文档库 最新最全的文档下载
当前位置:文档库 › 【精品】高二数学上 第八章 圆锥曲线方程: 8.4双曲线的简单几何性质教案

【精品】高二数学上 第八章 圆锥曲线方程: 8.4双曲线的简单几何性质教案

【精品】高二数学上 第八章 圆锥曲线方程: 8.4双曲线的简单几何性质教案
【精品】高二数学上 第八章 圆锥曲线方程: 8.4双曲线的简单几何性质教案

8.4双曲线的简单几何性质

教学目的:

1.使学生掌握双曲线的范围、对称性、顶点、渐近线等几何性质

2.掌握标准方程中c

b

,的几何意义

a,

3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题

教学重点:双曲线的渐近线及其得出过程

教学难点:渐近线几何意义的证明

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

内容分析:

本节知识是讲完了双曲线及其标准方程之后,反过来

它是教学大纲要求学生必须掌握的内容,也是高考的一个考点用坐标法研究几何问题,是数学中一个很大的课题,它包含了圆锥曲线知识的众多方面,这里对双曲线的几何性质的讨论以及利用性质来解题即是其中的一个重要部分

坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学 运动变化和对立统一的思

想观点在第8章知识中得到了突出体现,我们必须充分利用好这部分教材进行教学

利用图形启发引导学生理解渐近线的几何意义、弄通证明的关键;渐近线的位置、渐近线与双曲线张口之间的关系是学生学习离心率的概念、搞懂离心率与双曲线形状之间的关系的关键;要突破第二定义得出过程这个难点

本节内容类似于“椭圆的简单的几何性质”,教学中也可以与其类比讲解,主要应指出它们的联系与区别 对圆锥

曲线来说,渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,为说明这一点,教学时可以适当补充一些例题和习题 讲解完双曲线的渐近线后,要注意说明:反过来

以1=±b

y

a x 为渐近线的双曲线方程则是λ=-2222

b y a x

对双曲线离心率进行教学时要指明它的大小反映的是双曲线的张口大小,而椭圆离心率的大小反映的是椭圆的扁平程度 同椭圆一样,双曲线有两种定义,教材上以例3的

教学来引出它,我们讲课时要充分注意到此例题与后面的定义在教学上的逻辑关系,突出考虑学生认知心理的变化规律

本节分三个课时:第一课时主要讲解双曲线的范围、对称性、顶点、渐近线等几何性质,并补充一道变式例题;第二课时主要内容为离心率、教材中的例1、例2及一道变式例题;第三课时主要讲解教材中的例3、双曲线另一个定义、准线概念

教学过程:

一、复习引入:

二、讲解新课: 1.范围、对称性

由标准方程122

22=-b

y a x 可得22a x ≥,当a x ≥时,y 才有实

数值;对于y 的任何值,x 都有实数值 这说明从横的方向

来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线

双曲线不封闭,但仍称其对称中心为双曲线的中心

2.顶点

顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,

b 叫做虚半轴长

讲述:结合图形,讲解顶点和轴的概念,在双曲线方程

12

2

22=-b y a x 中,令y=0得a x ±=,故它与x 轴有两个交点

()0,),0,(21a A a A -,且x

轴为双曲线

122

22=-b

y a x 的对称轴,

0,),0,(21a A a A -称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交点),而对称轴上位于两顶点间的线段21A A 叫做双曲线

122

22=-b

y a x 的实轴长,它的长是2a. 在方程122

22=-b

y a x 中令x=0得22b y -=,这个方程没有实

数根,说明双曲线和Y 轴没有交点。但Y 轴上的两个特殊点

()b B b B -,0),,0(21,这两个点在双曲线中也有非常重要的作用

把线段21B B 叫做双曲线的虚轴,它的长是2b 要特别注意不

要把虚轴与椭圆的短轴混淆

双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异

3.渐近线

过双曲线122

22=-b

y a x 的两顶点21,A A ,

作Y 轴的平行线a x ±=,经过21,B B 作X 轴的平行线b y ±=,四条直线围 成一个矩形 矩形的两条对角线所在

直线方程是x a b

y ±=(0=±

b

y

a x ), 这两条直线就是双曲线的渐近线 分析:要证明直线x a

b y ±=(0=±

b

y

a

x ) 是双曲线122

22=-b

y a x 的渐近线,即要证明

随着X 的增大,直线和曲线越来越靠拢

也即要证曲线上的点到直线的距离|MQ | 越来越短,因此把问题转化为计算|MQ |

但因|MQ |不好直接求得,因此又把问题 转化为求|MN | 最后强调,对圆锥曲线

而言,渐近线是双曲线具有的性质

22||||a x a

b x a b MN MQ --=

< =)(22a x x a

b

-- 2

2

a

x x ab -+=

(||MQ 0??→?∞

→x ) 4.等轴双曲线

a=b 即实轴和虚轴等长,这样的双曲线叫做等轴双曲线

结合图形说明:a=b 时,双曲线方程变成222a y x =-(或)2b ,它的实轴和都等于2a(2b),这时直线围成正方形,渐近线方程为y ±=它们互相垂直且平分双曲线的实轴和虚轴

