文档库 最新最全的文档下载
当前位置:文档库 › 28#风机高速轴渗油浅析

28#风机高速轴渗油浅析

28#风机高速轴渗油浅析
28#风机高速轴渗油浅析

28#风机齿轮箱高速轴端盖更换及高速轴渗漏油浅析

2010年12月12日,我和重庆齿轮箱厂家工作人员赵金国、王海清对我风电场28#风机齿轮箱高速轴端盖进行更换,全部过程我在厂家的指导下“亲力亲为”,积极和两位厂家人员沟通,并且在工作过程中形成了照片资料,现将工作流程及渗漏油的原因写下来和全场同行共享,不当之处敬请批评指正。

------------------- 前言

众所周知,高速轴的端盖起着保护高速轴轴承、对齿箱油起着密封、回油的作用,其内部结构有回油槽、回油孔、盘根(亦称填料),对半结构。如图:

填料结构

首先,选择刹车盘停在合适的位置刹车,用8mm内六方+小半截钢管,拆卸下高速轴端盖,拆卸时注意用力均匀,防止内六方滑掉撞伤手,因为拆卸下半

截端盖时人要蹲在齿箱高速轴下方,齿箱下方空间狭小,要注意安全。如下图:

拆卸时,因为固定齿箱机械泵的端盖边沿遮盖住了高速轴端盖的下部分,所以连同机械泵、机械泵端盖要一同拆卸,如下图:

拆卸下来的机械泵端盖如下图:

机械泵:

机械泵上连接的油管不需拆卸,拆卸过程中会从箱体有少许漏油,但无妨大碍,工作前准备些抹布。注意机械泵上的小齿轮就是和下图中的大齿轮啮合的,

大齿轮是主动轮,小齿轮是从动轮。

拆卸下来两片高速轴端盖后,在新的装有密封填料的端盖贴合面上涂抹密封胶,注意涂抹时要涂抹均匀,在回油孔位置涂抹时切不可在孔边沿涂抹过多,以免由于贴合挤压时造成回油孔被密封胶堵塞。

安装前要清洁齿箱的贴合面,按照顺序安装,并且要对固定螺栓打够力矩。

以上是拆卸和安装步骤,而我重点要写的是高速轴端的(螺旋密封结构+填料+ 回油孔+ 齿箱轴的正反转)由此造成的渗油的分析。

螺旋密封结构也称螺纹密封结构,在螺旋密封结构中当液体沿间隙向外泄漏时,一方面靠螺纹与接触面的容积的变化造成润滑油压力损失,从而减少润滑油向外泄露的压力,另一方面,通过螺纹螺旋面对润滑油的作用使润滑油回流到箱体,当螺纹以速度n旋转时,在螺纹面和润滑油之间产生一个与传动轴旋转方向相反的摩擦力力F,该摩擦力可分解为水平和垂直两个分力,水平力将润滑油“压入”到箱体内,因而减少了润滑油外流。采用螺纹的密封结构时一定要注意螺纹的旋转方向,错误的旋转方向不仅起不到密封作用,反而会将油“推出”箱体外,从而增加了泄露。我场齿箱高速轴螺旋密封如下图所示:

(图中高速轴上有两道凹槽,以螺旋的轨道“环绕”在高速轴上,当叶轮带动齿箱高速轴顺时针旋转时,附着在高速轴螺旋面和箱体轴套上的润滑油被“螺旋”结构给“拉回”箱体内,这里用“拉回”这个自创的动词,重齿的官方用词是“回”,其实我觉得不管用“拉回”还是“刮回”还是“回”,都是搅团三碗,三碗搅团,道理是一样的。图中被磨的锃亮的部分是填料的接触面,被填料

摩擦所致)。

照片讲不透彻,干脆来个手工绘制的草图:

手工绘制草图视觉上机械配合间隙过大,实际装配精密度相当高。

所以我们得到的大致原理是:轴顺时针旋转,轴上的螺旋密封结构将油“拉回”箱体内,少量没有“拉回”的油还有下一道防线等着:甩油槽、回油孔,最

后一道密封结构就是填料。当逆时针旋转时,螺旋密封结构将油往外推,油进入

下道防线(甩油槽),进入回油孔,流回箱内。但这一切良好运转的前提是:填料没有被磨损,而且磨损的填料碎屑没有把回油孔堵塞。一旦堵上,被“推出来”的油只有从填料和高速轴的缝隙中渗出。长期运转一旦填料被磨损将回油孔堵塞,特别是逆时针旋转时,回油槽内部油压较大,渗出的油就会比较多也就不足为奇了。

有人会问:高速轴会逆时针旋转吗?我的肯定答案是:会!而且比较常见。相信长期干过检修工作的一定会对这幅场面不会陌生:叶片已顺桨(92度),高速轴刹车盘一会儿慢慢正转,一会儿慢慢反转…………。

参考文献:

1、《百度文库》郑州纺织工学院机械系李力贺红勋二位同志写的《高速齿轮箱的润滑与密封》机械工业出版社1982

2、重庆齿轮箱厂《风电培训讲课》。在此表示感谢!

