸季铵盐催化剂(简称SEP ),并将其应用到油品的深度氧化脱硫中以探索出SEP 的最佳合成方式以及最合适的表面活性剂. 1 实验 1.1原料 七水和硫酸钴、四水合钼酸铵、四丁基氯化铵、十二烷基三甲基氯化铵、双十二烷基二甲基溴化铵、

常用硅烷偶联剂

常用硅烷偶联剂——KH550、KH560、KH570、KH792、DL602 1. KH550 KH550硅烷偶联剂CAS号:919-30-2 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-Triethoxysilylpropylamine APTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷 【3-Aminpropyltriethoxysilane AMEO】分子式:NH2(CH2)3Si(OC2H5)3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度(ρ25℃):0.946 沸点:217℃ 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。

本品应严格密封,存放于干燥、阴凉、避光的室内。 2. KH560 二、化学名称及分子式 化学名称:γ-缩水甘油醚氧丙基三甲氧基硅烷 分子式:CH2CH(O)CH2O(CH2)3Si(OCH3)3 结构式: 分子量:236.3376 三、物理性质: 物理形态:液体。颜色:无色透明。沸点:290℃。折光率:(nD25) 1.4260-1.4280,密度(ρ25℃)1.065-1.072。溶解性:溶于水,同时发生水解反应,水解反应释放甲醇。溶于醇、丙酮和在5%以下的正常使用水平溶于大多数脂肪族酯。 四、应用范围: KH-560是一种含环氧基的偶联剂,用于多硫化物和聚氨酯的嵌缝胶和密封胶,用于环氧树脂的胶粘剂、填充型或增强型热固性树脂、玻璃纤维胶粘剂和用于无机物填充或玻璃增强的热塑料性树脂等。 3. KH570 一、简介

Anderson型双亲催化剂(C21H46N)3[CoMo6O24H6]的制备及其应用

文章编号:DOI: Anderson型双亲催化剂(C21H46N)3[CoMo6O24H6]的制备及其应用 摘要:本文利用一系列含硫量为500ppm的模型化合物进行了研究。合成了一系列Anderson型双亲催化剂(C21H46N)3[CoMo6O24H6],并在H2O2/(C21H46N)3[CoMo6O24H6]体系下研究了影响氧化脱硫效果的因素。并结合实验结果进行了分析。通过实验探索出十八烷基三甲基氯化铵是最合适的表面活性剂;水乙醇相合成的(C21H46N)3[CoMo6O24H6]在反应2h后二苯并噻吩的脱硫率可以达到92.68%。红外光谱分析结果表明:H2O2/(C21H46N)3[CoMo6O24H6]体系可以将油品中的噻吩类硫化物氧化成相应的砜或者亚砜。 关键词: 杂多酸;Anderson型催化剂;氧化脱硫 中图分类号: TQ139.1文献标识码: A The Preparation and applications of the Anderson-type amphiphilic catalyst (C 21H 46 N) 3 [CoMo 6 O 24 H 6 ] Abstract: In this paper, a series of model compounds were used with the sulfur content of 500ppm. Anderson type amphiphilic catalyst(C21H46N)3[CoMo6O24H6] was synthesized. and used as a catalyst to study the oxidative desulfurization of the sulfur-containing compounds.The ex-perimental results show that Octadearyl dimethyl ammonium chloride is the most appropriate surfactant;(C21H46N)3[CoMo6O24H6] synthesized in the water-ethanol is the best preparation methods.,The the DBT conversion value can reach 92.68% in reaction for 2h.Infrared spectrum analysis results showed: in the H2O2/(C21H46N)3[CoMo6O24H6] system the sulfide compounds in oils could be oxidized into the corresponding sulfones. Key words: Heteropolyacids;Anderson-type Catalyst;Oxidative Desulfurization 近年来在日益严格的环保要求趋势下,各国的汽柴油标准在不断改进。因此,油品的清洁生产成为我们追求的目标,含硫量也成为衡量原油及其产品质量的重要指标之一。如何实现既经济而又有效地清洁油品生产是石油炼制者们最大的挑战之一,非加氢脱硫技术逐渐成为突破口。目前,国内为有文献[11-5]报道的汽柴油非加氢脱硫工艺主要有氧化脱硫(ODS)、萃取脱硫(EDS)、吸附脱硫(ADS)、生物脱硫(DBS)和离子液体脱硫等。其中ODS为国内外研究的热点。 自从1972年12-钨硅酸催化丙烯水合制异丙醇在日本成功工业化,杂多酸化学的研究越来越受到各国重视。1984年,Pope等[6]采用各种季铵盐,将杂多阴离子转移到非极性溶剂中。针对杂多酸与油接触不充分会影响脱硫效果的问题,杂多酸季铵盐作为相转移催化剂是一个很好的解决方案。后来,杂多酸季铵盐类催化剂被越来越广泛的应用于各类两相、三相反应中,并取得了一定的进展,并被视为一种环境友好型酸催化剂。目前研究较多的是Keggin结构杂多酸,但是对于Anderson型研究较少,而将其应用到油品的氧化脱硫的报道更少,而它也是杂多酸盐一种常见的类型并具有以下其优点:合成方法简单以及合成周期短、可将过渡金属引入形成双金属型杂多酸阴离子簇。李灿等[7]人利用杂多酸和季铵盐合成的相转移催化剂对柴油进行了氧化脱硫。合成的催化剂是双亲性催化剂,它们可以介于在由氧化剂H2O2水溶液和柴油组成的相界面上。氧化反应的条件较温和,柴油中的含硫分子能完全转化成相应的砜或亚砜,在氧化脱硫体系中双亲催化剂具有良好的催化性能。氧化后的柴油经处理后硫含量由526μg/g降低到小于10μg/g。因此选择合成(NH4)3[CoMo6O24H6]利用不同烷基链的铵盐对其进行包裹得到Anderson型杂多酸季铵盐催化剂(简称SEP),并将其应用到油品的深度氧化脱硫中以探索出SEP的最佳合成方式以及最合适的表面活性剂. 1 实验 1.1原料 七水和硫酸钴、四水合钼酸铵、四丁基氯化铵、十二烷基三甲基氯化铵、双十二烷基二甲基溴化铵、十六烷基三甲溴氯化铵、双十六烷基二甲基溴化铵、

相关文档
相关文档 最新文档