文档库 最新最全的文档下载
当前位置:文档库 › 在线诊断西门子PLC中继器

在线诊断西门子PLC中继器

在线诊断西门子PLC中继器
在线诊断西门子PLC中继器

通过STEP7读取诊断中继器的诊断信息 Reading Diagnostic Information from the Diagnostic Repeater with STEP7

摘要西门子诊断中继器除了具有网络中继功能,还具有对PROFIBUS网络进行网络诊断和故障定位等功能。本文通过一个具体的实例,给出了在STEP7中读取诊断中继器诊断信息的方法和基本操作步骤。

关键词PROFIBUS,诊断中继器,网络组件,STEP7

Key Words PROFIBUS,Diagnostic Repeater,Network Components,STEP7

IA&DT Service & Support Page 2-22

目录

1 网络搭建和硬件组态 (4)

1.1 网络搭建 (4)

1.2 在STEP7中进行硬件组态 (5)

2 在线读取诊断中继器信息 (7)

2.1 拓扑结构显示 (7)

2.2 在线诊断缓冲区信息 (10)

2.3 统计缓冲区信息显示 (11)

3 通过SFC13读取诊断中继器的诊断数据 (12)

3.1 SFC13的使用 (12)

3.2 通过SFC13读取诊断中继器的诊断数据 (13)

4 通过SFC59读取诊断中继器的诊断记录 (14)

4.1 SFC59的使用 (14)

4.2 读取拓扑结构表 (15)

4.3 读取诊断缓冲区数据记录 (16)

4.4 读取统计缓冲区数据记录 (18)

5 应用小结 (20)

附录-推荐网址 (21)

IA&DT Service & Support Page 3-22

西门子诊断中继器具有网络中继和网络诊断的功能,通过诊断中继器可以在系统运行过程中监视一个PROFIBUS RS485网段,通过STEP7读取诊断信息,可以快速定位网络故障点,给出故障原因。包括以下几个方面诊断信息:

?网络拓扑结构表

?诊断缓冲区信息

?统计缓冲区信息

下面将通过一个具体的应用实例,给出在STEP7中读取诊断中继器诊断信息的方法和基本操作步骤。

关于诊断中继器的详细使用请参考诊断中继器手册。

1 网络搭建和硬件组态

1.1 网络搭建

1、系统组成

下图给出了本应用实例的主要组成部分:

图1 系统组成结构图

IA&DT Service & Support Page 4-22

IA&DT Service & Support

Page 5-22

2、软件环境

? 操作系统:Windows XP Professional SP2 ? 编程软件:STEP7 V5.4 SP4

3、系统主要硬件设备及版本信息:

设备名称 定货号 版本

诊断中继器 6ES7 972-0AB01-0XA0 V2.0.0 DP 主站 6ES7317-2EK13-0AB0 V2.6 ET200M 5#DP 从站 6ES7153-2BA00-0XB0 V3.07 ET200S 3#DP 从站

6ES7151-7AA10-0AB0 V2.0 CP5611 6GK156-1AA01 PROFIBUS 总线连接器

PROFIBUS 总线电缆

表1 系统主要硬件设备及版本信息

4、硬件设置

S7-300 CPU 连接到诊断中继器的DP1接口,ET200M 和ET200S 连接到诊断中继器的DP2接口,诊断中继器的DP3接口没有使用,带有STEP7的编程设备连接到诊断中继器的PG 接口。

诊断中继器设置:地址设置为15, DR 为ON (使能中继功能),DP1开关设置为ON (只接A1/B1 ),DP3开关设置为OFF (关闭DP3网段)。如图2所示:

图2 诊断中继器设置

1.2 在STEP7中进行硬件组态

1、根据实际搭建的网络在STEP7中进行硬件组态。

图3 系统硬件组态

2、为诊断中继器分配参数

设置DP中断模式为“DPV0”,DP2/DP3拓扑检测为“ON”,TDP/TDX监视为“OFF”。

注,如果在DP中断模式选择为“DPV1”,则CPU将不再激活OB82,因此建议选择默认模式“DPV0”。

图4 诊断中继器参数分配

IA&DT Service & Support Page 6-22

3、设置诊断中继器帧长度

图5 设置诊断中继器帧长度

参数 可选择的诊断帧

帧长度 (字节)

Segment DP2, DP3, DP1, PG, TSYNC 91

Segment DP2, DP3, DP1, PG 84(默认)

Segment DP2, DP3, DP1 65

Segment DP2, DP3 46

诊断帧长度

Segment DP2 27

表2 诊断帧长度列表

4、诊断中继器其他属性页相关参数设置均采用默认值。

2 在线读取诊断中继器信息

2.1 拓扑结构显示

1、线性诊断

在Netpro中选择PLC-?Prepare Line Diagnostics菜单进行线性诊断。

注,在选择上相应的DP网络后,Prepare Line Diagnostics菜单才可用。

IA&DT Service & Support Page 7-22

图6 Prepare Line Diagnostics菜单

图7 线性诊断结果显示

2、拓扑结构显示

在Netpro中选择PLC?Show Network Topology菜单打开拓扑结构显示窗口。

IA&DT Service & Support Page 8-22

图8 拓扑结构图形显示

图9 拓扑结构表显示

IA&DT Service & Support Page 9-22

2.2 在线诊断缓冲区信息

对于每一个网段(DP1、DP2、DP3和PG网段),诊断中继器都有一个诊断缓冲区,每个网段可以保存10条诊断信息。注:诊断缓冲区的信息不具有掉电保持功能。

图10 诊断缓冲区信息显示

IA&DT Service & Support Page 10-22

IA&DT Service & Support

Page 11-22

2.3 统计缓冲区信息显示

DP2和DP3网段包含两个统计缓冲区,其中包含了冲突故障率和报文故障率的统计信

息,用来评估网络的质量,可以通过STEP7在线读取统计缓冲区信息。

图11 统计缓冲区信息显示

3 通过SFC13读取诊断中继器的诊断数据

3.1 SFC13的使用

利用SFC13“DPNRM_ DG”可以读取DP从站的诊断数据,经过无错数据传送之后,已读取的数据被输入到由RECORD

指定的数据区域。

图12 SFC13在程序中的调用

参数 输入/输出 数据类型 存储区 描述

REQ 输入 BOOL I、Q、M、D、L、常数REQ = 1:读请求

LADDR 输入 WORD I、Q、M、D、L、常数DP从站的已组态诊断地址

RET_VAL 输出 INT I、Q、M、D、L 如果在功能激活时出错,则返回值包含故障代码。如果未出现错误,则实际传送的数据长度将输入到

RET_VAL中

BUSY 输出 BOOL I、Q、M、D、L BUSY = 1:读操作尚未完成

RECORD 输出 ANY I、Q、M、D、L 已读取的诊断数据的目标区域。仅允许使用BYTE数据类型。要读取的数据记录的最小长度或目标区域为6。要发送的数据记录的最大长度为240

表3 SFC13的管脚定义

关于SFC 13 "DPNRM_ DG"的详细说明请参考手册“用于S7-300/400系统和标准功能的系统软件”。

IA&DT Service & Support Page 12-22

3.2 通过SFC13读取诊断中继器的诊断数据

在STEP7中调用SFC13,并进行参数赋值,触发REQ,启动作业,并从RECORD指定的数据区读取数据记录。

图13 SFC13读取的诊断数据

从上面的监视表中可以看到,通过SFC13读取到的诊断数据包括了诊断中继器的状态信息,制造商ID,组态信息,以及每个网段的故障诊断等信息。

IA&DT Service & Support Page 13-22

4 通过SFC59读取诊断中继器的诊断记录

4.1 SFC59的使用

通过SFC 59 "RD_REC" (读记录),可从指定地址的模块中读取编号为RECNUM的数据记录。通过调用SFC59且将输入参数REQ置1启动读任务。如果数据传送没有错误,读取的数据记录将被传送到由RECORD