王瑞显

2010. 12. 15 0:41

循环水车间冷却塔轴流风机维护检修规程

循环水车间 冷却塔轴流风机检修规程 (F-101A~F) YZ-25010.03.25.44-2003 编制: 审核: 批准: 扬子石化股份有限公司烯烃厂 日期:2003年8月

一、总则 1. 主题内容与适用范围 本规程规定了循环水车间冷却塔轴流风机的检修周期与内容、检修与质量标准、试车与验收、维护与故障处理。 2. 编写依据 中国石油化工总公司制定的《SHS 01023-92 轴流式风机维护检修规程》 上海化工机械二厂生产的L系列冷却塔风机技术资料 保定螺旋桨制造厂生产的LF系列冷却塔风机技术资料 日本神钢-法度拉公司生产的336”HP-4-8冷却塔风机技术资料 二、检修周期与内容 1. 检修周期:见表1。 检修类型小修中修大修 检修周期 3 6~9 12~18 根据机组运行的实际情况,可适当调整检修周期。 2.检修内容 2.1 小修内容 ⑴消除漏点等缺陷。 ⑵检查机组对中。 ⑶检查紧固机组各处的紧固螺栓。 ⑷复核叶片角度。 ⑸检查风筒拉筋。 2.2 中修内容 ⑴包括小修内容。 ⑵检查联轴器。 ⑶调校振动及温度巡测仪。 ⑷通过检查孔查看齿轮磨损情况。 ⑸齿轮箱、中间轴承箱及电机轴承座换油加脂。 2.3 大修内容 ⑴包括中修内容。 ⑵检查叶片风蚀情况,检查调整叶顶与风筒的间隙,叶片称重、整个叶轮作静平衡校验。 ⑶解体检查齿轮减速箱。 ⑷检查轴承、“O”型圈、骨架密封圈、机械密封等易损件。 ⑸检查齿轮轴及传动轴。 ⑹风机机组防腐处理。 三、检修与质量标准 1.拆卸前准备 ⑴掌握运行情况,备齐必要的图纸资料。 ⑵备齐检修工具、量具、起重机具、配件及材料。 ⑶办理设备检修交接手续及必要的安全措施,切断电源,关闭冷却塔上水(一定要有经办人的签名及日期),符合安全检修条件后方可实施检修。 2.拆卸检查程序

风机振动原因分析

1 轴承座振动 1.1 转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈) ;机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50% 工作转速。 1.2 动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3 滚动轴承异常引起的振动 1.3.1 轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2 滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;

2020年轴流通风机安全操作规程

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020年轴流通风机安全操作规 程 Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

2020年轴流通风机安全操作规程 (一)许可运转条件 1.必须安设反风装置; 2.电动机需安设电压表和电流表。 (二)开车前检查项目 1.在工作中不准擅自离开工作岗位,更不得将设备交给其它人操作,必须按操作规程进行操作; 2.运转前的检查项目 (1)主机部分 1)机体各部螺丝及联轴器是否松动; 2)叶轮和叶片是否松动; 3)机件有无裂纹及腐蚀情况。 (2)润滑系统

1)滑动轴承油量是否合适,甩油圈是否良好; 2)滚动轴承油量是否充足。 (3)电气部分 1)检查油开关,配电箱是否断开位置; 2)电阻器,电磁开关等是否在启动位置; 3)滑动短路环是否在起动位置,接头是否良好; 4)开关各部接点和熔断丝是否良好; 5)电流表指针是否在零位。 (4)附属部分 1)反风装置的动作是否灵活; 2)联结管是否严密,有无漏风现象。 3.开车的操作顺序 (1)运转前应按运转检查项目进行检查; (2)带有闸板阀的扇风机,应适当关闭闸板阀; (3)搬车试验二、三转后,转动圆滑无阻时,再行起动;(4)起动时应注意电动机及机器各部的音响是否正常;

气力输送机原理

气力输送机原理 气力输送机原理是利用空气的动压和静压,使物料颗粒悬浮于气流中或成集团沿管道输送。前者称为物料悬浮输送,后者称为物料集团输送。物料悬浮输送早已广泛应用,物料集团输送也在研究应用。 气力输送机分类: 物料悬浮输送有吸送式、压送式、混合式和流送式四种形式。 (1)吸送式 当输送管道内气体压力低于大气压力时,称为吸送式气力输送,当风机启动后,管道内达到一定的真空度时,大气中的空气便携带着物料由吸嘴进入管道,并沿管道被输送到卸料端的分离器。在分离器中,物料和空气分离,分离出的物 料由分离器底部卸出,而空气通过除尘器除尘后经风机排放到大气中。吸送式气力输送装置的主要优点是供料装置简单,能同时从几处吸取物料,而且不受吸料场地空问大小和位置限制。其主要缺点是因管道内的真空度有限,故输送距离有限;装置的密封性要求很高;当通过风机的气体没有很好除尘时,将加速风机磨损。 (2)压送式 当输送管路内气体压力高于大气压时,称为压送式气力输送,风机将压缩空气输入供料器内,使物料与气体混合,混合的气料经输送管道进入分离器。在分离器内,物料和气休分离,物料由分离器底部卸出,气体经除尘器除尘后排放到大气中。压送式气力输送装置的主要优点是输送距离较远;可同时把物料输送到几处。其主要缺点是供料器较复杂;只能同时由一处供料。 (3)混合式 混合式气力输送是由吸送式和压送式联合组成的。在吸送部分,输送管道内为负压,物料由吸嘴吸入,经管道进入分离器分离。在压送部分,输送管道内为正压,将由分离器底部卸出的物料压送到分离器进行分离。管道内的负压和管道内的正压都是由同一台风机造成的。混合式气力输送装置的主要优点是可以从几处吸取物料,又可把物料同时输送到几处,且输送距离较远。其主要缺点是含料气体通过风机,使风机磨损加速;整个装置设备较复杂。 (4)流送式 流送式气力输送是物料悬浮输送的一种变形式,空气输送斜槽就是这种输送装置。其作用大批量是将空气小断通过多孑L透气层充人粉状物料中,使物料变成类似流体性质,因而能由机槽的高端流向低端。 物料集团输送也称为栓流气力输送,是通过气体压力将管道内的物料分割成许多间断的料栓,并被气力推动沿管道输送。 2、特点 气力输送与其他输送机械相比,有以下优点。 1)输送管道结构简单,占据地面和空间小,走向灵活,管理简单。 2)物料在管道内密闭输送,不受环境、气候等条件影响,物料漏损、飞扬量很少,环境卫生较好。 3)设备操作控制容易实现自动化。 4)输送量和输送距离较大,可沿任意方向输送。 5)可把输送和有些工艺过程(干燥、冷却、混合、分选等)联合进行。气力输送机主要用来输送粒散物料:如碎煤、煤粉、水泥、沙子、谷物、化学物料、黏