所成的角

5.共渐近线的双曲线系

如果已知一双曲线的渐近线方程为

x a b y ±

=)0(>±=k x ka

kb

,那么此双曲线方程就一定是:)0(1)()(2

222>±=-k kb y ka x 或写成λ=-2222b

y a x 6.双曲线的草图

利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图

具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并

根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线

焦点在y 轴的情况同学们自己研究 7.离心率

概念:双曲线的焦距与实轴长的比a

c

a c e ==22,

叫做双曲线的离心率

范围:1>e

双曲线形状与e 的关系:

1122

222-=-=-==e a

c a a c a b k , 因此e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔

(1)双曲线的形状张口随着渐近线的位置变化而变化; (2)渐近线的位置(倾斜)情况又受到其斜率制约

利用计算机动画先演示出“e 的大小”与“开口的阔

窄”的关系,能让学生对此变化规律先形成直观理解;然后再用代数方法边板书边推导,这样就可化难为易,使学生对此规律有更深刻清晰的理解 这样做将有助于实在本节的

这个难点

8.离心率相同的双曲线

(1)计算双曲线19

42

2=-y x 的离心率0e ;

(2)离心离为0e 的双曲线一定是19

42

2=-y x

如果存在很多的话,它们能否用一个特有的形式表示呢? (3)离心率为

2

13

的双曲线有多少条? 分析:2222)(1)(1ka

kb

a b a b a a c e +=+=+==的关系式,并从

中发现只要实现半轴和虚半轴各与a=2,b=3有相同的比k :1(k>0)的双曲线,其离心率e 2

13

9.共轭双曲线:以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线 如

191622=-y x 与16

92

2=-x y 注意的区别:三量a,b,c 中a,b 不同(互换)c 相同

通过分析曲线发现二者其具有相同的渐近线此即为共轭

之意

1) 性质:共用一对渐近线双曲线和它的共轭双曲线

的焦点在同一圆上

2) 确定双曲线的共轭双曲线的方法:将1变为-1

3)

共用同一对渐近线kx y ±=的双曲线的方程具有什么

样的特征:可设为)0(122

2≠=-λλk

y x ,当0>λ时交点在x

轴,当0<λ时焦点在y 轴上

三、讲解范例:

例 1. 求双曲线14416922=-x y 的实半轴长和虚半轴长,焦点坐标,离心率.

解: 把方程化为标准方程得,13422

22=-x y

可得:实半轴长: a=4 虚半轴长: b=3半焦距: 焦点坐标: (0,-5),(0,5) 离心率:

例二.求下列双曲线的范围、焦点、顶点、离心率

5

3422=+=c 4

5=

=a

c e

(1)32822=-y x (2)422-=-y x

(3)125

492

2-=-y x

例2.已知双曲线的中心在原点,对称轴为坐标轴,它的一个焦点F (5,0),且离心率e 可以使方程04

1)1(22=+--x e x 有相等的实根,求满足条件的双曲线方程

例3.已知双曲线虚轴的一个端点为M, 两焦点分别 F 1 , F 2 , 且 12021=∠MF F , 则双曲线的离心率 为(B ) A .3B .26C .3

6

D .33

(参考例题)

例1 求双曲线14

2

2

=-y x 的顶点坐标、焦点坐标,实半轴长、

虚半轴长和渐近线方程,并作出草图

分析:只要紧扣有关概念和方法,就易解答

解:把方程化为标准方程12

122

22=-y x

由此可知,实半轴长a =1,虚半轴长b =2. 顶点坐标是(-1,0),(1,0)

5212222=+=+=b a c 焦点的坐标是(-5,0),(5,0).

渐近线方程为02

1

y

x

,即x y 2±= 例2 求与双曲线19

162

2=-y x 共渐近线且过)3,33(-A 的双曲线

的方程

分析:因所求的双曲线与已知双曲线共渐近线,故可先设出双曲线系,再把已知点代入,求得K 的值即可

解:设与13422

22=-y x 共渐近线且过)3,33(-A 的

双曲线的方程为λ=-22

223

4y x

则 λ=--22223)3(4)33( ,从而有16

所求双曲线的方程为99

16112

2=-

y x 例3求双曲线14416922=-x y 的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程. 解:把方程化为标准方程

13

422

22=-x y 由此可知,实半轴长a =4,虚半轴长b =3.

5342222=+=+=b a c

焦点的坐标是(0,-5),(0,5). 离心率4

5

==

a c e 渐近线方程为y x 43±=,即x y 3

4±=

例4 双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12 m ,上口半径为13 m ,下口半径为25 m ,高55m .选择适当的坐标系,求出此双曲线的方程(精确到1m).

分析:本题建立合适的坐标系是关键。注意到通风塔有三个特殊的截口圆:上口、下口、最小的一个截口。显然,最小截口圆的圆心是双曲线的中心,直径是双曲线的实轴,所以以最小截口直径所在直线为X 轴,圆心为原点建立坐标系,则双曲线的方程具有最简单的形式。

解:如图所示,建立直角坐标系xOy ,使小圆的直径AA′在x 轴上,圆心与原点重合.这时,上、下口的直径CC′、BB′平行于x 轴,且|CC′|=13×2(m),|BB′|=25×2(m).