参数指定的目标区域中。

图14 SFC59在程序中的调用

参数 输入/输出 数据类型存储区 描述

REQ 输入 BOOL I、Q、M、D、

L、常数

REQ = 1:读请求

IOID 输入 BYTE I、Q、M、D、

L、常数

地址区域的ID:

B#16#54 = 外设输入(PI)

B#16#55 = 外设输出(PQ)

若是混合模块,指定最低地址的区

域ID如果两个地址相同,指定

B#16#54

LADDR 输入 WORD I、Q、M、D、

L、常数

模块的逻辑基本地址。对于混合模

块,则指定两个地址中较低的一个

RECNUM 输入 BYTE I、Q、M、D、

L、常数

数据记录号(允许值0-240)

RET_VAL 输出 INT I、Q、M、D、L 如果在功能激活时出错,则返回值包含故障代码

BUSY 输出 BOOL I、Q、M、D、L BUSY = 1:读操作尚未完成

RECORD 输出 ANY I、Q、M、D、L 读取数据记录的目标区域。异步执行SFC 59时,要确保每次调用时参数RECORD的实际值具有相同的长度信息。只允许数据类型BYTE

表4 SFC59的管脚定义

IA&DT Service & Support Page 14-22

IA&DT Service & Support

Page 15-22

关于SFC 59 "RD_REC"使用的详细说明请参考手册“用于S7-300/400系统和标准功能

的系统软件”。

4.2 读取拓扑结构表

1、相关数据记录及含义

记录号 (HEX )

记录号 (DEC )

读/写

功能

32 50

读 第一部分拓扑表记录, 节点0到31,170个字节 33 51

读 第二部分拓扑表记录,

节点32到63,170个字节 34 52

读 第三部分拓扑表记录,

节点64到95,170个字节 35 53

读 第四部分拓扑表记录,

节点96到126,170个字节

表5 拓扑结构表相关数据记录及含义

2、在STEP7中调用SFC59,并进行参数赋值,RECNUM=B#16#32,触发REQ ,启动作业,并从RECORD 指定的数据区读取数据记录。

图15 实际的网络拓扑结构

IA&DT Service & Support

Page 16-22

图16 读取的拓扑结构数据记录

4.3 读取诊断缓冲区数据记录

1、相关数据记录及含义

记录号 (HEX )

记录号 (DEC )

读/写

功能

1E 30 读 DP1网段诊断缓冲区 1F 31 读 DP2网段诊断缓冲区 20 32 读 DP3网段诊断缓冲区 21 33

读 PG 网段诊断缓冲区

表6 诊断缓冲区相关数据记录及含义

图17 实际的诊断缓冲区信息

2、在STEP7中调用SFC59,并进行参数赋值,RECNUM=B#16#1F,触发REQ,启动作业,并从RECORD指定的数据区读取数据记录。

IA&DT Service & Support Page 17-22

IA&DT Service & Support

Page 18-22

图18 读取的诊断缓冲区数据记录

4.4 读取统计缓冲区数据记录

1、相关数据记录及含义

记录号 (HEX )

记录号 (DEC )

读/写

功能

28 40 读 DP2网段冲突故障率 29 41 读 DP2网段报文故障率 2A 42 读 DP3网段冲突故障率 2B 43

读 DP3网段报文故障率

表7 统计缓冲区相关数据记录及含义

图19 实际的统计缓冲区信息

2、在STEP7中调用SFC59,并进行参数赋值,RECNUM=B#16#28,触发REQ,启动作业,并从RECORD指定的数据区读取数据记录。

图20 读取的统计缓冲区数据记录

IA&DT Service & Support Page 19-22

5 应用小结

西门子诊断中继器除了具有网络中继功能外,还具有在系统运行过程中对网络进行在线诊断的功能。通过STEP7读取到的诊断数据,可以实时地了解系统网络拓扑、网络故障点、网络运行状况等信息,以方便用户快速定位和排除系统故障。

本应用实例简要介绍了诊断中继器能够提供的诊断功能,以及通过STEP7读取诊断中继器诊断信息的基本方法和操作步骤。在通过STEP7读取诊断中继器诊断信息的实际应用过程中应特别注意以下几个方面的问题:

?只有STEP7 V5.2及以上版本才支持对拓扑表、诊断缓冲区、统计缓冲区信息的读取功能

?只有诊断中继器的DP2、DP3网段具有诊断功能,诊断的最远距离为100m

?使用诊断中继器的诊断功能,需要将诊断中继器在STEP7中组态为一个DP从站?在构建网络完或拓扑结构改变后,需要进行Prepare Line Diagnostics,重新决定网络拓扑

?通过STEP7程序进行拓扑诊断需要CPU支持SFC 103 “DP_TOPOL”

说明:本应用文档只是示例、指导性文件,关于诊断中继器的详细使用,请参考“诊断中继器手册”或西门子公司网站下载中心相关应用文档等资料。

IA&DT Service & Support Page 20-22

西门子 三菱 欧姆龙 ABBPLC特点比较

问:施耐德plc优势是什么啊 ABB 西门子欧姆龙三菱施耐德plc的优缺点 1. 这些品牌Plc,我都用过了 施耐德优势是网络功能强,软件好用,方便。但现在新推出的软件有些怪异,但仍然是人性化设计。 ab plc用的多,abb是变频器用的多。ab plc 与施耐德类似,但价格要高。国内用户不多。主要用在电厂。 西门子是国内用的最多的,也是最规范的。优势是每一步设计都不能遗留。缺点就是不够人性化,太过死板。 omron 三菱是日本Plc,优势是小巧,精悍。但网络功能差。尤其是组大型工厂网时,太繁琐。 有个问题就提示你,这个问题解决不了,就做不了下一步。一般用在控制低价的单独设备上。 日本plc与欧美Plc还有自控观念上的区别。这要在编梯形图时才能感觉到。 比如:手动/自动控制时,同样的逻辑,当由自动改到手动时,在omron plc 上DO输出(单点控制)的设备就停止,而欧美Plc 则保持原来运动状态。 2.最常用的是西门子,因其功能强大,编程简单,容易上手 最安全的是三菱,一些重要场合都用三菱的,比如电梯 最经济的是欧姆龙.便宜 3.西门子,施耐德,罗克韦尔(就是AB),三菱和欧姆龙主要的工控是PLC; ABB和 艾默生主要是DCS。ABB也有PLC,但是市场上几乎不太用。 PLC领域,大型的控制系统排序:AB,西门子,施耐德;AB是技术最领先的。 中型的控制系统排序:西门子,AB,施耐德。 小型的控制系统排序:西门子,欧姆龙,三菱,AB,施耐德。 施耐德的排位,这几年一直在下滑,与内部斗争及技术没有突破、更新为因。 DCS领域: ABB是处于领先的位置,和霍尼韦尔口牌差不多,都是技术较尖端的。艾默 生在国产DCS品牌里口碑还行,质量比浙大中控、和利时等要好些,与佛斯波罗差不多,价格也处于中间。