引风机轴向振动高原因探讨

引风机轴向振动高原因探讨 北仑发电厂(浙江宁波 315800) 谢 澄 [摘 要] 通过分析引风机轴承轴向不同位置振动幅值的差异和轴承刚度计算式,认为轴向振动高的原因是由于风机基础沉降引起的轴承单头扬起所致,给出了处理方法。 [关键词] 引风机 轴承 轴向振动 轴承刚度 1 结构型式 北仑电厂2号炉引风机是由加拿大NOVE NC O公司制造的双吸、双速、离心式风机,高速590r/min,低速490r/min;对应轴功率2307kW~1357kW;风量由进口挡板调节;驱动电机由日本FU J I公司制造,电机极数为10/12极的感应异步电动机;联轴器为弹性蛇形弹簧连接,中间用橡胶块分隔定位。风机的轴承固定在独立的轴承座上,形式为圆筒瓦,其中联轴器侧的轴承是支承、推力联合轴承。润滑油是通过油环把轴承室内的油甩到轴承上,再用闭式循环冷却水冷却轴承室内的润滑油。 2 存在问题 1997年6月份,在一次试运转的过程中,发现引风机A联轴器侧轴承的轴向振动比以前大许多,当时检测用的是手持式振动检测仪(成都产),风机自由侧轴承的轴向振动也比以前大,但风机轴承其它几个方向的振动变化并不大。在以后的正常运转中用同一测振仪又检测了几次,情况相差无几。 针对这种情况,用另外的振动数采仪对其进行了几次检测,得到的情况与成都产检测仪检测情况一样,也即轴向振动有变化,各道轴承的其它方向振动无多大改变,只是偶然有些升降,当属正常。对引风机A 的二个轴承的各个结合面的三个方向进行了检测,联轴器处轴承检测点在锅炉侧,各点位置见上图(轴承两侧完全对称);自由端测点在烟囱侧,测点位置一样。当时,机组负荷500多MW,基本接近满负荷,具体数据见表1。 表1 轴承振动数值表 位 置123456水 平 速度值/mm?s-10.480.530.960.97 1.60 1.90位移值/μm31.632.743.047.865.081.0加速度值/mm?s-20.0180.0400.051垂 直 速度值/mm?s-10.140.590.670.530.630.30位移值/μm8.6622.829.922.330.710.6加速度值/mm?s-20.0340.028轴 向 速度值/mm?s-1不能测0.48 1.56 1.76 2.7 3.65位移值/μm不能测25.970.385.6145.8157.0加速度值/mm?s-2不能测0.0700.0500.0500.0500.068表1为风机联轴器侧的轴承振动数值,自由侧的轴承振动比联轴器侧小得多,轴向振动也比水平振动小。 表1所列的数据均为通频值,工频是其主要的分量,另外各点尚有100H z、715H z、815H z和915H z的振动信号,高频成分虽有,但值很小。“不能测”,是指振动探头放不进去。 运行中的轴承金属温度和回油温度正常,联轴器中的定位橡胶块已去掉。从这时起的较长时间内,机组的负荷基本保持不变。 3 原因分析 由表1可见,垂直向各点振动的速度值、位移值均不大,且差别不大,可以确信各接触面之间连接牢固,各个连接螺栓强度足够;水平向的振动幅值变化也比较平缓,只是在测点5和6处,位移值增加了十几μm,因两点高度相差大,且是轴承座的中分面和顶部,当属正常;比较轴向位置各点振动,点2和点3高差近500  经验交流 热力发电?2000(3)π~

风机产生振动的原因及处理方法

风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。风机是中国对气体压缩和气体输送机械的习惯简称,通常所说的风机包括通风机,鼓风机,风力发电机。那么风机会出现振动的原因和解决办法有哪些呢? 风机产生振动的原因及解决方法 1.叶轮与主轴配合间隙过大引起的振动,其主要原因是叶轮在制作加工过程中加工精度有误差,轴头出现椭圆,导致配合接触面减少,有原来的面接触变成了点接触。还有在修复过程中检修人员用细砂纸打磨轴头,多次修复后,导致主轴头与叶轮配合间隙过大。 解决方法:叶轮与主轴配合间隙过大引起的振动,对于新轴要依据图纸进行校核,确保达到叶轮与轴的配合间隙,叶轮轴孔与轴之间为过盈配合,紧力为0.01-0.05mm。另外风机正常运行期间尽量减少检修次数,由于每次检修对于风机主轴都存在一定的磨修,这样一来多次的修复会造成主轴的累积磨损,使主轴轴颈明显变细,达不到

