文档库 最新最全的文档下载
当前位置:文档库 › 结构设计需要控制的几个比值

结构设计需要控制的几个比值

结构设计需要控制的几个比值
结构设计需要控制的几个比值

结构设计需要控制的几个比值.txt如果有来生,要做一棵树,站成永恒,没有悲伤的姿势。一半在土里安详,一半在风里飞扬,一半洒落阴凉,一半沐浴阳光,非常沉默非常骄傲,从不依靠从不寻找。结构总体参数控制意义、方法、及注意事项

1 刚度比的控制

A 控制意义:

新规范要求结构各层之间的刚度比,并根据刚度比对地震力进行放大,。

新规范对结构的层刚度有明确的要求,在判断楼层是否为薄弱层、地下室是否能作为嵌固端、转换层刚度是否满足要求等等,都要求有层刚度作为依据,

直观的来说,层刚度比的概念用来体现结构整体的上下匀称度.

B 规范条文:

新抗震规范附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2。

新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80%。

新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。

新高规的10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录D的规定。

E.0.1底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2。

E.0.2底部为2~5层大空间的部分框支剪力墙结构,其转换层下部框加-剪力墙结构的等效侧向刚度与相同或相近高度的上部剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。

C 计算方法及程序实现:

>>楼层剪切刚度

>>单层加单位力的楼层剪弯刚度

>>楼层平均剪力与平均层间位移比值的层刚度

只要计算地震作用,一般应选择第 3 种层刚度算法

不计算地震作用,对于多层结构可以选择剪切层刚度算法,高层结构可以选择剪弯层刚度

不计算地震作用,对于有斜支撑的钢结构可以选择剪弯层刚度算法

D 注意事项:

转换层结构按照“高规”要求计算转换层上下几层的层刚度比,一般取转换层上下等高的层数计算。

层刚度作为该层是否为薄弱层的重要指标之一,对结构的薄弱层,规范要求其地震剪力放大1.15,这里程序将由用户自行控制。

当采用第3种层刚度的计算方式时,如果结构平面中的洞口较多,这样会造成楼层平均位移的计算误差增加,此时应选择“强制刚性楼板假定”来计算层刚度。选择剪切、剪弯层刚度时,程序默认楼层为刚性楼板。

2 周期比的控制

A 控制意义:

周期比---第一扭转周期与第一侧振周期的比值

周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。所以一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。一句话,周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性

验算周期比的目的,主要为控制结构在罕遇大震下的扭转效应。

B 规范条文

高层规程第4.3.5条,要求:结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比,A级高度高层建筑不应大于0.9,B级高度高层建筑、混合结构高层建筑及本规程第10章所指的复杂高层建筑不应大于0.85

抗归中没有明确提出该概念,所以多层时该控制指标可以适当放松,但一般不大于1.0。

C 计算方法及程序实现

程序计算出每个振型的侧振成份和扭振成份,通过平动系数和扭转系数可以明确地区分振型的特征。

周期最长的扭振振型对应的就是第一扭振周期Tt,周期最长的侧振振型对应的就是第一侧振周期T1(注意:在某些情况下,还要结合主振型信息来进行判断)。知道了Tt和T1,即可验证其比值是否满足规范

D 注意事项

>>复杂结构的周期比控制

多塔结构周期比:对于多塔楼结构,不能直接按上面的方法验算。如果上部没有连接,应该各个塔楼分别计算并分别验算,如果上部有连接,验算方法尚不清楚。

体育场馆、空旷结构和特殊的工业建筑,没有特殊要求的,一般不需要控制周期比。

当高层建筑楼层开洞口较复杂,或为错层结构时,结构往往会产生局部振动,此时应选择“强制刚性楼板假定”来计算结构的周期比。以过滤局部振动产生的周期

3 位移比的控制

A 控制意义:

位移比---是指楼层竖向构件的最大水平位移和层间位移角与本楼层平均值的比

位移比的大小反映了结构的扭转效应,同周期比的概念一样都是为了控制建筑的扭转效应提出的控制参数。(在高归4.3.5条中位移比和周期比是同时提出的)

B 规范条文

抗规第3.4.3.1条规定:平面不规则而竖向规则的建筑结构,应采用空间结构计算模型,并应符合下列要求:1)扭转不规则时,应计及扭转影响,且楼层竖向构件最大的弹性水平位移

和层间位移分别不宜大于楼层两端弹性水平位移和层间位移平均值的1.5倍;

新高规的4.3.5条规定,在考虑质量偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

C 计算方法及程序实现

程序中对每一层都计算并输出最大水平位移、最大层间位移角、平均水平位移、平均层间位移角及相应的比值,用户可以一目了然地判断是否满足规范。

且注意位移比的限值是根据刚性楼板假定的条件下确定的,其平均位移的计算方法,也基于“刚性楼板假定”。

控制位移比的计算模型:按照规范要求的定义,位移比表示为“最大位移/平均位移”,而平均位移表示为“(最大位移+最小位移)/2”,其中的关键是“最小位移”,当楼层中产生0位移节点,则最小位移一定为0,从而造成平均位移为最大位移的一半,位移比为2。则失去了位移比这个结构特征参数的参考意义,所以计算位移比时,如果楼层中产生“弹性节点”,应选择“强制刚性楼板假定”。