设双曲线的方程为122

22=-b

y a x )0,0(>>b a

令点C 的坐标为(13,y),则点B 的坐标为(25,y -55).因为点B 、C 在双曲线上,所以

1)55(12252

222=--b y ① 且1121322

22=-b

y ② 解方程组,得

12

5b

y =

(负值舍去)

代入方程①,得)55125(

1225

22

22

=--b

b

化简得

19b 2+275b -18150=0 ③ 解方程③(使用计算器计算),得 b≈25(m).

所以所求双曲线方程为

625

1442

2=-y x 点评: 这是一个有实际意义的题目.解这类题目时,首先

要解决以下两个问题:(1)选择适当的坐标系;(2)将实际问题中的条件借助坐标系用数学语言表达出来. 四、课堂练习:

1.下列方程中,以x±2y=0为渐近线的双曲线方程是

1

2

)(1

2

)(1

16

4)(1

4

16)(2

2

222

222=-=-=-=-y x D y x C y x B y x A 答案:A

2 .过点(3,0)的直线l 与双曲线4x 2-9y 2=36只有一个公共点,则直线l 共有

(A)1条 (B)2条 (C)3条 (D)4条 答案:C

3 .若方程a

k 4y a k 3x 2

2-++=1表示双曲线,其中a 为负常数,则k 的取值范围是( )

(A)(3a ,-4a ) (B)(4a ,-3a ) (C)(-3a ,4a ) (D)(-∞,4

a )

∪(-3

a

,+∞)

答案:B

4 .中心在原点,一个焦点为(3,0),一条渐近线方程2x-3y=0的双曲线方程是

(A)138********x y -= (B)133********

x y -= (C)536554122x y -= (D)554536

122

x y -= 答案:A

5 .与双曲线x y 22

916

-=λ有共同的渐近线,且一顶点为(0,

9)的双曲线的方程是( )

(A)

x y 22144811-= (B)--=x y 22

144811 (C)x y 22

169

1-= (D)-

+=x y 22274811(/) 答案:D

6 .一双曲线焦点的坐标、离心率分别为(±5,0)、3

2

,则

它的共轭双曲线的焦点坐标、离心率分别是 ( ) (A)(0,±5),

35

(B)(0,±532), (C)(0,±53

2), (D)(0,

±53

5

),

答案:A

7 .双曲线2kx 2-ky 2=1的一焦点是F(0,4),则k 等于 ( )

(A)-3/32 (B)3/32 (C)-3/16 (D)3/16

答案:A

1 .方程mx 2+ny 2+mn=0(m

(A)(0,±-m n ) (B)(0,±-n m ) (C)(±-m n ,0) (D)(±-n m ,0)

2 .下列各对曲线中,即有相同的离心率又有相同渐近线的是 D

(A)x 23-y 2=1和y 29

-x 23=1 (B)x 23-y 2=1和y 2-x

2

3=1

(C)y 2

-x 23=1和x 2-y 23=1 (D)x 23-y 2

=1和92x -3

2y =1

3 .与双曲线116

92

2=-y x 有共同的渐近线,且经过点A }

32,3(-的双曲线的一个焦点到一条渐近线的距离是 (C ) (A )8 (B )4 (C )2 (D )1

4 .以x y 3±=为渐近线,一个焦点是F (0,2)的双曲线方程为 ( A )

(A )1322

=-y x (B )1322

=-y x (C )13222-=-y x (D )13

222=-

y x 5 .双曲线kx 2+4y 2=4k 的离心率小于2,则k 的取值范围是 ( C )

(A )(-∞,0) (B )(-3,0) (C )(-12,0) (D )(-12,1)

6 .已知平面内有一固定线段AB,其长度为4,动点P 满足

|PA|-|PB|=3,则|PA|的最小值为 D

(A)1.5 (B)3 (C)0.5 (D)3.5

7 .已知双曲线b 2x 2-a 2y 2 = a 2b 2的两渐近线的夹角为2α,则离心率e 为(C )

(A)arcsin α (B)αcos b

a (C)αsec (D)tg2α

8 .一条直线与双曲线两支交点个数最多为 ( B )

(A)1 (B)2 (C)3 (D)4

9 .双曲线顶点为(2,-1),(2,5),一渐近线方程为3x

-4y +c = 0,则准线方程为 ( D ) (A)5162±

=x (B)5162±=y (C)5

9

2±=x (D)5

92±=y

10 .与双曲线x m y n

22

+

=1(mn<0)共轭的双曲线方程是 ( D ) (A)

-+=x m y n

22

1 (B)

x m y n

22

1-= (C)

x m y n

22

1-=- (D)x m y n

22

1+=-

五、小结 :双曲线的范围、对称性、中心、顶点、实轴和虚轴、实轴长、虚轴长、渐近线方程、等轴双曲线;双曲线

草图的画法;双曲线12222=-b

y a x 的渐近线是x a b

y ±=,但反过

来此渐近线对应的双曲线则是

)0(1)()(2222>±=-k kb y ka x 或写成λ=-22

22b

y a x 六、课后作业:

七、板书设计(略) 八、课后记:

圆锥曲线的定义、性质、方程

专题13 圆锥曲线的定义、性质和方程 ★★★高考在考什么 【考题回放】 1.已知△ABC 的顶点B 、C 在椭圆2 3 x +y 2=1上,顶点A 是椭圆的一个焦点,且 椭圆的另外一个焦点在BC 边上,则△ABC 的周长是(C ) (A )2 3 (B )6 (C )4 3 (D )12 2.已知双曲线22221x y a b -=的一条渐近线方程为y =4 3x ,则双曲线的离心率为(A) (A )53 (B )43 (C )54 (D )3 2 3.如果双曲线的两个焦点分别为)0,3(1-F 、)0,3(2F ,一条渐近线方程为x y 2= , 那么它的两条准线间的距离是( C ) A .36 B .4 C .2 D .1 4.抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( B) ( A ) 16 17 ( B ) 1615 ( C ) 87 ( D ) 0 5.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍, 则该椭圆的标准方程是 2 21164 +=y x . 6.如图,F 为双曲线C :()22 2210,0x y a b a b -=>>的右焦点。P 为双曲线C 右支 上一点,且位于x 轴上方,M 为左准线上一点,O 为坐标原点。已知四边形OFPM 为 平行四边形,|PF |=λ|OF |。 (Ⅰ)写出双曲线C 的离心率e 与λ的关系式; (Ⅱ)当λ=1时,经过焦点F 且平行于OP 的直线交双曲线于A 、B 点,若|AB |=12,求此时的双曲线方程。 【专家解答】 ∵四边形OFPM 是 ,∴||||OF PM c ==, 作双曲线的右准线交PM 于H ,则2 ||||2 a PM PH c =+,又22 2222|||||| 222 PF OF c e e a PH c a e c c λλλ====---, 220e e λ--=。 (Ⅱ)当1λ=时,2e =,2c a =,2 2 3b a =,双曲线为 22 22 143x y a a -=四边形

双曲线几何性质 (1)

百度文库- 让每个人平等地提升自我! 1 双曲线的几何性质 学习目标:理解并掌握双曲线的几何性质,能根据性质解决一些基本问题,进一步体会数形结合的思想. 学习重点:双曲线的几何性质及其运用. 一、学习情境 类比椭圆几何性质和研究方法,我们应该如何去研究双曲线的几何性质? 二、学习任务(理P56—P58例3完;文P49—P51例3完) 问题1: 画出 1 3 42 2 2 2 = - y x 与 1 3 42 2 2 2 = - x y 的图形,观察图形你能得出双曲线的哪些性质? 问题2: 请分别从图形和方程两个角度解释这些性质. 标准方程 图象 范围 对称轴 对称中心 实虚轴 顶点 渐近线 离心率 a,b,c关系 A级理P61 (文P53) 1、2、3、4 B级习题理2.3 (文2.2) 3、4 选做题 1、已知椭圆方程 1 9 16 2 2 = + y x 和双曲线方程 1 9 16 2 2 = - x y 有下列说法: ①椭圆和双曲线的实轴长都是4,但椭圆和双曲线的实轴分别在x轴和y轴上; ②椭圆的长半轴长是4,双曲线的实轴长是3 ③它们的焦距都是10 其中说法正确的个数是() A、0 B、1 C、2 D、3个 2、根据下列条件,求双曲线方程 ①与双曲线1 4 16 2 2 = - y x 有公共焦点,且过点(2 3,2) ②与双曲线1 9 16 2 2 = - y x 有共同的渐近线,且过点(3 2,-3) 三、归纳反思 椭圆和双曲线几何性质的比较: 椭圆双曲线定义 标准方程 图形 (顶点坐 标) (焦点坐 标) 范围 轴 对称轴 (对称中 心) 离心率 及其范围 a,b,c关系 渐近线

双曲线的简单几何性质总结归纳

双曲线的简单几何性质 一.基本概念 1 双曲线定义: ①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹 (21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. ②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线 这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 2、双曲线图像中线段的几何特征: ⑴实轴长122A A a =,虚轴长2b,焦距122F F c = ⑵顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+ ⑶顶点到准线的距离:21122 a A K A K a c ==-;21221 a A K A K a c ==+ ⑷焦点到准线的距离:22 11221221 a a F K F K c F K F K c c c ==-==+或 ⑸两准线间的距离: 2 122a K K c = ⑹21F PF ?中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将 有关线段1PF 、2PF 、21F F 和角结合起来,122 12 cot 2 PF F F PF S b ?∠= ⑺离心率: 121122121122PF PF A F A F c e PM PM A K A K a ======∈(1,+∞) ⑻焦点到渐近线的距离:虚半轴长b ⑼通径的长是a b 22,焦准距2b c ,焦参数2b a (通径长的一半)其中2 22b a c +=a PF PF 221=- 3 双曲线标准方程的两种形式: ①22 a x -22 b y =1, c =22b a +,焦点是F 1(-c ,0),F 2(c ,0) ②22a y -22 b x =1, c =22b a +,焦点是F 1(0,-c )、F 2(0,c ) 4、双曲线的性质:22 a x -22b y =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R ⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线: ①若双曲线方程为12222=-b y a x ?渐近线方程?=-02222b y a x x a b y ±= ②若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x ③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上) ④特别地当?=时b a 离心率2=e ?两渐近线互相垂直,分别为y=x ±,