孔与轴的过盈配合要求。还有叶轮与主轴安装完毕后,轴头用于锁紧叶轮的锁母必须紧固到位,一旦出现松动会造成风机振动加剧上升。 2.叶轮本身不平衡所引起的振动,其产生的原因有:叶轮上的零部件松动、变化、变形或产生不均匀的腐蚀、磨损;工作介质中的固体颗粒沉积在转子上;检修中更换的新零部件重量不均匀;制造中叶轮的材质不绝对匀称;加工精度有误差、装配有偏差等。叶轮本身不平衡,叶轮不平衡可分为动不平衡(力偶不平衡)和静不平衡(力矩不平衡)两种。 解决方法:消除动不平衡的方法是:拆除风机转子,利用动平衡机对转子进行平衡找平,通过平衡机找平的转子,动、静不平衡基本可以得到根除。静不平衡可在现场利用三点平衡法进行找平。 3.主轴发生弯曲,其主要原因是风机长期处于停用状态,主轴叶轮在自重的作用下,发生弯曲变形。这种情况经常出现在正常运转的风机停用后,,再次启机时,出现风机振动超标的现象。再者主轴局

矿用防爆对旋轴流式局部通风机安全操作规程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.矿用防爆对旋轴流式局部通风机安全操作规程正式 版

矿用防爆对旋轴流式局部通风机安全 操作规程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 一.对局部通风机操作人员的基本要求 1.操作人员必须经过专门培训并持合格证后方可操作设备,否则不允许检修通风机设备。 2.局部通风机操作人员必须熟记局部通风机操作规程。 3.操作人员应熟悉通风机一般构造、工作原理、技术特征、各部性能,供电系统和控制回路。 4.局部通风机在运行期间,加强巡回检查,做好各种运行记录。 5.严格遵守劳动纪律。

6.起动前检查风电闭锁完好情况,启动后应监听风机运转声音一段时间,出现异常声音及时停机处理 二、进入现场 1.局部通风机操作人员必须熟悉自己的工作环境,对煤尘、噪音、顶板等可能存在的危害有着充分的认识,有熟练的操作技能。 2.操作时必须佩戴齐全个人防护用品 三、.操作准备 1.仔细检查风机各紧固件有无松动,如有松动及时紧固。 2.检查风机、风筒有无漏风现象,如有应及时进行处理。 3.检查配电装置是否完好,运行是否正

气力输送与场内运输考试复习资料

气力输送的定义、优缺点;在木材工业中的应用 气力输送是一项综合性技术,它涉及流体力学、材料科学、自动化技术、制造技术等领域,属输送效率高、占地少、经济而无污染的高新技术项目。 优点 1)结构简便,不需占用生产场所 2)灵活性较大,便于安装调整 3)投资少,适宜长距离运输,运输量大 4)易于实现物料输送过程装、卸、运输等工序的全面自动化 5)能改善车间的卫生条件和生产条件 6)可防止引起外界环境污染,且物料不会受到外界环境的影响 缺点:能耗大、有噪声污染、对设备产生磨损。 应用:(1)气力输送装置作为各类木材碎料(木片、纤维、刨花、木粉等)的运输设备:(2)在人造板生产中,除利用气力输送装置运输木材碎料外,还能实现某些工艺方面的效能。 气力输送装置的类型及主用构成部件 按散碎物料在管道内的运动状态分: 1、稀释流输送(或称悬浮流输送) 2、密集流输送(或称柱塞流输送) 3、其他性质的气力输送,如采用重力式空气槽输送、喷射气流输送等 按输送方式分类: 1、吸送式(吸入式):管内气流压力低于大气压 2、压送式(压出式):管内气流压力高于大气压 3、吸压综合式(混合式) 主要构成部件: 源动力:风机、压缩机或真空泵等,用于产生气流。 供料器:旋转阀、文丘里管、螺旋供料器或其他供料装置,用于在控制下把物料送入气流管道中。 输送线:直管、弯管和分流阀等。 分离装置:降尘室、旋风分离器、各种除尘器等,将物料与气流分离。 粉尘的堆积密度、安息角、滑动角的定义 粉尘自然堆积状态下,单位体积粉尘的质量称为粉尘的堆积密度 粉尘自漏斗连续落到水平板上堆积成圆锥体,圆锥体的母线同水平面的夹角称为粉尘的安息角,又称休止角、堆积角 滑动角指将粉尘置于光滑的平板上,使该板倾斜到粉尘能沿平板滑下的角度 悬浮速度、沉降速度的定义;悬浮速度的确定方法 物料处于直立管段内时,自下向上通一气流,则物料受到气流推力的作用,迫使物料上升。当物料所受重力与气流推力相平衡时,物料就会悬浮在管道中某 一高度,既不上升,也不下降,此时的气流速度称为该物料的悬浮速度。