基于西门子PLC电动机正反转互锁控制实验报告

实验报告 实验课程:基于西门子PLC电动机正反转互锁控制学生姓名:张荣 学号:130302062 专业班级:13级应电一班 二〇一六年六月十六日

实验报告 传统的继电器控制系统中都使用了继电器、接触器等器件。在这样的纯硬继电器系统中,系统的接线难度会随着系统的复杂程度增加。再者,继电器系统使用了大量的机械触点,其存在机械磨损和电弧烧伤等缺点。以上原因使系统的可靠性和可维护性都变得很差。当前在工业控制领域广泛使用的PLCPLC分为固定式和组合式(模块式)两种。固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。PLC具有功能强、可靠性高,抗干扰能力强、安装维护方便等很多优点,完全可以取代传统的继电器控制系统。 一、实验目的 1.能够独立制作I/O分配表; 2.能够独立完成程序的编辑; 3.能够调试并运行程序,能够学以致用,把所学知识融会贯通来控制电机 的运行; 4.能够在所学习的基础上有所创新,让电机有一些新的功能; 5.增强实践动手能力,熟悉相关电汽结构和电器的使用; 6.了解相关电子线路布线与布局; 7.了解控制电路中各种保护及互锁、自锁环节的作用; 8.学会分析故障与排除故障的方法; 二、实验设备 1.西门子实验箱 2.编程软件STEP7 V5.5 SP2 3.计算机一台 4.按钮开关3个,接触器2个,热过载1个,熔断器2个,电动机1台

三、实验步骤 1.了解电路相关控制要求,制作出电气控制原理图。 图3.1.1电动机正反转互锁控制电气图 2.电路原理介绍 图3.1.1为正反转互锁控制电路,电路分为主电路可控制电路两部分。主电路中的两个交流接触器KM1和KM2分别构成正反两个相序电源连接线。控制原理分析:KM1为电动机正向运行交流接触器,KM2为电动机反向运行交流接触器,SB1为正向启动按钮,SB3为反向启动按钮,SB2为停止按钮,KH为过载保护热继电器。当按下SB1时,KM1的线圈通电吸合,KM1主触点闭合,电机开始正向运行,同时KM1的辅助常开触点闭合而使KM1线圈保持吸合,实现了电动机的正向连续运行;反之,当按下SB3时,KM2的线圈通电闭合,KM2的主触点闭合,实现了电动机反向运行,同时KM2的辅助常开触点闭合而使KM2的线圈保持吸合,从而实现了电动机的反向持续运行,任何时候按下SB2电机都会停止运行。KM2,KM1线圈互锁,保正了不同时通电。

四象限西门子_ABB变频器说明书

目录 第一章产品基本信息介绍 (03) 第二章设计原则及依据 (05) 第三章电控系统技术说明 (07) 第四章变频器参数设定 (16) 第五章操作流程 (18) 第六章故障和报警 (19) 第七章元件清单 (22) 第八章原理接线图 (23)

第一章产品基本信息介绍1.1概述 BPJ7系列矿用隔爆兼本质安全型交流变频器是一种集真空磁力起动器、数字式变频调速装置及相关的散热技术为一体的高新技术产品。该产品适用于交流50Hz、额定电压660V的异步电动机重负荷软起动、软停车和运行过程控制,具有起动电流小、起动速度平稳、起动性能可靠、对电网冲击小等优点,其起动曲线有“S”型和线性二种。该曲线可根据现场实际工况进行调整,从而减少起动时对设备的动张力。此外,变频器具有在线控制功能,可根据电机的负荷变化,调整电机工作电源电压和频率,从而达到所需转矩。具有明显的节能效应,可实现经济运行。随着煤矿自动化程度的不断提高,变频器正以其节能、高效、安全、可靠的特点,逐渐成为今后煤矿电机设备调速控制的发展方向,并得以广泛的应用。 本产品主要用于煤矿井下或露天矿山、港口码头、选煤厂、发电厂等大负荷恶劣环境中运输设备的软起动、软停车和运行过程控制,即用于煤矿井下绞车提升机、刮板运输机、给煤机、风机、局扇、水泵及油泵等设备的调速控制。 1.2产品型号 主要规格参数: a)输入电压: AC660V,50/60Hz,75%Ue~110% Ue,电网不平衡度:最大为电网线电压的±3%。 b)输出电压:电压随频率呈线性变化。 c)额定功率:15~315kW,功率因素:0.97(额定负载下);频率分辨率:0.01Hz。 d)额定电流:660VAC,18~377A;额定过载电流:150%额定电流1min。 e)起动频率:0.5~60Hz 可调设定,频率分辨率:0.01Hz。 f)工作制:连续工作制或短期工作制。 g)本安电源:输入电压127V,本安输出最高开路电压:24.2VDC;本安输出最大电流:0.5A; h)冷却方式:热管风冷却。 1.3型式 防爆型式:隔爆兼本质安全型Exd[ib]I。 控制型式:恒转矩型、变转矩型、四象限矢量控制型。

施耐德Quantum产品与其它PLC产品比较

施耐德Quantum产品与其它PLC产品性能比较 1.施耐德Quantum产品的背板总线(即机架)通讯速率可达80Mbps,主要有以下优点: ●通讯速率是所有PLC产品中速度最快的,而且通讯速率恒定不变,与机架槽位无关; ●所有P模块在机架上可以任意安装,因此方便产品维护; ●全面支持100M快速以太网(机架通讯速率是以太网通讯的瓶颈,机架速率越快,以太 网通讯的带宽越宽)。以太网通讯带宽可达80M; 西门子S7-400产品的背板总线通讯速率最快为30M。而且通讯速率不统一,与CPU距离越远,距离越低。由于通讯速率较低,因此,实现以太网通讯时带宽最多为30M。 AB公司ControlLogix产品的背板总线通讯速率最快为30M。因此,实现以太网通讯时带宽最多为30M。 2.施耐德Quantum产品所有模块都支持任意带电插拔,因此,可以支持带电情况下的产品更换和维护。 西门子S7-400产品的CPU和电源模块不支持带电插拔。因此,CPU和电源模块出现故障时,必须将PLC断电,更换完模块后才能上电。所以,为增加维护时间。 AB公司ControlLogix产品的CPU和电源模块不支持带电插拔。因此,CPU和电源模块出现故障时,必须将PLC断电,更换完模块后才能上电。所以,为增加维护时间。 3.施耐德Quantum产品的开关量输出、模拟量输出模块支持故障状态预制功能,即在CPU、通讯模块、通讯电缆、通讯附件出现故障时,可以通过开关量输出、模拟量输出模块输出相应的状态值,降低故障引发的事故损失。 西门子S7-400产品的模块不支持故障状态预制功能,因此,当模块出现故障时,会导致控制系统的事故损失扩大。 AB公司ControlLogix产品支持故障状态预制功能。 4.施耐德Quantum产品实现一个热备系统很简单,两套完全相同的PLC模块通过1根光纤电缆连接、无需编程即可实现全部自动硬件热备功能。热备模块通讯速率可达10M。热备系统切换时间为13~48ms。热备系统编程很简单,只需编写一个控制程序,并在线下载到一个CPU,通过简单的按下几个按钮,即可完成程序传输。 西门子S7-400产品组成一个热备系统时,必须通过编程才能实现热备切换功能,热备系统切换时间为1s左右。编程时必须编写两个相同的程序,并分别离线下载到CPU中才能完成程序的更新。增加了系统的维护时间。 AB公司ControlLogix产品本来支持热备系统。但是,在设计隧道监控系统方案时,他们没有采用热备系统方案,而是采用一个机架安装两块CPU的方案,即常说的冷备方案。这种方案缺点是当机架、电源、通讯模块等出现故障时,系统马上进入停机状态。同时,两个CPU的切换时间在2s左右,和热备系统毫秒级切换时间相比,完全不在同一档次。因此,AB公司ControlLogix方案是三种方案中最不可靠、性能最差的。 5.施耐德Quantum产品可提供多种信号要求的开关量、模拟量、高速计数器、中断、ASCII、SOE等IO模板以及抗腐蚀、霉变、潮湿等环境应用的涂层保护模板。在热备系统中,所有模板采用同一系列产品,保证了系统的可靠性、稳定性和安全性。 西门子S7-400产品提供的模块类型较少。同时,在热备系统中,经常采用可靠性、稳定性较差的ET200M系列IO模块与S7-400的CPU进行连接,降低了控制系统的整体性能。 AB公司ControlLogix产品提供的模块类型较少。 6.施耐德Quantum产品I/O模块连接方式可支持LIO、DIO、RIO等多种连接方式。采用RIO方式进行连接时,通讯协议为S908,通讯速率不低于1.544M,可支持31个子站。通讯介质为同轴电缆或光纤,采用同轴电缆进行连接时最远可达4572米。RIO通讯速率恒定不变,通讯时与子站个数以及通讯距离无关。支持单通讯电缆缆、冗余通讯电缆、以及光纤总