轨迹方程的 几种求法整理

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x =u u u r u u u r ·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线

圆锥曲线标准方程求法(学生版)

圆锥曲线标准方程求法 一、椭圆标准方程求法 1、定义法 【例1】已知ABC ?的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。 【变式】:在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为25 7.建立适当的坐标系,求顶点C 的轨迹方程. 【例2】已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点??? ? ??26,23M 在椭圆上,求椭圆C 的方程; 【例3】已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程. 【例4】设R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量, ,)2(j y i x a ++=j y i x b )2(-+=,且8||||=+.求点),(y x M 的轨迹C 的方程; 2、待定系数法 1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 2 ,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.

2.已知椭圆1C :22 221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程. 3.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程. 4.设椭圆:E 22 221x y a b +=(,0a b >>)过2)M ,(6,1)N 两点,O 为坐标原点,求椭圆E 的方程。 3、转化已知条件 【例1】已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12- .求点M 轨迹C 的方程; 【例2】设Q 、G 分别为ABC ?的外心和重心,已知)0,1(-A ,)0,1(B ,AB QG //?求点C 的轨迹E 【例3】已知动点P 到直线33 4- =x 的距离是到定点(0,3-)的距离的332倍.求动点P 的轨迹方程;

双曲线的简单几何性质(教案)(精)

双曲线的简单几何性质 山丹一中周相年 教学目标: (1 知识目标 能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程等,熟练掌握双曲线的几何性质 . (2能力目标 通过类比椭圆的简单几何性质的方法来研究双曲线的简单几何性质, 在老师的指导下让学生积极讨论、归纳,培养学生的观察、研究能力,增强学生的自信心 . (3 情感目标 通过提问、讨论、合作、探究等主动参与教学的活动,培养学生自尊、自强、自信、自主等良好的心理潜能和主人翁意识、集体主义精神 . 教学重点:双曲线的几何性质 . 教学难点:双曲线的渐近线 . 教学方法:启发诱导、练讲结合 教学用具 :多媒体 教学过程: 一、复习回顾,问题引入: 问题 1:双曲线的定义及其标准方程?

问题 2:椭圆的简单几何性质有哪些?我们是如何研究的?双曲线是否也有类似性质?又该怎样研究? 二、合作交流,探究性质: 类比椭圆的几何性质的研究方法,我们根据双曲线的标准方程 0, 0(122 22>>=-b a b y a x 研究它的几何性质 1. 范围: 双曲线在不等式x ≥ a 与x ≤-a 所表示的区域内 . 2. 对称性: 双曲线关于每个坐标轴和原点都对称, 这时, 坐标轴是 双曲线的对称轴, 原点是双曲线的对称中心, 双曲线的对称 中心叫双曲线中心 . 3.顶点: (1 双曲线和它的对称轴有两个交点 A1(-a,0 、 A2(a,0, 它们叫做双曲线的顶点 . (2 线段 A1A2叫双曲线的实轴, 它的长等于 2a,a 叫做双曲线的实半轴长; 线段B1B2叫双曲线的虚轴,它的长等于 2b, b叫做双曲线的虚半轴长 .

(完整版)双曲线简单几何性质知识点总结,推荐文档

北安一中高二数学导学案 主备人:陈叔彤 审阅人:高二数学组 备课日期 :2012-10-17 课题:§双曲线简单几何性质知识点总结 课时: 课时 班级: 姓名: 【学习目标】 知识与技能:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等 几何性质 2.掌握双曲线的另一种定义及准线的概念3.掌握等轴双曲线,共轭双曲线等概念 过程与方法:进一步对学生进行运动变化和对立统一的观点的教育情感态度与价值观:辨证唯物主义世界观。【学习重点】双曲线的几何性质及其应用。【学习难点】双曲线的知识结构的归纳总结。 【学法指导】 1.课前依据参考资料,自主完成,有疑问的地方做好标记. 2.课前互相讨论交流,课上积极展示学习成果. 【知识链接】双曲线的定义:_________________________________________________【学习过程】 1.范围: 由标准方程,从横的方向来看,直线x=-a,x=a 之间没有图 122 22=-b y a x 象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大。 X 的取值范围________ y 的取值范围______2. 对称性: 对称轴________ 对称中心________3.顶点:(如图) 顶点:____________特殊点:____________实轴:长为2a, a 叫做半实轴长21A A 虚轴:长为2b ,b 叫做虚半轴长 21B B 双曲线只有两个顶点,而椭圆则有四个顶点, 这是两者的又一差异4.离心率: 双曲线的焦距与实轴长的比,叫做双曲线的离心率 a c a c e == 22范围:___________________ 双曲线形状与e 的关系:,e 越大,即渐112 222 2-=-=-= =e a c a a c a b k 近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆: 1、 长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程; 2、 线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 3如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 4在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. 5(2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程; (2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明 直线l 过定点。 二、椭圆类型: 3、 定义法:点M(x ,y )与定点F(2,0)的距离和它到定直线8=x 的距离之比为2 1 ,求点M 的轨迹方程.