立式轴流泵维护检修规程

目录 1 总则 (2) 1.1 适应范围 (2) 1.2 结构简述 (2) 1.3 主要性能 (2) 2 完好标准 (2) 2.1 零、部件 (2) 2.2 运行性能 (2) 2.3 技术资料 (2) 2.4 设备及环境 (3) 3设备的维护 (3) 3.1 日常维护 (3) 3.2 定期检查 (3) 3.3 故障处理方法 (3) 3.4 紧急情况停车 (3) 4 检修周期和检修内容 (4) 4.1 检修周期 (4) 4.2 检修内容 (4) 5 检修方法及质量标准 (4) 5.1 底座、中间节、进水喇叭、叶轮外壳、出水弯管及传动装置。 (4) 5.2主轴及传动轴 (5) 5.3 轴套 (5) 5.4 轴承 (5) 5.5蜗轮蜗杆 (6) 5.6 叶轮 (6) 5.7 全调节式的转子部件 (6) 5.8 泵轴、电机轴与传动轴的对中及摆度 (7) 5.9 填料密封 (7) 6试车与验收 (8) 6.1.1 确认机组检修完毕,质量符合本规程要求,记录齐全、准确,工完料净,场地 清。 (8) 6.2 试车 (8) 6.3 验收 (8) 7 维护检修安全注意事项 (8) 7.1 维护安全注意事项 (8) 7.2 检修安全注意事项 (8) 7.3 试车安全注意事项 (9) 附录A 叶片及导叶尺寸公差 (9) 附录B 轴套热装加热温度计算 (9) 附录C 滚动轴承外座圈端面与轴承压盖间的间隙计算 (10) 附录D 橡胶轴承的性能及间隙 (10) 附录E 叶轮静平衡 (10) 附录F 震动峰值振幅 (11)

1 总则 1.1 适应范围 本规程适用于化工企业吸送清水或物理化学性质类似于水的其它液体,被吸送液体不超过50℃的单级立式轴流泵的维护和检修;其它类似的轴流泵可作参考。 1.2 结构简述 轴流泵由吸入管、叶轮外壳、导叶体、出水弯管、中间节、叶轮、轴承、密封装置、调节机构及传动装置等零、部件组成。 1.3 主要性能 设备主要性能(叶片安装角为0o时)见表1。 2.1 零、部件 2.1.1 主、辅机零、部件完整齐全。 2.1.2 各部连接螺栓紧固、齐全、符合要求。 2.1.3 仪表装置齐全、灵敏,量程符合规定并定期校验。 2.1.4 进出口闸板或阀门不堵不漏;润滑系统、冷却系统齐全、畅通、好用;调节机构灵敏、准确。 2.1.5 基础、底座、钢架稳固,地脚螺栓齐全、牢固、符合规定。 2.1.6 设备、管道防腐完整有效、符合要求。 2.2 运行性能 2.2.1 油路畅通,润滑良好,实行“五定”、“三级过滤”。 2.2.2 设备运转正常,无异常振动、噪音。 2.2.3 压力、流量、温度正常,电流稳定;出力达到铭牌出力或查定能力。2.3 技术资料 2.3.1 有总装配图、主要零件图、易损配件图等。 2.3.2 有产品使用说明书、质量合格证。 2.3.3 有操作规程、维护检修规程。 2.3.4 设备技术档案齐全、数据准确可靠; a.设备履历卡; b.运转时间和累计运转时间记录; c.检修记录:

风机振动原因分析

电站风机振动故障的几种简易诊断 2009-11-18 11:20:44 来源:中国化工仪器网 风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。文中所述振动基于电厂离心式送风机、引风 机和排粉机。1 轴承座振动 1.1 转子质量不平衡引起的振动 在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2 动静部分之间碰摩引起的振动 如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装置之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3 滚动轴承异常引起的振动 1.3.1 轴承装配不良的振动 如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成 局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2 滚动轴承表面损坏的振动 滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位置和损坏程度,在此不加阐述。表1列出滚动轴承异常现象的检测,可以看出各种缺陷所对应的异常现象中,振动是最普遍的现象,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机

轴流风机操作规程

A V45-12、A V50-12轴流压缩机操作规程 一、设备参数 1.1轴流压缩机 1.2变速器 1.3主电机

1.4机组运行参数 二、轴流风机启动前的检查与准备工作: 1、确认启动机组编号,对启动机组设备进行详细检查。 2、启动电动润滑油泵,调整油压在正常范围,缓慢打开去高位油箱的注油阀,待高位油箱视窗内有回油时,应立即关闭注油阀。 3、通过各轴承回油管路上的视窗检查,润滑系统畅通无阻,并无泄漏现象;同时检查油箱液位,不得低于最低值或报警值,油温应保持在25-30℃之间,否则应对其进行加热。 4、对电动润滑油泵进行自动联锁试验,确认正常后,一运一备。 5、启动电动盘车(或手动盘车),倾听机组内部应无异常声音,并确认部分转动灵活。 6、动力油系统检查:油箱液位不得低于最低值或报警值,油温不得低于25℃,否则应对油进行加热。 7、启动动力油泵,调整油压值在正常范围,并进行自动联锁试验,确认正常后,一运一备。 8、检查蓄能器内氮气压力,不得低于6.5 MPa,否则需冲氮,蓄能器一用一备;检查油冷却器,主电机空间冷却器的冷却水系统,应畅通并无泄漏现象。 9、检查气管路上所有阀门的手动部分是否灵活好用,送风管路上的阀门应关闭,并全开防喘振阀。 10、检查空气过滤器,确认其内部没有杂物。 11、按照AV45-12机组PLC开机画面要求进行操作试验,并确认正常。