西门子定位器调整步骤

西门子定位器调整步骤 一、调试前准备工作 1接汽源,再接电源,将电流给到4mA以上 2如定位器没有调试过,这时显示屏中应出现P进入组态,先按“+”再同时按“—”,反之相同,看阀门的最大点或最小点。 3看最小点应在5-9之间,不对调定位器的黑色齿轮。看最大点应不超过95,调最小点尽量接近5. 4用“+”、“—”键将阀门行程调到50%,调试前准备工作完成。 注意:如果定位器调试过必须清零,清零步骤为:按手键进入(新出的为50,最初的为55),再按“+”5秒出现OCAY,再按手键5秒,出现C4抬手出现P,进入组态后调试步骤同以上2、3、4相同。 二、初始化的调校步骤 Ⅰ、执行机构的自动初始化 注:自动初始化前一定要正确设定阀门的开关方向!否则初始化无法进行! 1.正确移动执行机构,离开中心位置,开始初始化。 直行程选择:;角行程选择:,用“+”,“—”键切换; 2.短按功能键,切换到第二参数: 显示:或,用“+”,“—”键切换; 注:这一参数必需与杠杆比率开关的设定值相匹配。 3.用功能键切换到参数三,显示如下: 显示: 如果你希望在初始化阶段完成后,计算的整个冲程量用mm 表示,这一步必须设置。为此,你需要在显示屏上选择与刻度杆上驱动钉设定值相同的值。 4.用功能键切换参数四,显示如下: 显示: 5.下按“+”键超过 5 秒,初始化开始 显示: 初始化进行时,“RUN1”至“RUN5”一个接一个出现于显示屏下行。 注:初始化过程依据执行机构,可持续 15 分钟。 有下列显示时,初始化完成。

在你短促下压功能键后,出现显示: 通过下按功能键超过 5 秒,退出组态方式。约5 秒后,软键显示将出现。松开功能键后,装置将在Manual 方式,按功能键将方式切换为AUTO,此时可以远控操作。 Ⅱ、执行器手动初始化 利用这一功能,不需硬性驱动执行机构到终点位置即可进行初始化。杆的开始和终止位置可手工设定。初始化剩下的步骤(控制参数最佳化)如同自动初始化一样自动进行。 直行程执行机构手动初始化的顺序步骤。 1.对直行程执行机构实行初始化。通过手工驱动保证覆盖全部冲程,即显示电 位计设定处于P5.0 和P95.0 的允许范围中间 2.下按功能键 5 秒以上,你将进入组态方式。 直行程选择:;角行程选择:,用“+”,“—”键切换; 3.短按功能键,切换到第二参数: 显示:或,用“+”,“—”键切换; 注:这一值必需与传送速率选择器的设定相对应。(33°或90°) 4.用功能键切换到参数三,显示如下: 显示: 如果你希望初始化过程结束时,测定的全冲程用mm 表示,你需要在显示器中选择与驱动销钉在杆刻度上设定的值相同,或对介质调整来说下一个更高的值。 5.通过下按功能,选择参数五: 显示: 6. ①先按住“—”再同时按住“+”键,快关阀门(显示在6.5左右),否则调节黑色旋钮调节,使其在范围内; 注:如果按此操作显示的数是减小的,请先调整执行器的开关方向; ②然后先按住“+”再同时按住“—”键,快开阀门。开展后观察显示应在95以内,否则调节黑色旋钮,使其在正常范围内,然后下按功能键确认; ③先按住“—”再同时按住“+”键快关阀门,显示应在5到9之间,然后按下功能键确认; ④初始化自动开始。 ⑤初始化的停止是自动出现的。RUN1 到RUN5 顺序出现在显示屏的下行。当初始化已全部完成时,出现如下显示: 显示:

PLC1200实验报告.pdf

实验二,Portal(博图)软件的应用及程序简介实验目的:熟识西门子s7-1200的指令系统,掌握TIA portal的使用方法 实验设备:西门子s7-1200PLC;信号板;按钮及开关;TIA博途软件 实验步骤: 1,打开TIA portal软件按实际情况进行组态 选择“创建新项目” 单击“创建按钮” 创建完成之后首先“组态设备”,选择“添加新设备” 根据PLC上的发货号来选择,首先控制器CPU中选择SIMATIC S7-1200~CPU~CPU 1214C DC/DC/DC~6ES7 214/AG31-0XB0 等待若干秒之后,显示出PLC机架及刚才已经安置好的CPU,继续根据实际机架上的设备添加信号板:AQ 6ES7 232-4HA30-0XB0,选好之后双击,机架上显示出此信号板。 2,绘制梯形图

回到portal视图,选择PLC编程 基本逻辑指令

3,转到在线 选择后显示“在线连接”,接口类型选择PG/PC,开始搜索 将程序块下载到设备,并“启动CPU” 观察结果

实验三 S7-1200PLC定时器计数器的应用 实验目的:掌握s7-1200中定时器计数器的应用并完成相应程序 实验设备:同上 实验原理: 使用定时器指令可创建编程的时间延迟,S7-1200 PLC有4种定时器: ●TP:脉冲定时器可生成具有预设宽度时间的脉冲。 ●TON:接通延迟定时器输出Q在预设的延时过后设置为 ON。 ●TOF:关断延迟定时器输出 Q 在预设的延时过后重置为 OFF。 ●TONR:保持型接通延迟定时器输出在预设的延时过后设置为ON。在使用 R 输入重置经过的时间之前,会跨越多个定时时段一直累加经过的时间。 ● RT:通过清除存储在指定定时器背景数据块中的时间数据来重置定时器。 每个定时器都使用一个存储在数据块中的结构来保存定时器数据。在编辑器中放置定时器指令时可分配该数据块。 实验步骤: 1,实现延时开通及延时关断 接通延迟定时器及其时序图