规范要求:高规4.3.5条,应在质量偶然偏心的条件下,考察结构楼层位移比的情况。

层间位移角:程序采用“最大柱(墙)间位移角”作为楼层的层间位移角,此时可以“不考虑偶然偏心”的计算条件。

D 注意事项

>>复杂结构的位移控制

复杂结构,如坡屋顶层、体育馆、看台、工业建筑等,这些结构或者柱、墙不在同一标高,或者本层根本没有楼板,此时如果采用“强制刚性楼板假定”,结构分析严重失真,位移比也没有意义。所以这类结构可以通过位移的“详细输出”或观察结构的变形示意图,来考察结构的扭转效应。

对于错层结构或带有夹层的结构,这类结构总是伴有大量的越层柱,当选择“强制刚性楼板假定”后,越层柱将受到楼层的约束,如果越层柱很多,计算失真。

总之,结构位移特征的计算模型之合理性,应根据结构的实际出发,对复杂结构应采用多种手段。

供应链管理的绩效评估体系

供应链管理的绩效评估体系 摘要:在供应链管理中,如何科学、客观、全面地分析和评价供应链的运营绩效已成为一个研究热点问题。从供应链绩效评价的指标体系、评价指标、评价方法等方面,对供应链绩效评价的研究现状进行回顾和评述,指出供应链绩效评价存在供应链绩效评价应该包含哪些内容没有明确界定等问题,井对今后供应链绩效评价研究的发展趋势进行了展望。 关键词:供应链;绩效;评价 当前企业的外部环境正经历一个巨变的时代,经济全球化趋势席卷全球,客户的需求不断增长,产品生命周期日趋缩短,市场变化呈现不确定性。为了增强竞争,迫使企业和上游、下游合作者(如供应商、客户、物流公司等)更加重视相互间的协调,共同为最终用户创造新价值,这就使原来企业与企业之间的竞争已演化成供应链与供应链之间的竞争。越来越多的企业意识到,要有效地管理供应链就必须对供应链绩效进行评估,因此如何科学、客观、全面地分析和评价供应链的运营绩效,是一个迫切需要解决的问题。 一、供应链绩效评价研究现状 (一)供应链绩效评价指标体系 目前,为了评价供应链整体运营绩效,许多学者从不同角度考察供应链并提出了相应的评价指标体系,总体上可以将这些评价体系划分为基于供应链运作参考模型的评价体系、基于供应链平衡记分卡的评价体系和Beamon提出的ROF(资源、输出及柔性,Resourc-es,Output,Flexibility)体系三大类。 1.基于供应链运作参考模型的评价体系 供应链运作参考模型(SupplyChainOperationRefer-enee—modd简称SCOR)是目前影响最大应用面最广的参考模型,它能测评和改善企业内、外部业务流程,使战略性的进行企业管理(Strategic Enterprise Manage-merit简称SEM)成为可能。 Bullinger等人用SCOR框架对供应链进行了“自底向上”的绩效评价。高萍等人运用SCOR模型从供应链的可靠性、响应能力、灵活性、成本以及资产五个方面衡量和测评供应链绩效并给出相应的评价指标。何忠伟等人选择SCOR模型的绩效衡量指标作为基准分析的基础,对供应链流程进行绩效评价。中国电子商务协会供应链管理委员会(简称CSCC)于2003年10月颁发的(中国企业供应链管理绩效水平评价参考模型(SCPRl.0)构成方案》17),包括5个一级指标,15个2级指标和45个3级指标,也与SCOR相似。 2.基于供应链平衡记分卡的评价体系 RobertS.Kaphn等人提出了“平衡记分卡”(BalancedScorecaxd简称BSC)评价体系。BSC不仅是一种评价体系而且是一种管理思想的体现,其最大的特点是集评价、管理、沟通于一体,即通过将短期目标和长期目标、财务指标和非财务指标、滞后型指标和超前型指标、内部绩效和外部绩效结合起来,使管理者的注意力从短期的目标实现转移到兼顾战略目标实现。该体系分别从财务角度、顾客角度、内部过程角度、学习和创新角度建立评价体系。其中,财务角度指标显示企业的战略及其实施和执行是否正在为供应链的改善做出贡献;顾客角度指标显示顾客的需求和满意程度;内部过程角度指标显示企业的内部效率;

建筑工程结构设计的优化措施

试论建筑工程结构设计的优化措施摘要: 现如今,现代化建设普遍应用于城市建设中,这推动了我国高层建筑发展前进的步伐,由于人们对建筑施工的要求不断提高,使得建筑技术将面临更高的挑战。因此,从建筑工程结构设计方面入手,进行改进,从而扩大建筑工程的发挥空间。基于此,本文主要对建筑工程结构设计的优化措施进行了探讨。 关键词:建筑工程;结构设计;优化措施 abstract: nowadays, modernization is generally applied to the city construction, this drives forward the country’s high building development progress, as people have the requirement of building construction continues to improve, construction technology that could face higher challenge. therefore, from building engineering structure design aspects, to improve and expand the construction engineering play space. based on this, this paper focuses on the construction engineering structure design of the measures are discussed. keywords: building engineering; structure design; optimization measures 中图分类号:tb482.2文献标识码:a 文章编号: 城市高层建筑的高度在不断的进行增加,这就使得高层建筑向