三、机组的启动: 1、启动前停止电动盘车,并进行盘车装置分离确认。 2、启动机组前,同厂调度、所属变电站、配电室联系,经允许后,按启动机组按钮。 3、机组启动升速过程中,仔细侦听机组内部的声音,如发现不正常的声音或振动时,应立即采取措施,直至停车,排除故障后,再启动机组。 4、风机达到正常转速后,按照PLC画面操作要求,进行静叶释放等操作调整,并检查各参数及振动是否正常。 5、油冷却器出口油温达到45℃时,应打开油冷却器冷却水进出口阀门,调整冷却水流量,保持油冷却器出口油温在30-45℃,要求冷却器内水压低于油压。 6、调整主电机空间冷却器进出水阀,使电机温升低于105℃。 7、观察压缩机的定子、外壳在受热膨胀时,是否正常。 8、确认机组运行正常后,可以向高炉送风。 四、机组的送风操作: 1、送风时首先打开送风蝶阀,然后逐渐关闭旁通电动放风阀(1#机组为手动放风阀),调整防喘阀开度,注意观察逆止阀是否打开,按照微机运行工况画面进行工况调整,以满足高炉用风要求,以上操作应注意风压上升不宜过快,注意各参数的变化。 2、高炉发生放风时,操作人员应及时调整机组负荷,检查机组运行状况和各参数的变化情况。 3、高炉休风时,全开防喘振阀,同时调整静叶角度到26o-28o。 4、高炉憋风时,同高炉取得联系,适当打开防喘振阀,紧急情况下,可适当打开旁通电动放风阀(1#机组为手动放风阀),将风机工况点控制在安全区域(黄线以内)。 五、机组的停车: 1、接到高炉主控室允许停机的指令后,同所属的变电站、厂调度、配电工取得联系。 2、降低负荷,逐渐全开防喘振阀,电动放风(或手动放风阀),关闭送风蝶阀,调整静叶角度为26o-28o。 3、手动操作主电机停止按钮。 4、在停机过程中,要仔细观察机组的振动,并细听有无异常声音,记录机组的走时间。

气力输送中涉及到的粉尘和物料性质

气力输送中涉及到的粉尘和物料性质 早在19世纪,人们就尝试用风扇驱动,通过管道来输送木屑和谷物。随着鼓风机、罗茨风机和旋转给料器的发展,气力输送在19世纪20年代受到了工程界和研究者的普遍重视,目前已被工业生产的许多部门采用,例如,湖北省钟祥县磷肥厂,为了有效的解决防尘问题和磷肥粉输送距离远的困难,曾使用了气力输送磷矿粉,5年来使用情况较好。实践证明,磷矿粉采用气力输送与采用机械输送相比,有输送距离远、粉尘污染小、设备简单、材料省、管理方便、耗能少和维修量小等优点。由此可见,气力输送作为一项自动化输送技术,在生产应用中具有很多优越性。 以下简单介绍气力输送中涉及到的粉尘和物料性质。 一、气力输送 1.简介 气力输送又称气流输送,是利用气体动力,在密闭管道中使颗粒悬浮并随气体流动的单元操作,是流化态技术的一种具体应用。气力输送装置的结构简单,操作方便,可做水平的、垂直的或倾斜方向的输送,在输送过程中还可以同时进行无聊的加热、冷却、干燥和气流分级等物理操作和某些化学操作。与机械输送相比,此法能量消耗较大,颗粒易受破损,设备也易受磨蚀。含水量多、有粘附性或在高速运动时易产生静电的物料,不宜进行气力输送。 2.输送对象 气力输送对象从几微米量级的粉体到数毫米大小的颗粒,其应用范围十分广泛。大多数的粉粒料能采用气力输送技术。通常,所输送的物料拥有更大的尺寸和更高的密度,就需要采用更高的气体流速和更多的动力要求。一般建议输送管道的内径至少3倍于(最好10倍)最大的粒子尺寸,以免管道拥堵。 自由流动、无磨损和无纤维物料是气力输送理想的选择对象。低速气力输送技术发展已经容许有粘性的、磨损的和易碎的物料进行气力输送(即无破碎)。 3.输送原理 在气力输送中,颗粒在管道中的运动状态与气流速度有直接关系。 在垂直管道中,当气流速度为颗粒的悬浮速度时,颗粒呈流化状态,自由悬浮在气流中。流速度超过悬浮速度时,颗粒被流体所输送,基本上均匀分散在气流中。 在水平管道中,气流速度越大,颗粒在管道内越接近均匀分布;气流速度逐渐减少时,则越靠近管底处,停滞在管底,分布的越密;当气流速度减小至某值时,一部分颗粒即一边滑动,一边被推着运动;当气流速度进一步减小时,则停滞层反复做木稳定移动,最终停顿而产生堵塞。 4.优点 气力输送与其他输送机械相比,有以下特点: a.输送管道结构简单,占据地面和空间小,走向灵活,管理简单。 b.物料在管内密闭输送,避免物料污染和毒气泄漏,且不受环境、气候等条件的影响,物料漏损、飞扬量很少,环境卫生条件好。 c.设备操作控制容易实现自动化、连续化,改善了劳动条件。 d. 输送量和输送距离较大,可沿任意方向输送。 e.可把输送和有些工艺过程(干燥、冷却、混合、分选等)联合进行。 5.缺点 a.动力消耗大。