西门子标准变频器控制方法描述

西门子标准变频器控制方法描述

第一节速度矢量控制(MM440) 在矢量控制中,速度控制器影响系统的动态特性。特别是恒转矩负载,速度闭环控制有利于改善系统的运动精度和跟随性能。在矢量控制过程中,速度控制器的配置是重要的环节。 根据速度控制器的反馈信号来源,可以将速度矢量控制分为带传感器的矢量控制(VC)与无传感器的矢量控制(SLVC)两种。 ?编码器的反馈信号(VC):P1300=20 ?观测器模型的反馈信号(SLVC):P1300=21 在快速调试和电机参数优化的过程中,变频器会根据负载参数自动辨识系统模型,建立模型观测器,在没有传感器的情况下,系统也会根据输出电流来计算当前速度,作为速度反馈来构成速度闭环。 速度控制器的设定方式(P1460,P1462,P1470,P1472) ?手动调节 可根据经验对速度控制器的比例与积分参数进行整定 ?PID自整定 设定参数:P1400 当P1400.0=1,使能速度控制器的增益自适应功能,即根据系统偏差的 大小来自动调节比例增益系数Kp。在弱磁区,增益系数随磁通的降低 而减小。 当P1400.1=1,速度控制器的积分被冻结,只有比例增益,即对开环运 行的电动机加上滑差补偿。 ?优化方式自整定 通过设置P1960=1,变频器会自动对速度控制器的各参数进行整定。

第二节 转矩控制(MM440) 矢量控制分为速度矢量控制与转矩矢量控制,转矩控制与速度矢量控制的主设定频率 滤波 编码器反馈 观测器模型反 馈实际频率 滤波 PI 速度 控制器 系统 手动调节 自整定 优化整定 P1400.0=1 P1960=1

PS2西门子智能定位器简明操作指南

PS2阀门定位器简明操作指南 准备: 1.按照操作说明书将PS2与阀门连接. 2.检查并确认电路和气路的连接. 3.通电(4—20mA电流供电). 4.禁止电压供电. 初始化 没有经过初始化的定位器,接入电流信号后,LCD屏幕右下方出现闪烁细体“NOINI”字母.此时按上升键或下降键可以使执行机构动作,LCD屏幕能显示粗黑字体Pxx.x。在没有做初始化前,首先要做到按上升键使阀杆上升到最高,LCD屏幕显示的数值大约在P85~95% 之间,按下降键;使阀杆下降到最低,LCD屏幕显示的数值大约在P5~10%之间,在中间的过程中不能出现P---.--情况,否则需要做一系列的调整。 以直行程调节阀为例: 调节阀杠杆行程<20 mm (阀门开度), 气开阀. 叙说如下; 选择反馈角度33°、量程<=20 mm 和90°、量程>=20 mm,分别利用调节轮和反馈杆长度调整PS2的零点和量程。PS2定位器与阀体固定前,先将反馈杠杆支点调整并固定在反馈杆上刻有33°、15 、20 一侧的20位置左右,U形定位槽与反馈支点配合使用,并与阀体固定. ⑴确定定位器内的33°/90°切换开关置于33°位置,互锁齿轮置于33°(黄颜色)(可参阅与定位器一起提供的资料)。 参见图1. ⑵通电、通气后, 按手键(组态键)>5秒,则会出现1. YFCT 上方黑体显示WAY、再按一下出现2.YAGL,上方黑体显示 33°,每按一下出现下一个新的参数值。 需要给定位器内的程序赋值;参数1设置在WAY, 参数2 设置在33°, 参数3设置在20 mm。 a. 将一字螺丝刀(4mm宽)插入黄颜色轮夹紧轮齿轮状部件内部,向右拨动,松开夹紧装置,向左或者向右转动耦合调节轮,阀杆位移指针指向阀位刻度0%左右时, (与下降键配合使用),使量程下限(液晶显示)在5%~10%左右,并记录其数值为P1。 b. 按上升键,使阀杆指针指向阀位刻度100%左右, 使量程上限(液晶显示)数值连续上升不出现------ 的越限符号。量程范围在90%~98%左右,并记录其数值为P2。 c. 如果显示>100 则重新调整反馈杠杆支点离转轴远一点. d. 如果显示<100 则重新调整反馈杠杆支点离转轴近一点. ⑶位置开关、轮状夹紧装置(黄颜色),都锁紧。(一字螺丝刀向左拨动,则锁紧夹紧装置)如不再需要其它相关参数,可 直接进入A.步骤。 ⑷如需要更多的参数设置,可进入参数设置程序,并确认相关参数(参数1、参数2、-- -- -- -- -- 参数55.) 几个重要参数:(举例.实际操作按照说明书或工艺过程要求设置). 参数1. YFCT (执行机构的类型)WAY (直行程). 参数2. YAGL (反馈角)33° 参数3. YWAL (行程范围)由调节阀行程决定. 参数4. INITA (自动初始化) 参数5. INITM (手动初始化) 参数41. YCUP (紧密关闭值)99%(仅上升). 参数55. PRST (工厂设置)Strt A. 将记录的数值P1或P2进行简单的运算;即:P1+(P2﹣P1)÷2。若;P1量程下限(液晶显示)在4.8%,P2量程上限 (液晶显示)在95%,则:4.8+(95﹣4.8)÷2 = 49.9 。用手健操作,确认阀门开度位置在刻度值50%左右,(液晶显示)开度在50% ±5%左右。 B.在运行模式下,按手键>5秒,进入参数4,则PS2进入自动初始化,在按上升键>5秒,液晶显示‘strt.’之后,随即右下 方逐步出现(Run1、2、3、4、5)之后,右下方显示字体‘FINSH’表示初始化已完成。此时按手键>5秒,退出组态模式,进入运行模式,液晶右下方显示为;Man 字样,表示进入了手动运行模式,再按一下手键,液晶右下方显示为; Aut 字样,表示进入了自动运行模式。此时,输入电流信号,执行机构的行程与将与4 ~20mA相一致。定位器可以正常运行了。

西门子PLC实验指导书

实验一:PLC认知及PLC编程软件的使用(两学时) 一、实验目的: 1.熟悉典型继电器电路的工作原理及电路接线。 2.熟悉西门子PLC 的组成,模块及电路接线。 3.熟悉西门子STEP 7 编程软件的使用方法。 4.熟悉利用STEP 7 建立项目、硬件组态、编程、编译、下载和运行等设 计步骤。 5.学会用基本逻辑指令实现顺控系统的编程,完成三相异步电机单向运行控 制程序的编制及调试。 二、实验设备: 1.个人PC 机 1 台 2.西门子1214C AC/DC/RLY PLC 1 台 3.西门子CM1241 RS485通信模块 1 台 4.实验操作板 1 块 5.线缆若干 三、实验步骤: 1.参照黑板上的电路接线图,电路连接好后经指导教师检查无误,可以上电 试验。 2.了解西门子PLC 的组成,熟悉PLC的电源、输入信号端I 和公共端 COM、输出信号端Q 和公共端COM;PLC 的编程口及PC 机的串行通讯口、编程电缆的连接;PLC 上扩展单元插口以及EEPROM 插口的连接方法;RUN/STOP开关及各类指示灯的作用等。 2.参照黑板上的电路接线图,电路连接好后经指导教师检查无误,并将 RUN/STOP 开关置于STOP 后,方可接入220V交流电源。 3.在PC 机启动西门子STEP 7编程软件,新建工程,进入编程环境。 4.根据实验内容,在西门子STEP 7编程环境下输入梯形图程序,转换后, 下载到PLC中。