结构设计基本荷载计算

荷载 1.墙体荷载: 1). 外墙(烧结页岩多孔砖容重14.0 kN/m3):(卫生间除外) 外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 4.04 kN/m2 考虑建筑节能0.6kN/m2取∑: 4.64kN/m2 考虑装修抹灰取∑: 4.7kN/m2 G=4.7kN/m2×(H--梁高)×0.8= 内墙(加气混凝土砌块8.0 kN/m3):(卫生间除外) 20厚混合砂浆:17×0.020=0.34 kN/m2 200厚墙体:8.0×0.20=1.60 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 2.24 kN/m2 考虑装修抹灰取∑: 2.3kN/m2 G=2.3kN/m2×(H--梁高)= 女儿墙(烧结页岩多孔砖容重14.0 kN/m3): 外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 4.04 kN/m2 G=4.04kN/m2×H+压顶自重= 2). 卫生间外墙(烧结页岩多孔砖容重14.0 kN/m3):

外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 内墙面砖:0.5 kN/m2 ∑: 4.54 kN/m2 考虑建筑节能0.6kN/m2取∑: 5.14kN/m2 G=5.14kN/m2×(H--梁高)= ). 卫生间内隔墙(烧结页岩多孔砖容重14.0 kN/m3): 单面面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 100厚墙体:14.0×0.20=1.40 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 2.64 kN/m2 G=3.14kN/m2×(H--梁高)= 2.屋面荷载: 1). 种植屋面:(从上到下) 300厚种植土:16×0.3=4.8 kN/m2 干铺聚酯纤维无纺布一层:0.10 kN/m2 (3+3)双层SBS改性沥青防水卷材:0.35 kN/m2 20厚憎水膨胀珍珠岩找坡:4×(0.02+10×2%)=0.88 kN/m2 60厚岩棉板: 2.5×0.06=0.15 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 150厚结构板:27×0.15=4.05kN/m2 10厚板底抹灰:10×0.020=0.2 kN/m2 ∑:10.88kN/m2

中海地产结构设计限额控制(全)

精品 中海地产结构设计限额控制 中海地产建筑结构管理部

目录 一、总则 (2) 二、结构设计限额控制指标 (3) 三、结构设计限额控制指标说明 (4) 四、附表 (6) 附表A:钢筋和混凝土含量统计表 (7) 附表B:各公司结构设计限额控制指标 (8)

一、总则 编制目的:为加强结构专业设计管理,做好限额设计和成本控制工作。编制时间:20013 年1月 1 日主编单位:中海地产集团有限公司建筑结构管理部 使用说明:1. 项目结构材料用量指标(包括钢筋和混凝土)均不得大于本限额控制值。各项目完成合约统计后,按《钢筋和混凝土含量统计表》(见附表 A)的要求统计、上报。 2. 在结构方案定案与扩初设计之间,由设计院编写项目《结构统一技术措施》,经集团建筑结构部或 区域、地区公司设计管理部评审后,进行结构限额设计。 3. 本标准由中海地产集团有限公司建筑结构管理部负责管理和条文解释。制订依据:《混凝土结构设计规范》(GB50010-2010) 《建筑抗震设计规范》(GB50011-2010) 《高层建筑混凝土结构技术规程》(JGJ3-2010) 《建筑结构荷载规范》(GB50009-2012) 《建筑地基基础设计规范》(GB50007-2011) 《建筑工程建筑面积计算规范》(GB/T50353-2005)

二、结构设计限额控制指标 各公司结构限额指标控制值对照表如下:

三、 结构设计限额控制指标使用说明 1. 结构材料用量指标计算规则为:计算范围内相应结构材料(包含梁板柱、构造柱、过 梁、女儿墙、拉板等的钢筋(G ) 和混凝土(V ),不含砌体)用量除以计算范围内的“结 构成本计算面积”(M ),即钢筋用量指标=G/M (kg/m 2 ),混凝土用量指标=V/M (m 3/m 2)。 2. 统计结构材料用量指标所用的“结构成本计算面积”计算规则如下: 结构成本计算面积 M =M0+M1+M2+M3+M4+M5/2+M6/2,其中: 3. 当项目存在留给装修加层的两层高房间面积(M7)时,钢材用量计算规则为: 结构钢材用量=[G+(8~10kg/m 2 )*M7]/(M+M7) 4. 常规采用钢筋主要包括:直径 6mm 钢筋统一采用 H PB300,直径 8mm 及以上钢筋统一采 用 H RB400;也可以全部采 用 H RB400 钢筋。 5. 结构体系包含钢筋混凝土普通框架、异型柱框架、短肢剪力墙结构及剪力墙结构。当 结构采用异形柱框架或短肢剪 力墙结构体系时,混凝土用量应取下限甚至更低。 6. “上部结构”、“地下室或半地下室”及“基础”的定义如下: 6.1 当没有设置地下室或半地下室时,“上部结构”的范围指±0.000(不包括)以上 的部分,其余部分如浅基础、 筏板、基础梁、承台、桩和±0.000(包括)以下的 墙、柱等计入“基础”范围(地下部分的统计范围见图 1)。 6.2 当设置地下室或半地下室时,“上部结构”范围指地下室或半地下室顶板以上部分 (不含顶板);“地下室或半地下 室”的范围指地下室或半地下室底板至顶板范围内 的部分(含顶板、底板及与底板相连的浅基础、筏板、承台、基础梁等);其余部 分如桩等计入“基础”部分(地下部分的统计范围见图 2、3、4)。 6.3 在限额控制指标中,基础部分计入地下室或半地下室指标。