机械共振时的9大特征及其解决措施

机械共振时的9大特征及其解决措施 机械共振特征 1. 对动平衡的努力没有效果 一般,对于处于或接近共振的机器,想平衡好是很难的;如果机器处于共振区域,那么即使很小的转速,也会导致相位发生剧烈的变化,变化幅度有可能接近180°;因此需要把动平衡的转子从机器上拆下来,在固定的动平衡机上进行动平衡。 2. 高度定向振动 在正交的三个方向上有一个方向与其他两个方向相比较共振振动在这个方向引起更大的振动(例如,水平方向振动可能比垂直方向或轴向方向振动大10倍)。如果发生共振,通常共振方向的振动比其它正交的两个方向的振动大5到15倍。现在许多专家诊断软件系统利用这一事实查找可能的共振。这也就是为什么在定期的预测维修巡检中要在每个轴承的所有三个方向测量振动的重要性。 3. 共振测量方向的相位特征 共振频率将表明,在机器共振方向,相位随转速变化很大,因为在自振频率处相位将变化90度,完全通过共振时相位几乎变化180度,其与存在的阻尼值有关。另一方面,同时,非共振测量方向相位的变化可能很小,因为它们未经受自振频率共振。 4. 与共振测量方向垂直的测量方向大致的相位差 如果一个径向方向共振,振动传感器转过90度测量其他方向的振动时,相位差将接近或0度或180度,与设置振动传感器的侧面有关(不是像在不平衡占优势的情况中那样相位差约90度)。即,如果水平方向共振,则水平方向相位与垂直方向相位或是相等或是相差约180度。这是由于在自振频率处运转时引入另外附加的90度相位变化之故。在任何一种情况下,水平与垂直方向相位差0度或180度代表共振高度定向的振动特性(或者偏心)。5. 共振尖峰特征形状 通常,共振尖峰在其基础处有较宽的裙围,而非共振的尖峰的裙围更窄。即,共振尖峰的基础通常比非共振尖峰的基础宽。 6. 出现共振时的频率 共振不仅发生在1X转速频率。它可以是对与自振频率一致的任何强迫振动频率的响应。这些情况下,比较这个方向这个频率的振动幅值和其他两个正交方向的相同频率的振动幅值很有用。如果共振,这个频率应该比这三个方向之一的振动频率更高。这个频率可能是4X,5X,或6X转速频率处的尖峰(或者甚至更高频率),这些频率相应于叶片通过频率(BPF),轴承故障频率,齿轮啮合频率(GMF),或者甚至机器松动状态的振动频率。如果导致强迫振动频率本身振动幅值的降低的这个激振频率源起作用,它也可能把这个自振频率的响应降低到迫振动频率。请记住,共振频率幅值=静振幅×放大因子Q。 7. 任何共振体的过大的振动和动应力 不仅必须研究机器转子(旋转件)的共振,还应研究激起支承框架,基础甚至连接管道的自振频率。疲劳故障经常发生在连接框架或管道上,这是因为它们对来自机器的强迫振动频率发生共振。解决问题要求或是降低机器中强迫振动频率源,把共振框架体与机器隔离,改变转子转速或者改变框架体本身的自振频率。 8. 以前从未发生共振的机器长期运行中突然发生共振 多年没有共振故障的机器没有什么警告或先兆突然发生共振。例如,轴承磨损可能降低轴和轴承系统的刚性,降低自振频率,使之与强迫振动频率一致而发生共振。还有,简单地更换滑动轴承可以引起自振频率的变化,如果树轴承不恰当地制造和刮削以与轴很好地连续地接触,使转子发生共振。这种情况下,您适当地安装轴承,检查要求的间隙指标和适当地对中

AV系列静叶可调式轴流风机维护检修规程完整

AV系列主风机组维护检修规程 3 一般规定 3.1 检修前的检查 3.1.1 检查机组与外部系统水、电、汽,风、介质的吹扫、排凝、隔断情况,应安全可靠。 3.1.2 检修现场应符合HSE标准,检修前应办好作业票。 3.2 拆卸 3.2.1 机组拆卸应按拆卸程序进行。 3.2.2 拆卸时使用的工具应不会对零部件产生损伤,严禁用硬质工具直接在零件的工作表面上敲击。 3.2.3 对锈死的零件或组合件应用松动剂浸透,再行拆卸。对过盈配合的零部件应使用专用工具。 3.2.4 零部件拆装前应作好标记。 3.3 吊装 3.3.1 起吊前,检查吊耳、绳索应符合要求。 3.3.2 吊装时,不应将钢丝绳、索具直接绑扎在加工面上,绑扎部位应有衬垫或将绳索用软材料包裹。 3.3.3 起吊转子时,必须使用专用吊具。起吊过程中,要保持转子的轴向水平,严禁发生晃动、摩擦及撞击。 3.3.4 吊装作业执行SH/T 3515—1990《大型设备吊装工程施工工艺标准》。 3.4 吹扫和清洗