5.程序运行调试并修改。 6.写实验报告。 四、实验内容: 实验1、三相笼型异步电动机全压起动单向运行控制 图1 三相笼型异步电动机全压起动单向运行控制接线图实验2、三相笼型异步电动机全压起动单向运行PLC控制 图2 三相笼型异步电动机全压起动单向运行PLC控制梯形图 五、实验总结与思考: 1.简述S7-1200 PLC的硬件由哪几部分组成。 2.请简要叙述从硬件组态开始到程序下载到PLC进行调试的整个过程。 3.做完本次实验的心得体会;

西门子PLC变量与参数的分析

“变量”与“参数”是西门子PLC中常用的名词,在不同的使用场合有不同的含义。为了防止概念的混淆,根据不同的用途,将S7中的变量分为“程序变量”与“诊断变量”两大类:将参数分为“程序参数”与“配置参数(组态参数)”两大类。 “诊断变量”用于PLC调试阶段,“变量表调试”所指的就是“诊断变量”。诊断变量包括的范围很广,凡是PLC中可以赋值或进行显示的信号与数据统称为诊断变量(Variable),它包括输入、输出、内部标志寄存器、定时器、计数器、数据块中的内容等。 “程序变量”与“程序参数”是在PLC程序设计阶段需要使用的“变量”与“参数”。因此,除非特别说明,本章所述的“变量”均是指“程序变量”,“参数” 均是指“程序参数”;而在调试部分、硬件组态(配置)部分所述的“变量”均是指“诊断变量”,“参数”均是指“配置参数”。 西门子S7系列PLC可以使用的”程序变量”包括程序参数、局部变量(又称临时变量Temporary)、静态变量(Static)3种基本类型,并且有规定的使用范围。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达PLC、西门子PLC、施耐德plc、欧姆龙PLC的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/2f12204545.html,/

西门子定位器调试

西门子定位器调试 及智能定位器技术介绍 压电阀介绍: 1、引言 传统的气动阀中大量使用了电磁铁作为电-机械转换级,其把电控制信号转换为机械的位移,推动阀芯,实现气路的切换或气体压力、流量的比例控制。作为电-机械转换级的电磁铁有价格低廉,操作使用方便等优点;但其也有很多缺点:如功耗大、响应速度不够快、存在发热及有电磁干扰等。把压电材料的电-机械转换特性引入到气动阀中,作为气动阀的电-机械转换级,这是一项不同于传统气动阀的全新技术。采用了压电技术的气动阀在性能上有着传统气动阀无可比拟的优势。 2、压电效应简介 对于晶体构造中不存在对称中心的异极晶体,加在晶体上的张紧力、压应力或切应力,除了产生相应的变形外,还将在晶体中诱发出介电极化或电场。这一现象被称为正压电效应;反之,若在这种晶体上加上电场,从而使该晶体产生电极化,则晶体也将同时出现应变或应力,这就是逆压电效应。两者通称为压电效应。1880 年居里兄弟发现了电气石的压电效应,从此开始了压电学的历史。压电式气动换向阀即是利用压电逆效应而研制的。 3、压电技术在气动阀中的应用 1、微型直动式换向阀 利用压电材料在电场作用下的变形,来实现气动阀阀口的开启和关闭,这样就可以做成微型直动式换向阀。如下图所示的微型二位三通换向阀,1 口为进气口,2 口为输出气口,3、口为排气口,阀中间的弯曲部件为压电材料组成的压电片。当没有外加电场作用时,阀处于:图1 状态:进气口关闭,输出气口2 经排气口3 通大气。当在压电阀片上外加控制电场后,压电阀片产生变形上翘,上翘的压电阀片关闭了排气口3,同时进气口1 和输出气口2 连通。这样就完全实现了传统二位三通电磁换向阀的功能。 图1 图2 2、压电式电气比例调压阀 压电材料的变形量正比于施加在其上的电场强度,利用这一特点,可以开发出比例调压阀。如图3 所示,施加不同的控制电压到压电阀片上,压电阀片产生不同的弯曲变形量,这样就在进气口1 与输出气口2 之间及输出气口2 与排气口3 之间形成不同的气流阻力,从而在输出气口2 的得到不同的气体压力。由于压电阀片在变形过程中不受机械摩擦力,且压电阀片有响应快功耗低的特点,基于压电阀片的电气比例调压阀很多性能优于传统的比例调压阀。例如其没有死区,压力可以从零开始连续调节;其响应快,可满足高速系统的应用要求;其功耗低,对电源功率要求低。

西门子变频器说明书大全

西门子变频器说明书大全 西门子变频器型号及参数一:MicroMaster420 MicroMaster420是全新一代模块化设计的多功能标准变频器。它友好的用户界面,让你的安装、操作和控制象玩游戏一样灵活方便。全新的IGBT技术、强大的通讯能力、精确的控制性能、和高可靠性都让控制变成一种乐趣。 1、主要特征 200V-240V±10%,单相/三相,交流,0.12kW-5.5kW;380V-480V±10%,三相,交流,0.37kW-11kW;模块化结构设计,具有最多的灵活性;标准参数访问结构,操作方便。 2、控制功能 线性v/f控制,平方v/f控制,可编程多点设定v/f控制;磁通电流控制(FCC),可以改善动态响应特性;最新的IGBT技术,数字微处理器控制; 数字量输入3个,模拟量输入1个,模拟量输出1个,继电器输出1个;集成RS485通讯接口,可选PROFIBUS-DP通讯模块/Device-Net模板;具有7个固定频率,4个跳转频率,可编程;“捕捉再起动”功能;

在电源消失或故障时具有“自动再起动”功能; 灵活的斜坡函数发生器,带有起始段和结束段的平滑特性;快速电流限制(FCL),防止运行中不应有的跳闸; 有直流制动和复合制动方式提高制动性能; 采用BiCo技术,实现I/O端口自由连接。 3、保护功能 过载能力为150%额定负载电流,持续时间60秒; 过电压、欠电压保护; 变频器过温保护; 接地故障保护,短路保护; I2t电动机过热保护;

采用PTC通过数字端接入的电机过热保护; 采用PIN编号实现参数连锁; 闭锁电机保护,防止失速保护。 西门子变频器型号及参数二:MicroMaster430 MicroMaster430是全新一代标准变频器中的风机和泵类变转矩负载专家。功率范围7.5kW至250kW。它按照专用要求设计,并使用内部功能互联(BiCo)技术,具有高度可靠性和灵活性。控制软件可以实现专用功能:多泵切换、手动/自动切换、旁路功能、断带及缺水检测、节能运行方式等。 1、主要特征 380V-480V±10%,三相,交流,7.5kW-250kW; 风机和泵类变转矩负载专用;

施耐德_PLC与PLC通讯ModbusTcp

施耐德_PLC与PLC通讯ModbusTCP 一、系统概括 M218 PLC中TM218LDAE24DRHN/TM218LDAE40DRPHN两款PLC,本体集成了以太网通讯口,支持ModbusTCP/IP 通讯协议(可做ModbusTCP服务器/客户端),该以太网口可用于与其它支持ModbusTCP/IP协议的设备之间的数据通讯。 本文以两台M218 PLC为例, 简要介绍M218PLC与M218PLC之间Modbus以太网通信的过程,包括硬件接线、参数设置、硬软件组态等,实现一台PLC对另一台PLC的数据读写。 二、硬件连接 两台M218 PLC间的连接网线可采用直通线也可采用交叉线,系统的硬件构架和连接如下(本文以交叉网线为例)。