供应链绩效评价常用指标

供应链绩效评价常用指标 我们将这些指标分成内部绩效评价指标、外部绩效评价指标和供应链综合绩效评价指标三类。 内部绩效评价指标和外部绩效评价指标包括: 1.准时交货率 是指下游供应商在一定时间内准时交货的次数占其总交货次数的百分比。供应商准时交货率低,说明其协作配套的生产能力达不到要求,或者是对生产过程的组织管理跟不上供应链运行的要求;供应商准时交货率高,说明其生产能力强,生产管理水平高。 2.成本利润率 这是指单位产品净利润占单位产品总成本的百分比。在市场经济条件下,产品价格是由市场决定的,因此,在市场供需关系基本平衡的情况下,供应商生产的产品价格可以看成是一个不变的量。按成本加成定价的基本思想,产品价格等于成本加利润,因此产品成本利润率越高,说明供应商的盈利能力越强,企业的综合管理水平越高。在这种情况下,由于供应商在市场价格水平下能获得较大利润,其合作积极性必然增强,必然对企业的有关设施和/或设备进行投资和改造,以提高生产效率。 3.产品质量合格率 这是指质量合格的产品数量占产品总产量的百分比,它反映了供应商提供货物的质量水平。质量不合格的产品数量越多,则产品质量合格率就越低,说明供应商提供产品的质量不稳定或质量差,供应商必须承担对不合格的产品进行返修或报废的损失,这样就增加了供应商的总成本,降低了其成本利润率。因此,产品质量合格率指标与产品成本利润率指标密切相关。同样,产品质量合格率指标也与准时交货率密切相关,因为产品质量合格率越低,就会使得产品的返修工作量加大,必然会延长产品的交货期,使得准时交货率降低。供应链综合绩效评价

指标包括: 1.产销率指标 产销率是指在一定时间内已销售出去的产品与已生产的产品数量的比值。产销率指标又可分成如下三个具体的指标: (1)供应链节点企业的产销率,反映供应链节点企业在一定时间内的经营状况。 (2)供应链核心企业的产销率,反映供应链核心企业在一定时间内的产销经营状况。 (3)供应链产销率,反映供应链在一定时间内的产销经营状况。 该指标除了反映产品生产和销售量的比率外,还反映了供应链资源(包括人、财、物、信息等)的有效利用程度,产销率越接近l,说明资源利用程度越高。同时,该指标也反映了供应链库存水平和产品质量,其值越接近1,说明供应链成品库存量越小。产销率指标中所用的时间单位越小(比如:天),说明供应链管理水平越高。 2.平均产销绝对偏差指标 该指标反映在一定时间内供应链总体库存水平,其值越大,说明供应链成品库存量越大,库存费用越高。反之,说明供应链成品库存量越小,库存费用越低。 3.产需率指标 产需率是指在一定时间内,节点企业已生产的产品数量与其上层节点企业(或用户)对该产品的需求量的比值。具体分为如下2个指标: (1)供应链节点企业产需率。该指标反映上、下层节点企业之间的供需关系。产需率越接近1,说明上、下层节点企业之间的供需关系协调,准时交货率高,反之,则说明下层节点企业准时交货率低或者企业的综合管理水平较低。 (2)供应链核心企业产需率。该指标反映供应链整体生产能力和快速响应市场能力。若该指标数值大于或等于1,说明供应链整体生产能力较强,能快速响应市场需求,具有较强的市场竞争能力;若该指标数值小于1,则说明供应链生产能力不足,不能快速响应市场需求。 4.供应链产品出产(或投产)循环期或节拍指标