零部件应用煤油清洗,并用压缩风吹干,清扫后的零部件表面应清洁、无锈垢、无杂物粘附。 3.5 零部件保管 对零部件应分类成套保管,防止丢失。对重要零部件的加工面和大部件应有防锈蚀、防止碰伤的措施,对转子应有防止变形的措施。 3.6 组装 3.6.1 机器组装应按组装程序进行。 3.6.2 机器在封闭前必须仔细检查和清理,其部不得有任何异物。 3.7 记录 应使用规定的记录表,按要求认真填写拆检值和组装值,做到数据齐全,准确、字迹工整。记录各零部件的检查、修复和更换情况。 4 变速器检修 4.1 拆装程序 拆卸程序见图1,组装程序与图1相反。 4.2 检查项目、容和质量要求 4.2.1 转子 4.2.1.1 检查转子应无锈蚀、损伤和裂纹。 4.2.1.2 轴颈圆度、圆柱度允许偏差为0.02mm,根据轴颈磨损情况,酌情考虑采用适当方法进行修复。

风机振动原因分析(终审稿)

风机振动原因分析 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

1轴承座振动1.1转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3滚动轴承异常引起的振动 1.3.1轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。

1.3.2滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;④如果径向振动大则为两轴心线平行,轴向振动大则为两轴心线相交

主通风机司机安全技术操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 主通风机司机安全技术操作规程(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2935-66 主通风机司机安全技术操作规程(正 式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、上岗条件 1、司机必须经过培训,考试合格,持证上岗操作。 2、应熟知《煤矿安全规程》的有关规定,熟悉通风机一般构造、工作原理、技术特征、各部性能、供电系统和控制回路,以及地面风道系统和各风门的用途,以及矿井通风负压情况,能独立操作。 3、司机应没有妨碍本职工作的病症。 二、安全规定 1、上班前禁止喝酒,上班时不得睡觉,不得做与本职工作无关的事情。严格执行交接班制度和工种岗位责任制,遵守本操作规程及《煤矿安 全规程》的有关规定。 2、当主要通风机发生故障停机时,备用通风机必

须在lO分钟内开动,并转入正常运转。 3、当矿井需要反风时,必须在l O分钟内完成反风操作。 4、主通风机司机应严格遵守以下安全守则和操作纪律: (1)不得随意变更保护装置的整定值。 (2)操作高压电器时应用绝缘工具,并按规定的操作顺序进行。 (3)协助维修工检查维修设备工作,做好设备日常维护保养工作。 (4)地面风道进风门要锁固。 (5)除故障紧急停机外,严禁无请示停机。 (6)通风机房及其附近20米范围内严禁烟火,不得有明火炉。 (7)开、闭风闸门,如设置机动、手动两套装置时,须将手动摇把取下以免伤人。 (8)及时如实填写各种记录,不得丢失。 (9)工具、备件等要摆放整齐,搞好设备及室内

气力输送的3种分类详解

气力输送整理https://www.wendangku.net/doc/2312198838.html, 依据颗粒在输送管道中的密集度,气力输送工程师理解认为气力输送可以分为分为: ①稀相输送:固体比率低于1-10kg/m3,动力气体速度较高(约18~30m/s),输送距离基本上可以达到300m左右。对于现在成熟设备的动力泵来说,输送行为容易操作且没有机械传动组件,没有什么输送压力,免维修和维护! ②密相输送:固体比率10-30kg/m3或固气比大于25时。操作气体速度较低,将比较高的气压压送来气力传输。现在成熟设备的仓泵,输送的距离可以达到500m以上,适合较远距离的输送。由于此设备的阀门较多,电气动设备多。输送压力强度高,用来传输的管道需要使用耐磨材料,以及采用间歇充气罐式密相输送。是将输送的悬浮物分批装入压力罐,再通气将其吹松,等到罐内达到一定压力的时候,开启放料阀,将悬浮物料吹入输送管中进行输送。脉冲式气力输送是把一股压缩气体通入压缩罐,将悬浮物料吹松;另一股频率为20~40min-1脉冲压缩气体流吹输料管进口,在管道内出现交替排列的分段料柱和分段气柱,借助气体压力推动前进。 ③负压输送:气力输送管道内压强比大气压小,采用自己吸进物料的方式,但是必须在负压下面卸载输送的物料,输送距离不长;优点:设备投资、负荷较小。缺点:运行速度高,管道受损严重,造成无法察觉漏洞的现象!在水平管道中稀相输送时,流速应该比较高,使分散颗粒悬浮在气流中。流速减小到一个一定的临界值时,颗粒会在管壁下部开始沉积。这个临界气体流速被称为沉积速度。这是稀相水平输送时气速的下限速度。操作气体流速低于此值时,管内大量沉积物料颗粒,流道的横截面积减少,在沉积层上方气流只会按照沉积速度流行。在垂直管道中做向上的气力输送,气流速度比较高的时候,物料分散悬浮在气流中。在物料颗粒输送量恒定时,减小气体流速,管道中固体含量会随之发生正变的改变。当气速降低到某一临界值时,气流就不能使密集的颗粒均匀地分散,颗粒聚集成柱状,产生腾涌现象(见流态化),压力降急剧升高,这个临界速度被称为噎塞速度,这是稀相垂直向上输送时气速的下限值。对于粒径均匀的颗粒,沉积速度与噎塞速度一般是相等的。但是对于粒径错落有致的颗粒,沉积速度将是噎塞速度的2~6倍不等。 参考资料:长沙云海机电设备有限公司https://www.wendangku.net/doc/2312198838.html,/zh-CN/showArticle-16.html

相关文档
相关文档 最新文档