圆锥曲线的经典求法-设而不求

圆锥曲线 设而不求法典型试题 在求解直线与圆锥曲线相交问题,特别是涉及到相交弦问题,最值问题,定值问题的时候,采用“设点代入”(即“设而不求”)法可以避免求交点坐标所带来的繁琐计算,同时还要与韦达定理,中点公式结合起来,使得对问题的处理变得简单而自然,因而在 做圆锥曲线题时注意多加训练与积累. 1.通常情况下如果只有一条直线,设斜率相对容易想一些,或 者多条直线但是直线斜率之间存在垂直,互为相反数之类也可以设斜率需要注意的是设斜率的时候需要考虑: (1)斜率是否存在 (2)直线与曲线必须有交点也就是判别式必须大于等于0 这种设斜率最后利用韦达定理来计算并且最终消参法,思路清晰,计算量大,特别需要仔细,但是大多也是可以消去高次项,故不要怕大胆计算,最终一定能得到所需要的结果。 2.设点比较难思考在于参数多,计算起来容易信心不足,但是在对于定点定值问题上,只要按题目要求计算,将相应的参数互

带,,然后把点的坐标带入曲线方程最终必定能约分,消去参数。这种方法灵活性强,思考难度大,但是计算简单。 例1:已知双曲线x2-y2/2=1,过点M(1,1)作直线L,使L与已知双曲线交于Q1、Q2两点,且点M是线段Q1Q2的中点,问:这样的直线是否存在?若存在,求出L的方程;若不存在,说明理由。 解:假设存在满足题意的直线L,设Q1(X1,Y1),Q2(X2,Y2) 代人已知双曲线的方程,得x12-y12/2=1 ①, x22-y22/2=1 ② ②-①,得(x 2-x 1 )(x 2 +x 1 )-(y 2 -y 1 )(y 2 +y 1 )/2=0。 当x1=x2时,直线L的方程为x=1,此时L与双曲线只有一个交点(1,0)不满足题意; 当x1≠x2时,有(y2-y1)/(x2-x1)=2(x2+x1)/(y2+y1)=2. 故直线L的方程为y-1=2(x-1) 检验:由y-1=2(x-1),x2-y2/2=1,得2x2-4x+3=0,其判别式 ⊿=-8 ﹤0,此时L与双曲线无交点。 综上,不存在满足题意的直线

圆锥曲线定义、标准方程及性质(精)

圆锥曲线定义、标准方程及性质 一.椭圆 定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。 定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0>b a 取值范围:}{a x a x ≤≤-, }{b y b x ≤≤- 长轴长=a 2,短轴长=2b 焦距:2c 准线方程:c a x 2 ±= 焦半径:)(21c a x e PF +=,)(2 2x c a e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意:涉及焦半径时①用点P 坐标表示,②第一定义,第二定义。) 注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A += =等等。顶点与 准线距离、焦点与准线距离分别与c b a ,,有关。 (2)21F PF ?中经常利用余弦定理....、三角形面....积公式... 将有关线段1PF 、2PF 、2c , 有关角21PF F ∠结合起来,建立1 PF +2PF 、1 PF ? 2PF 等关系 (3)椭圆上的点有时常用到三角换元:?? ?θ =θ =sin cos b y a x ; (4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相 应的性质。 二、双曲线 (一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。 Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。 (二)图形: (三)性质 方程:12222=-b y a x )0,0(>>b a 122 22=-b x a y )0,0(>>b a 取值范围:}{a x a x x ≤≥或; 实轴长=a 2,虚轴长=2b 焦距:2c

《双曲线的简单几何性质》教学设计.

《双曲线的简单几何性质》教学设计 首都师范大学附属丽泽中学宛宇红靳卫红 一、教材分析 1.教材中的地位及作用 本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。 2.教学目标的确定及依据 平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。 (1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、 顶点、离心率、渐近线等几何性质; ②掌握双曲线标准方程中c ,的几何意义,理解双曲线的渐近 a, b 线的概念及证明; ③能运用双曲线的几何性质解决双曲线的一些基本问题。 (2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察 能力,想象能力,数形结合能力,分析、归纳能力和逻辑推 理能力,以及类比的学习方法; ②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对 直角坐标系中曲线与方程的概念的理解。

(3)德育目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。 3.重点、难点的确定及依据 对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中我把渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。因此,我把渐近线的证明作为本节课的难点,根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。 4.教学方法 这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。在教学中,学生自己能得到的结论应该让学生自己得到,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。 渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。 例题的选备,可将此题作一题多变(变条件,变结论),训练学生一题多解,开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。

双曲线的简单几何性质 (第二课时) 教案 2

课 题:8.4双曲线的简单几何性质 (二) 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2.掌握等轴双曲线,共轭双曲线等概念 3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 4.通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养 教学重点:双曲线的渐近线、离心率 教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.范围、对称性 由标准方程122 22=-b y a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方 向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭 圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 2.顶点 顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 3.渐近线 过双曲线122 22=-b y a x 的两顶点21,A A ,作Y 轴的平行线a x ±=,经过21,B B 作X 轴的 平行线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是x a b y ± =( 0=±b y a x ),这两条直线就是双曲线的渐近线 4.等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e x y Q B 1 B 2A 1A 2N M O