建筑工程结构设计优化措施探讨

建筑工程结构设计优化措施探讨 摘要:建筑工程是我国基础设施建设中的重要组成部分之一,房屋建筑建设质量的优劣,与人们的生活质量息息相关。房屋建筑结构设计中,结构设计优化是保障房屋建筑的质量及提高建筑物安全性、稳定性、美观性的有效手段。基于此,文章对房屋建筑结构设计中结构设计优化的应用情况进行了分析,并探讨了房屋建筑结构设计优化的关键点,希望可以为房屋建筑结构设计及施工的开展提供有效参考。 关键词:结构设计优化;建筑工程;结构设计 随着社会经济的飞速发展,经济条件,生活质量和人民生活水平得到了明显改善,人们对生活环境的要求也越来越高。基于时间进度和社会发展需求,在当今住宅建筑的结构设计中,基于质量和安全保证,通常会进行结构优化设计,以实现降低成本,节能减排和改善建筑功能的目的。 1 建筑物结构设计中结构设计的优化 建筑结构模型的优化 在房屋建筑结构设计中,在实施结构设计优化时应优化建筑结构模型。在优化建筑结构模型时,可以从三个方面确定约束条件,计算功能并选择变量。在构建和使用构建模型的过程中,应该非常重视选择不同的变量。在定义和选择不同的变量时,应充分考虑实际的建筑状况,并将其与当地情况结合起来,并彻底分析可能影响建筑结构设计和使用的所有因素。表示这些因素的预定参数。在房屋建筑的结构设计中显示。有些因素可能会对建筑结构设计的总体影响产生非常重大的影响,因此,无论设计人员是多因素还是单一因素,设计人员都应充分考虑到这一点。' 警告。另外,在优化建筑结构设计的过程中,体现功能中的各个要素可以有效减少人员工作量,并有助于提高工作效率。 优化建筑物的主要结构 在设计建筑物结构的主要部分时,应考虑建筑物的质量,并且优化设计应基于确保建筑物的质量和安全性。在此基础上,建筑结构设计中首先要考虑的问题是确保建筑物的安全,在随后的优化设计中,确定要加强主体结构的承载能力。对于建筑物来说,增加主体的稳定性是增加建筑物安全性的有效方法,可以使建筑物在一定范围内承受恶劣环境的能力,从而使建筑物能够经受地震,强风等侵袭。在环境中是安全的。防止建筑物在恶劣的室外环境下倒塌。在优化建筑物的主要结构时,关键是优化幕墙的设计,以确保幕墙的整体稳定性。关键是使幕墙的质量相等,并使结构重心与刚性中心重合。因此,它增加了建筑物的整体稳定性。设计人员可以通过减少幕墙的数量和增加幕墙的程度来优化幕墙的结构。在住宅建筑结构的设计中,许多钢结构经常放置在幕墙内,因此幕墙可以支撑更大的重量并增加幕墙的稳定性。但是,由于节能,应该对该部分进行优化和设计,并且确保幕墙稳定性的原则应该是尽可能少的钢结构建筑材料。 优化建筑细节 随着市场经济的飞速发展,建筑业蓬勃发展,但市场竞争日趋激烈。在这一点上,许多公司开始吸引消费者,从细节开始,以提高建筑物的质量和美观性。在此基础上,在建筑物结构设计中优化结构设计的同时,还应特别注意细节的优化。根据客户的需求,应该优化和

混凝土结构设计原理复习重点(非常好)

混凝土结构设计基本原理复习重点(总结很好) 第 1 章绪论 1.钢筋与混凝土为什么能共同工作: (1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。 (2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。 (3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。 1、混凝土的主要优点:1)材料利用合理2 )可模性好3)耐久性和耐火性较好4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材 2、混凝土的主要缺点:1)自重大2)抗裂性差3 )承载力有限4)施工复杂、施工周期较长5 )修复、加固、补强较困难 建筑结构的功能包括安全性、适用性和耐久性三个方面 作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用 结构的极限状态:承载力极限状态和正常使用极限状态 结构的目标可靠度指标与结构的安全等级和破坏形式有关。 荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值 第2章钢筋与混凝土材料物理力学性能 一、混凝土 立方体抗压强度(f cu,k):用150mm×150mm×150mm的立方体试件作为标准试件,在温度为(20±3)℃,相对湿度在90%以上的潮湿空气中养护28d,按照标准试验方法加压到破坏,所测得的具有95%保证率的抗压强度。(f cu,k为确定混凝土强度等级的依据) 1.强度轴心抗压强度(f c):由150mm×150mm×300mm的棱柱体标准试件经标准养护后用标准试验方法测得的。(f ck=0.67 f cu,k) 轴心抗拉强度(f t):相当于f cu,k的1/8~1/17, f cu,k越大,这个比值越低。 复合应力下的强度:三向受压时,可以使轴心抗压强度与轴心受压变形能力都得到提高。 双向受力时,(双向受压:一向抗压强度随另一向压应力的增加而增加;双向受拉:混凝土的抗拉强度与单向受拉的基本一样; 一向受拉一向受压:混凝土的抗拉强度随另一向压应力的增加而降低,混凝土的抗压强度随另一向拉应力的增加而降低) 受力变形:(弹性模量:通过曲线上的原点O引切线,此切线的斜率即为弹性模量。反映材料抵2.变形抗弹性变形的能力) 体积变形(温度和干湿变化引起的):收缩和徐变等。 混凝土单轴向受压应力-应变曲线数学模型 1、美国E.Hognestad建议的模型 2、德国Rusch建议的模型 混凝土的弹性模量、变形模量和剪变模量 弹性模量 变形模量 切线模量 3、(1)徐变:混凝土的应力不变,应变随时间而增长的现象。 混凝土产生徐变的原因: 1、填充在结晶体间尚未水化的凝胶体具有粘性流动性质 2、混凝土内部的微裂缝在载荷长期作用下不断发展和增加的结果 线性徐变:当应力较小时,徐变变形与应力成正比;非线性徐变:当混凝土应力较大时,徐变变形与应力不成正比,徐变比应力增长更快。影响因素:应力越大,徐变越大;初始加载时混凝土的龄期愈小,徐变愈大;混凝土组成成分水灰比大、水泥用量大,徐变大;骨料愈坚硬、弹性模量高,徐变小;温度愈高、湿度愈低,徐变愈大;尺寸大小,尺寸大的构件,徐变减小。养护和使用条件 对结构的影响:受弯构件的长期挠度为短期挠度的两倍或更多;长细比较大的偏心受压构件,侧向挠度增大,承载力下降;由于徐变产生预应力损失。(不利)截面应力重分布或结构内力重分布,使构件截面应力分布或结构内力分布趋于均匀。(有利) (2)收缩:混凝土在空气中结硬时体积减小的现象,在水中体积膨胀。 影响因素:1、水泥的品种:水泥强度等级越高,则混凝土的收缩量越大; 2、水泥的用量:水泥越多,收缩越大;水灰比越大,收缩也越大; 3、骨料的性质:骨料的弹性模量大,则收缩小; 4、养护条件:在结硬过程中,周围的温、湿度越大,收缩越小; 5、混凝土制作方法:混凝土越密实,收缩越小; 6、使用环境:使用环境的温度、湿度大时,收缩小; 7、构件的体积与表面积比值:比值大时,收缩小。 对结构的影响:会使构件产生表面的或内部的收缩裂缝,会导致预应力混凝土的预应力损失等。 措施:加强养护,减少水灰比,减少水泥用量,采用弹性模量大的骨料,加强振捣等。 混凝土的疲劳是荷载重复作用下产生的。(200万次及其以上) 二、钢筋 光圆钢筋:HPB235 表面形状 带肋钢筋:HRB335、HRB400、RRB400 有明显屈服点的钢筋:四个阶段(弹性阶段、屈服阶段、强化阶段、破坏阶段),屈服强度力学性能是主要的强度指标。 (软钢)