三、主站PLC 1.新建PLC程序

2.PLC通讯参数设置

从站PLC以太网端口设置过程相同,只需将IP地址设为同一网段不同地址即可 3.主站程序编程 1)添加功能块”IsFirstMastColdCycle”, 目的:第一次启动触发modbus读写模块. 方法:从右侧工具箱中选中”运算块”拖到编程窗口,之后寻到”IsFirstMastColdCycle”后回车即可。 2)添加功能块” ADDM” 目的:Modbus地址功能块 方法:类似添加第一功能块的方法 Addr 参数中写入’3{192.168.0.100}’,其中3表示本PLC以太网口,192.168.0.101表示 ModbusTCP 从站IP地址。

3)添加READ_VAR模块 4)添加”WRITE_VAR”模块

5)读写缓存数据区 在”Read_Var”和”Write_Var”功能块的调用过程中,用户需要定义数据读和写的缓存区,用于存放接收到的数据和需要发送的数据。注意,这里的缓存区一般都是以数组的形式存在的,所以用户必须分别定义读数据数组和写数据数组,例如,上例中的”aaa”和”bbb”分别就是用于存放读到的数据和写出去的数据。由于”Read_Var”和”Write_Var”功能块的管脚”Buffer”是指针变量,所以用 ADR 功能块来取数组的首地址来指向该”Buffer”指针。这里,简单介绍下数组的定义方法.

西门子实验指导书(S7-200-CPU226)

实验指导书 启 东 市 东 疆 计 算 机 有 限 公 司

目录 第一章系统简介 (1) 一、可编程序控制器(PC)主机 (1) 二、编程装置 (2) 三、输入输出部分 (2) 四、输入/输出接口的使用方法 (4) 五、实验演示屏介绍 (4) 第二章软件的安装与使用 (5) 一、软件的安装 (5) 二、软件的使用 (5) 第三章PLC控制实验 (6) 实验一基本指令实验 (6) 实验二定时器及计数器指令实验 (9) 实验三移位寄存器指令实验 (13) 实验四置位/复位及脉冲指令实验 (15) 实验五跳转指令实验 (17) 实验六常用功能指令实验 (19) 实验七艺术灯的PLC控制 (24) 实验八LED数码管显示控制 (25) 实验九交通信号灯的自动控制 (26) 实验十驱动步进电机的PLC控制 (27) 实验十一电机的星/三角启动控制 (28) 实验十二机械手的PLC自动控制 (30) 实验十三四层电梯的PLC控制 (32) 实验十四刀库捷径方向选择控制 (35) 实验十五物料混合控制 (37) 实验十六水塔水位控制 (39) 实验十七邮件分拣控制 (41) 实验十八四级传送带的控制 (42)

第一章系统简介 西门子(SIMATIC)S7-200系列小型PLC(Micro PLC)可应用于各种自动化系统。紧凑的结构、低廉的成本以及功能强大的指令使得S7-200 PLC成为各种小型控制任务的理想的解决方案。S7-200产品的多样化以及基于Windows的编程工具,使您能够更加灵活地完成自动化任务。 S7-200功能强,体积小,使用交流电源可在85~265V范围内变动,且机内还设有供输入用的DC-24V电源。可编程序控制器(简称PC)在进行生产控制或实验时,都要求将用户程序的编码表送入PC的程序存贮器,运行时PC根据检测到的输入信号和程序进行运算判断,然后通过输出电路去控制对象。所以典型的PC系统由以下三部分组成:输入/输出接口、PC主机、通讯口。 一、可编程序控制器(PC)主机 在我们的实验箱中,选用的PC主机是SIMATIC S7-200 CPU226,有24个输入点,16个输出点,可采用助记符和梯形图两种编程方式。PLC主机面板图如图1-1所示: 图1-1 在图1-1中: ①输出接线端; ②输出端口状态指示; ③输入接线端; ④输入端口状态指示; ⑤主机状态指示及可选卡插槽; 有三个指示灯 SF/DIAG:系统错误,当出现错误时点亮(红色); RUN :运行,绿色,连续点亮; STOP : 停止,橙色,连续点亮; 可选卡插槽有:EEPROM卡,时钟卡,电池卡; ⑥模式选择开关(运行、停止)、模拟电位器、I/O扩展端口;

西门子变频器调试方法

西门子变频器在数控铣上的应用 调试前对机械要求: 电机不带负载,如果用皮带传动请将皮带拆除;如果直联请拆除直联部分;(即变频器只带电机旋转,而电机不带负载(但可以带带轮)旋转) 调试过程要求: 调试步骤25――29最少重复两次(也就是说主轴要启动两次)。 1.P0003用户级别2(专家) 2.P0010调试模式1(快速调试,出厂默认为0当改为1后进入快速 调试状态,无法显示高级参数。) 3.P0100执行标准0(功率单位KW,频率缺省值50HZ) 4.P0205应用方式0(恒转矩) 5.P0300电机类型1(异步电动机) 6.P0304电机额定电压(根据电机铭牌设置) 7.P0305电机额定电流(根据电机铭牌设置) 8.P0307电机额定功率(根据电机铭牌设置) 9.P0308电机额定功率因数(使用默认值不需要设置) 10.P0309电机额定效率(使用默认值不需要设置) 11.P0310电机额定频率(根据电机铭牌设置) 12.P0311电机额定速度(根据电机铭牌设置)

13.P0320电机磁化电流(使用默认值不需要设置) 14.P0335冷却方式0(自冷) 15.P0640过载因子(使用默认值不需要设置) 16.P0700选择命令源1(BOP控制) 17.P1000频率获取方式1(使能电位计) 18.P1080最小输出频率 1.3(对应40R/MIN) 19.P1082最大输出频率200(对应6000R/MIN) 如果主轴为8000转,请设定P1082=267 20.P1120加速斜坡时间 4.5(电机从当前转速加速到指令转速的时 间) 21.P1121减速斜坡时间7.0(电机从当前转速减速到指令转速的时 间。P1120 P1121如果设置过小,当指令高转速时变频器会因为瞬间电流过大而报警) 22.P1135斜坡关断时间(使用默认值不需要设置) 23.P1300控制方式20(矢量控制) 24.P1500转矩设定值选择0(无设定值) 25.P1910 电机数据检测先设1(=1 识别所有电机数据并修改,并 将这些数据应用于控制器) 设置完成后,变频器会出现报警A0541,此时需要马上启动变频器(1040设置5按BOP启动变频器)。电机将旋转起来,在旋转一会后报警消失,电机空运行3-5分钟,(不带任何负载)。在报警消失后进行26步骤设置。