2021高考数学圆锥曲线轨迹方程问题解法指导

2021高考数学圆锥曲线轨迹方程问题解法指导 纵观近几年高考轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度.有的学生看到就头疼的题目.分析原因除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理。圆锥曲线问题是山东卷高考压轴大题,解题的关键往往是第一问能否求出轨迹方程。 圆锥曲线问题轨迹方程,解答题中以待定系数法为多,一旦变换考法,往往会造成学生心理负担,为了更好的解决这一问题,本专题针对轨迹方程的常见考法做出了系统总结。 一、考法解法 命题特点分析 求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同时具备一定的推理能力和运算能力。 高考考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨迹方程,求得方程就可

以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型(定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处理轨迹问题时,一定要善于根据题目的特点选择恰当的方法,确定轨迹的范围是处理轨迹问题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”。在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;②简化条件式;③转化化归。 解题方法荟萃 1.直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间距离公式、点到直线距离公式、夹角公式等)进行整理、化简。这种求轨迹方程的过程不需要特殊的技巧,它是求轨迹方程的基本方法。 直接法一般有下列几种情况: 1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。 3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。

解析几何专题03圆锥曲线的定义方程及几何性质

解析几何专题03圆锥曲线的定义、方程及几何性质 学习目标 (1)理解圆锥曲线的定义,并能正确运用圆锥曲线的定义解决一些简单的问题; (2)掌握圆锥曲线的标准方程,并能熟练运用“待定系数法”求圆锥曲线的方程; (3)能根据圆锥曲线的方程研究圆锥曲线的一些几何性质(尤其是焦点、离心率以及双曲线的渐近线等)。 知识回顾及应用 1.圆锥曲线的定义 (1)椭圆 (2)双曲线 (3)抛物线 2.圆锥曲线的方程 (1)椭圆的标准方程 (2)双曲线的标准方程 (3)抛物线的标准方程 3.圆锥曲线的几何性质 (1)椭圆的几何性质 (2)双曲线的几何性质 (3)抛物线的几何性质 4.应用所学知识解决问题: 【题目】已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点53 (,)22 -, 求椭圆的方程。 答案:22 1106 x y + = 【变式1】写出适合下列条件的椭圆的标准方程: (1)离心率14 e b = =,焦点在x 轴上; (2)4,a c ==焦点在y 轴上; (3)10,a b c +== 答案:(1)22116x y +=;(2)22 116y x +=;(3)2213616x y + =或2213616 y x +=。 【变式2】写出适合下列条件的椭圆的标准方程: (1)3a b =,且经过点(3,0)P ; (2)经过两点3(2-。 答案:(1)22 19x y +=或221819y x +=;(2)2214 x y +=。

问题探究(请先阅读课本,再完成下面例题) 【类型一】圆锥曲线的方程 例1.已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆 和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.求这三条曲线的方程。 解:设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p = 24y x ∴= 抛物线方程为: 由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1 对于椭圆,1222a MF MF =++(2 2 2222211321 a a b a c ∴=+∴=+=+∴=-=+∴= 椭圆方程为: 对于双曲线,1222a MF MF '=-= 2222221321 a a b c a '∴='∴=-'''∴=-=∴= 双曲线方程为: 练习:1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为 2 。过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。 答案:22 1168 x y + =求圆锥曲线的方程主要采用“待定系数法” 。需要注意的是在求解此类问题时应遵循“先定位,再定量”的原则。注意:当“焦点所在轴不定”时,要有“分类讨论”意识,

(完整版)双曲线简单几何性质知识点总结

四、双曲线 一、双曲线及其简单几何性质 (一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨 迹叫做双曲线。 定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。 ● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支); 当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支); ② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。 双曲线12222=-b y a x 与122 22=-b x a y (a>0,b>0)的区别和联系

(二)双曲线的简单性质 1.范围: 由标准方程122 22=-b y a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的 方向来看,随着x 的增大,y 的绝对值也无限增大。 x 的取值范围________ ,y 的取值范围______ 2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________ 特殊点:____________ 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做半虚轴长 双曲线只有两个顶点,而椭圆则有四个顶点 4.离心率: 双曲线的焦距与实轴长的比 a c a c e = = 22,叫做双曲线的离心率 范围:___________________ 双曲线形状与e 的关系:1122 222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越 大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 5.双曲线的第二定义: 到定点F 的距离与到定直线l 的距离之比为常数 )0(>>= a c a c e 的点的轨迹是双曲线 其中,定点叫做双 曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=, 相对于右焦点)0,(2c F 对应着右准线 c a x l 2 2:= ; 6.渐近线 过双曲线122 2 2=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线 围成一个矩形 矩形的两条对角线所在直线方程是____________或(0 =±b y a x ),这两条直线就是双曲线 的渐近线 双曲线无限接近渐近线,但永不相交。

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得24 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.