结构设计七大比值

七个比值问题 1.有那七个比值 2.控制的是什么东西 3.所对应的要求有那些 4.当不满足时如何调整 5.计算时要满足那些东西 6.PKPM的结果在那查询 7.专业名词的理解 一.刚重比《GG》 5.4 1.控制原因:重力荷载的水平用位移效应上引起的二阶效应比较严重,对砼结构随刚度的降低效应不利影响成非线性关系 2.控制方法:框架>20不满足稳定性要求 >10考虑P—Δ效应 剪力墙>2.7不满足稳定性要求 >1.4考虑P—Δ效应 3.调整方法:不满足稳定性要求加刚或减重 大于10或1.4要考虑P—Δ效应 4.PKPM结构查看:总信息最下面 5.结构在地震作用下的重力附加弯矩大于初始弯矩的10%要考虑P—Δ效应。大20% 时认为稳定性不满足要求 二.剪重比《KG》5.2.5《GG》 4.3.12 1.控制原因:长周期结构地震加速度小,但此时地面运动的速度,位移对结构的破坏更大,通过放大地震地的方式提高结构的承载能力,增大安全储备 2.控制方法:扭转效应明显周期小于3.5秒6度7度8度9度 0.8% 1.6% 3.2% 6.4% 基本周期大于5.0秒的结构0.6% 1.2% 2.4% 4.8% 1.8% 3.6% 3.调整方法:在6度区经常会发生 A:根据建筑抗震设计规范统一培训教材54页当不满足以下结果时不可以用系数调整在方式 1)有15%以上的楼层不满足最小剪力系数椒 2)底部楼层剪力不满足最小剪力系数要求85%以上时 3)调整系数大于1.15时即不满足87%时 B:不能用系数调整时的方法 1)T折减多折一些 2)提高振型个数 3)通过加墙和梁来提高结构风度减小T增加地震作用 4)跨高比小于5的梁按洞口输入来提高结构刚度

结构专业设计要求及控制要点(结构必备)