西门子阀门定位器操作技巧介绍材料

西门子阀门定位器操作手册 压电阀介绍: 1、引言 传统的气动阀中大量使用了电磁铁作为电-机械转换级,其把电控制信号转换为机械的位移,推动阀芯,实现气路的切换或气体压力、流量的比例控制。作为电-机械转换级的电磁铁有价格低廉,操作使用方便等优点;但其也有很多缺点:如功耗大、响应速度不够快、存在发热及有电磁干扰等。把压电材料的电-机械转换特性引入到气动阀中,作为气动阀的电-机械转换级,这是一项不同于传统气动阀的全新技术。采用了压电技术的气动阀在性能上有着传统气动阀无可比拟的优势。 2、压电效应简介 对于晶体构造中不存在对称中心的异极晶体,加在晶体上的张紧力、压应力或切应力,除了产生相应的变形外,还将在晶体中诱发出介电极化或电场。这一现象被称为正压电效应;反之,若在这种晶体上加上电场,从而使该晶体产生电极化,则晶体也将同时出现应变或应力,这就是逆压电效应。两者通称为压电效应。1880 年居里兄弟发现了电气石的压电效应,从此开始了压电学的历史。压电式气动换向阀即是利用压电逆效应而研制的。 3、压电技术在气动阀中的应用 1、微型直动式换向阀 利用压电材料在电场作用下的变形,来实现气动阀阀口的开启和关闭,这样就可以做成微型直动式换向阀。如下图所示的微型二位三通换向阀,1 口为进气口,2 口为输出气口,3、口为排气口,阀中间的弯曲部件为压电材料组成的压电片。当没有外加电场作用时,阀处于:图1 状态:进气口关闭,输出气口2 经排气口3 通大气。当在压电阀片上外加控制电场后,压电阀片产生变形上翘,上翘的压电阀片关闭了排气口3,同时进气口1 和输出气口2 连通。这样就完全实现了传统二位三通电磁换向阀的功能。 图1 图2 2、压电式电气比例调压阀 压电材料的变形量正比于施加在其上的电场强度,利用这一特点,可以开发出比例调压阀。如图3 所示,施加不同的控制电压到压电阀片上,压电阀片产生不同的弯曲变形量,这样就在进气口1 与输出气口2 之间及输出气口2 与排气口3 之间形成不同的气流阻力,从而在输出气口2 的得到不同的气体压力。由于压电阀片在变形过程中不受机械摩擦力,且压电阀片有响应快功耗低的特点,基于压电阀片的电气比例调压阀很多性能优于传统的比例调压阀。例如其没有死区,压力可以从零开始连续调节;其响应快,可满足高速系统的应用要求;其功耗低,对电源功率要求低。 图3

西门子PLC编程实例西门子综合培训plc综合实验练习

西门子综合培训plc综合实验练习 实验一数码显示的模拟控制 一、实验目的 用PLC构成数码显示控制系统 二、实验内容 1.控制要求 A→B→C→D→E→F→G→H→ABCDEF→BC→ABDEG→ABCDG→BCFG→ACDFG→ACDEFG→ABC →ABCDEFG→ABCDFG→A→B→C ……循环下去 2.I/O分配 输入输出 起动按钮SB1:I0.0 A:Q0.0 E:Q0.4 停止按钮SB2:I0.1 B:Q0.1 F:Q0.5 C:Q0.2 G:Q0.6 D:Q0.3 H:Q0.7 3.按图所示的梯形图输入程序。 图2-1 数码显示控制示意图 实验二天塔之光的模拟控制

一、实验目的 用PLC构成天塔之光控制系统 二、实验内容 1控制要求 L12→L11→L10→L8→L1→L1、L2、L9→L1、L5、L8→L1、L4、L7→L1、L3、L6→L1→L2、L3、L4、L5→L6、L7、L8、L9→L1、L2、L6→L1、L3、L7→L1、L4、L8→L1、L5、L9→L1→L2、L3、L4、L5→L6、L7、L8、L9→L12→L11→L10 ……循环下去 2I/O分配 输入输出 起动按钮SB1:I0.0 L1:Q0.0 L7:Q0.6 停止按钮SB2:I0.1 L2:Q0.1 L8:Q0.7 L3:Q0.2 L9:Q1.0 L4:Q0.3 L10:Q1.1 L5:Q0.4 L11:Q1.2 L6:Q0.5 L12:Q1.3 3.按图所示的梯形图输入程序。 图2-1 天塔之光控制示意图 实验三交通灯的模拟控制 一、实验目的 用PLC构成交通灯控制系统 二、实验内容 1.控制要求 起动后,南北红灯亮并维持25s。在南北红灯亮的同时,东西绿灯也亮,1s后,东西车灯即甲亮。到20s时,东西绿灯闪亮,3s后熄灭,在东西绿灯熄灭后东西黄灯亮,同时甲灭。黄灯亮2s后灭东西红灯亮。与此同时,南北红灯灭,南北绿灯亮。1s后,南北车灯即

西门子变频器基本参数设置

6SE70调试基本参数设置 恢复缺省设置 P053=6 允许参数存取 6:允许通过PMU和串行接口OP1S变更参数 P060=2 固定设置菜单 P366=0 0:具有PMU的标准设置 1:具有OP1S的标准设置 P970=0 参数复位 参数设置P060=5 系统设置菜单 P071= 装置输入电压 P095=10 异步/同步电机,国际标准 P100= 1:V/f控制 3:无测速机的速度控制 4:有测速机的速度控制 5:转矩控制 P101= 电机额定电压 P102= 电机额定电流 P103= 电机励磁电流,如果此值未知,设P103=0 当离开系统设置,此值自动计算。 P104= 电机额定功率因数 P108= 电机额定转速 P109= 电机级对数 P113= 电机额定转矩 P114=3 3:高强度冲击系统(在:P100=3,4,5时设置)P115=1 计算电机模型 参数值P350-P354设定到额定值 P130= 10:无脉冲编码器 11:脉冲编码器 P151= 脉冲编码器每转的脉冲数 P330= 0:线性(恒转矩) 1:抛物线特性(风机/泵) P384.02= 电机负载限制 P452= % 正向旋转时的最大频率或速度 P453= % 反向旋转时的最大频率或速度 数值参考P352和P353 P060=1 回到参数菜单 P128= 最大输出电流 P462= 上升时间 P464= 下降时间 P115=2 静止状态电机辩识(按下P键后,20S之内合闸)P115=4 电机模型空载测量(按下P键后,20S之内合闸)

6SE70 变频装置调试步骤 一.内控参数设定 1.1 出厂参数设定 P053=7 允许CBP+PMU+PC 机修改参数 P60=2 固定设置,参数恢复到缺省 P366=0 PMU 控制 P970=0 启动参数复位 执行参数出厂设置,只是对变频器的设定与命令源进行设定,P366 参数选择不同,变频器的设定和命令源可以来自端子,OP1S,PMU。电机和控制参数未进行设定,不能实施电机调试。 1.2 简单参数设定 P60=3 简单应用参数设置,在上述出厂参数设置的基础上,本应用设定电机控制参数 P071 进线电压(变频器400V AC / 逆变器540V DC) P95=10 IEC 电机 P100=1 V/F 开环控制 3 不带编码器的矢量控制 4 带编码器的矢量控制 P101 电机额定电压 P102 电机额定电流 P107 电机额定频率HZ P108 电机额定速度RPM P114=0 P368=0 设定和命令源为PMU+MOP P370=1 启动简单应用参数设置 P60=0 结束简单应用参数设置 执行上述参数设定后,变频器自动组合功能图连接和参数设定。P368 选择的功能图见手 册S0-S7,P100 选择的功能图见手册R0-R5。电机控制效果非最优。 1.3 系统参数设置 P60=5 P115=1 电机模型自动参数设置,根据电机参数设定自动计算 P130=10 无编码器 11 有编码器(P151 编码器每转脉冲数) P350=电流量参考值A P351=电压量参考值V P352=频率量参考值HZ 3 3 P353=转速量参考值1/MIN P354=转矩量参考值NM P452=正向旋转最大频率或速度%(100%=P352,P353) P453=反向旋转最大频率或速度%(100%=P352,P353) P60=1 回到参数菜单,不合理的参数设置导致故障 1.4 补充参数设定如下 P128=最大输出电流A P571.1=6 PMU 正转 P572.1=7 PMU 反转

相关文档
相关文档 最新文档