用圆锥曲线定义求曲线方程

用圆锥曲线定义求曲线方程 圆锥曲线的定义尽管简单,但很重要,是推导标准方程和研究几何性质的基础和根源。圆锥曲线这一部分是高考考试的重点内容,其中对定义考查的试题又层出不穷,高考常常涉及,2008高考试题中有七套考察了定义。回归定义和有意识利用定义是高三学生需要加强的一个意识。 把握圆锥曲线的定义从两个方面入手即可:定义表达式和限制条件。现归纳对比如下表: 圆锥曲线定义表达式限制条件 椭圆+ =2a <2a 双曲线- =+2a >2a 抛物线=d P不在定直线L上 圆锥曲线的应用主要有三个方面: 1.求曲线的轨迹,即定义法。 2.涉及椭圆和双曲线上的点和两个焦点的“焦点三角形”问题,常利用定义表达式结合余弦定理解决。 3.研究曲线上的点和定点间距离的最值问题(和抛物线的焦点弦问题)。 现只对利用定义求曲线方程这部分试题总结如下: 一、与向量法有关的圆锥曲线定义试题

例1已知=(c, o)(c>0),=(n, n)(n R),| |的最小值为1,若动点P同时满足下列三个条件; ①| |= (a>c>0) ②(其中 ③动点P的轨迹C经过点B(0,-1) Ⅰ求c的值; Ⅱ求曲线C的方程; Ⅲ是否存在方向向量为a=(1,k)(k )的直线l,使l与曲线C 交于不同的点N、M且?若存在,求出k的取值范围;若不存在,请说明理由。 分析:本题的三个条件中的①②实质是用向量法给出了圆锥曲线的定义。因为F为一定点,②(其中实质说明E点在定直线x= ,且PE平行于x轴, 即垂直于直线x= ;①| |= 结合②说明了动点P到定点F和到定直线x= 的距离之比为定值。又根据a>c>0可知P点的轨迹为椭圆。 解:Ⅰ由①②可知P点轨迹为中心在原点,焦点在x轴上的椭圆,故可设方程为 又由=(c, o)(c>0),=(n, n)(n R),| |的最小值为1可知点F 到直线y=x的距离为1,可求得c= Ⅱ又点B(0,-1)在椭圆上可得b2=1,a2=3 所以曲线方程为 Ⅲ假设存在方向向量a0=(1,k)(k≠0)的直线l满足条件,

圆锥曲线轨迹方程问题

圆锥曲线轨迹方程问题 纵观近几年高考轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高, 主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度.有的学生看到就头疼的题目. 分析原因除了这类题目的入手确实不易之外,主要是学生没 有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理。圆锥曲线问题是 ft东卷高 考压轴大题,解题的关键往往是第一问能否求出轨迹方程。 圆锥曲线问题轨迹方程,解答题中以待定系数法为多,一旦变换考法,往往会造成学生 心理负担,为了更好的解决这一问题,本专题针对轨迹方程的常见考法做出了系统总结。 一、考法解法 命题特点分析 求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其 实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类 问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同 时具备一定的推理能力和运算能力。 高考考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨 迹方程,求得方程就可以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型 (定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处 理轨迹问题时,一定要善于根据题目的特点选择恰当的方法,确定轨迹的范围是处理轨迹问 题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理 解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要 等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”。在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;② 简化条件式; ③转化化归。 解题方法荟萃

双曲线的几何性质(一)

双曲线的几何性质(一) 教学目标 1.掌握双曲线的几何性质 2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. 教学重点 双曲线的几何性质 教学难点 双曲线的渐近线 教学过程 I.复习回顾: 双曲线的标准方程、研究椭圆的几何性质的方法与步骤 II.讲授新课: 1.范围: 双曲线在不等式x ≥a 与x ≤-a 所表示的区域内. 2.对称性: 双曲线关于每个坐标轴和原点都对称, 这时,坐标轴是双曲线的对称轴,原点是 双曲线的对称中心,双曲线的对称中心叫 双曲线的中心。 3.顶点: 双曲线和它的对称轴有两个交点A 1(-a ,0)、A 2(a ,0),它们叫做双曲线的顶点. 线段A 1A 2叫双曲线的实轴,它的长等于2a ,a 叫做双曲线的实半轴长;

线段B 1B 2叫双曲线的虚轴,它的长等于2b ,b 叫做双曲线的虚半轴长. 4.渐近线 ①我们把两条直线y=± x a b 叫做双曲线的渐近线; ②从图可以看出,双曲线122 22=-b y a x 的各支向 外延伸时,与直线y =±x a b 逐渐接近. ③“渐近”的证明:略 ④等轴双曲线: 实轴和虚轴等长的双曲线叫做等轴双曲线. ⑤ 利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图.具体做法是:画出双曲线的渐近线,先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线. 注意:⑴求渐近线方程的简便方法:令方程左边等于零即0b y a x 22 22=- ⑵等轴双曲线一般可设为k y x 22=- 等轴双曲线的性质:①离心率为2 ②等轴双曲线的相伴矩形是正方形 ③渐近线方程为y =±x 且互相垂直 ④两条渐近线平分双曲线实轴和虚轴所成的角。 5.离心率:

相关文档