90(一)住宅结构设计控制要点 原则:经济、合理、安全、优化 一.选用的标准图集及技术措施: 为统一出图的质量,建议采用以下标准图集、技术措施: 1.《混凝士结构施工图平面整体表示方法制图规则与构造详图(现浇混凝士框架、剪力墙、框架-剪力墙、框支 剪力墙结构)》03G101-1。 2.《2003全国民用建筑工程设计技术措施-结构》。 3.《广东省住宅工程质量通病防治技术措施二十条》。 二.设计单位注意事项: 1.从方案到施工图设计,设计单位需向甲方提供各专业至少3次以上过程文件(以图形、表格或文字方式),时间为方案确定、初步设计提交正式文件前、施工图设计提交正式文件前,结构专业提供的内容包括:1)分析与设计参数定义; 2)设计荷载取值; 3)结构计算的总体控制要求; 4)基础选型(内附基础埋深的相对标高和对应的绝对标高以及室外地坪的原貌、标高和设计绝对标高); 5)地下室及上部结构的结构布置方案(包括各层竖向、水平构件的定位、截面尺寸和主要连接节点构造大样、阁楼及坡屋面结构布置方案); 6)地下室底板和顶板的结构找坡(排水)方案(要求地下室各部位地坪特殊标高处注明结构标高与建筑标高的 关系)、后浇带(包括底板、顶板和外墙、楼盖等部位)布置方案、地下室层高、各设备用房(如发电机房、高低压配电房等)的层高和净高要求、上部结构层高要求等结构技术过程文件,供甲方掌握和确认。 以在结构安全的基础上合理、经济和优化设计,取得良好的技术经济指标。 2.项目组各结构设计人员应始终保持技术措施、设计概念的一致性:在结构布置、构件选型、材料选用以及构造 做法等结构技术措施上应协调一致,避免差异,否则必然造成施工成本及设计工程量增加。 3.设计单位需及时协助政府有关职能部门完成本工程的设计审查。施工图审查合格后需向甲方提供各专业施工图 最终版电子文件一份,并协助施工单位完成本工程的竣工图设计。 4.地质勘察成果涉及的技术指标如钻孔深度、抗浮水位(标高)、场地地震动参数、安全性评价等内容及要求需 经设计单位确认或补充。 5.施工图设计前,设计单位需书面提供楼面活载取值供甲方确认。 三.基础设计 1.根据结构状况(结构类型、柱网、荷载、有无地下室)、地质条件(地层分布、岩土物理力学指标、地下水、 地震情况)、施工条件(场地周围环境、地方污染限制、当地施工机械、施工技术条件)三个方面从技术上初步确定二个比较适合的方案: 1)基础形式的选择次序:扩展地基→高强预应力管桩基础→人工挖孔灌注桩基础→钻(冲)孔灌注桩基础→筏板基础; 2)常用桩基础选型原则:高强砼预应力管桩→人工挖孔(混凝土护壁)→钻(冲)孔(泥浆护壁,水下灌砼); 3)高强砼预应力管桩施工选择次序:锤击→静压; 4)对高层建筑≥18层,预应力管桩优先选用大直径Φ500、Φ600。 2.设计时应对初定的二个基础方案进行经济比较,包括桩、承台、工期和施工现场的影响。对预应力管桩基础, 应增加比较大直径与次直径情况下的桩与承台造价。 3.选择一个技术可靠、经济性好、工期合理的方案呈报批准后,进行基础施工图设计。 4.对场地复杂或大面积楼盘的基础设计,应根据岩土分布,在满足沉降等设计要求的情况下,分块(分栋)采取 适用的基础形式、桩径,以节约造价及满足工期要求。 5.采用桩基础时,单桩竖向承载力特征值及R a的计算应符合下列规定: 1)竖向荷载效应标准组合: 在轴心竖向力Q k作用下:Q k≤R a,在偏心竖向力Q ikmax作用下,尚应满足Q ikmax≤1.2R a; 2)竖向荷载与风荷载效应标准组合: 在轴向竖向力Q k作用下Q k≤1.2R a,在偏心竖向力Q ikmax作用下,尚应满足Q ikmax≤1.3R a; 3)竖向荷载与地震作用效应标准组合: 在轴心竖向力Q k作用下Q k≤1.25R a,在偏心竖向力Q ikmax作用下,尚应满足Q ikmax≤1.5R a; 设计时应按满足第1)条要求后,进行第2)、3)条验算,同时除按地基岩土条件确定单桩竖向承载力特征值R a外,桩身尚应满足截面承载力设计值的要求。 6.对高强砼预应力管桩: 1 2)对非抗拔桩,可利用桩的纵向钢筋或另加插筋锚入承台,两者无特殊情况不应同时采用; 3)对管桩承台,底筋50%上弯即可; 4)采用高强混凝土预应力管桩(PHC,桩身混凝土强度等级C80)基础时,如无特殊要求,应采用A型管桩;5)设计中应明确管桩节间的焊接(满焊)要求(尤其对抗拔桩,否则按最后一节管桩计算抗拔力),并注明壁厚、桩尖构造等; 6)桩顶与承台的连接须区分抗拔与非抗拔的要求; 7)根据广东省《建筑地基基础设计规范》DBJ 15-31-2003第10.3.3条规定,桩顶嵌入设有混凝土垫层的承台的长度为50mm即可; 8)对预应力管桩基础,要求提供静压和锤击两种工艺标准; 9)对先开挖后打桩的施工顺序,若施工中桩顶标高低于设计标高时要求提供桩顶接驳大样; 10)对采用管桩基础的地下室,其外墙中的单层柱子以单柱单桩为宜,同时可在外墙的拐角处视墙体跨度大小情况布置一管桩; 7.灌注桩的配筋率为0.2~0.65%。地质条件差,桩径小取大值,地质条件好,桩径大取小值。 8. 基础(地下室)的埋深设计: 1)根据广东省《建筑地基基础设计规范》DBJ15-31-2003第 6.1条以及国标《建筑地基基础设计规范》GB50007-2002第5.1.2、5.1.3条规定,在满足地基稳定和变形要求的前提下,基础宜浅埋。对桩基础,其埋置深度取建筑物高度的1/20。此外还应比较场地地貌的原始标高与设计标高的关系,以确定填土或挖土两者对基础埋深不同的处理要求; 2)由于塔楼基础(承台)与底板结合,设置在同一标高平面,有更好的基础整体性,受力传递明确,同时避免出现延性差的小剪跨比剪力墙(柱),亦简化施工工序有利于保证施工质量,故高层结构在有地下室的塔楼基础(承台)与底板应取同一标高(无地下室部分按第1)条设计; 9.电梯井剪力墙基础与地下室底板不能一次浇筑时应处理好施工缝问题:电梯底坑井壁与电梯基础不能同时浇筑 时建议于基础以上300mm处增设止水钢板(厚度3mm,宽300mm)。 注:电梯底坑井壁与基础不允许以“采取扩宽至基础边的做法”来达至一次浇筑。 10.对‘T’形或‘I’形墙柱截面,有条件的尽量设置三角形、矩形或菱形基础以增强基础的纠偏能力,避免设 置‘T’形或‘I’形基础。 11.对桩基承台,除单桩、双桩、两柱(或多柱)联合承台、电梯承台以及体积超过15m3的桩基承台需要设置面 层构造钢筋外,其余承台一律不需设置。当基础面与地下室底板面标高一致时,底板面的贯通筋应视为基础面层的附加构造筋。 六.结构选型 1.本工程为32F或33F高层住宅,建议采用剪力墙(局部短肢剪力墙,但其面积<50%,抗倾覆弯矩<40%)结构,电梯井应根据计算需要设置剪力墙; 2.地下室顶板:本工程地下室层高为 3.2米,需要采用预应力平板结构形式,该层梁板选用C35混凝土。七.塔楼平面布置原则

经验分享 供应链管理8大关键指标!

经验分享供应链管理8大关键指标! 企业在进行供应链管理的优化和革新时,首先必须明确未来新供应链体系下各主要业务指标的,要使供应链的优化和改革有目标、有方向,做到有的放矢。下面跟大家聊聊供应链管理8大关键指标。 (一) 产销率指标工业产品销售率(产销率)是指工业企业在一定时期已经销售的产品总量与可供销售的工业产品总量之比,它反映工业产,反之则小。企业供应链产销率是指一定时期内供应链各节点已销售出去的产品和已生产的产品数量的比值。产销率=一定时期内供应链某节点已销售产品数/一定时期内供应链该节点已生产产品数该指标可反映供应链各节点在一定时期内的产销经营状况、供应链资源(包括人、财、物、信息等)有效利用程度、供应链库存水平。该指标值越接近1,说明供应链节点的资源利用程度和成品库存越小。(二) 产需率指标产需率是与产销率密切相关的一个指标,它从另一个角度衡量了供应链系统的整体运营状况。产需率是指在一定时间内,企业供应链各节点已生产的产品数(或提供的服务)与其下游节点(或用户)对该产品(或服务)的需求量的比值,即:产需率指标=一定时期内某节点已生产的产品数(或提供的服务)/一定时期内下游节点对该产品(或服务)的需求数该指标反映供应链各

节点间的供需关系。产需率越接近1,说明上下游节点间的供需关系协调,准时交货率高,反之则说明上下游节点间的准时交货率低或综合管理水平较低。根据企业管理中的“木桶原理”,在实际评价中,我们可以选取“木桶”中最短的那块“木板”即产需率最低的节点的产需率作为企业供应链产需率总体评价的指标值。(三) 产品出产(或服务)循环期指标供应链产品出产(或服务)循环期是指供应链各节点产品出产(或服务)的出产节拍或出产间隔时间。该指标可反映各节点对其下游节点需求的响应程度。循环期越短,说明该节点对其下游节点的快速响应性越好。在实际评价中,我们可以以各节点的循环期总值或循环期最长的节点指标值作为 整个供应链的产品出产(或服务)循环期。(四) 供应链总运营成本指标供应链总运营成本包括供应链通讯成本、各物料、在制品、成品库存费用、各节点内外部运输总费用等。反映的是供应链的运营效率。(五) 库存周转率库存周转率是指某时间段的出库总金额(总数量)与该时间段库存平均金额(或数量)的比。是指在一定期间(一年或半年)库存周转的速度。提高库存周转率对于加快资金周转,提高资金利用率和变现能力具有积极的作用。库存周转率考核的目的在于从财务的角度计划预测整个公司的现金流,从而考核整个公司的需求与供应链运作水平。库存周转率的计算公式,实际评价中可用如下公式进行计算:库存周转率=(使用数

浅析房建工程结构优化设计

浅析房建工程结构优化设计 发表时间:2019-07-12T09:47:04.203Z 来源:《建筑学研究前沿》2019年7期作者:王志鹏 [导读] 房屋建筑是现代城市中的重要空间,为居民的日常工作与生活创造室内环境。 摘要:本文以房屋建筑工程结构设计为研究对象,对其在时代科技化、智能化领域中的应用优化策略进行分析。通过对房屋建筑结构设计基本原则的阐述,从数字技术、创新理念、细部结构、仿真环境、数据模型这五个方面,细化论证房屋建筑结构的设计优化策略,为相关研究与应用提供参考。 关键词:房屋建筑;结构设计;智能化;计算机技术 引言 房屋建筑是现代城市中的重要空间,为居民的日常工作与生活创造室内环境。在生活质量不断提升的背景环境下,对于房屋建筑的要求也日益提升,这就需要建筑工程设计人员,在进行结构设计的过程中,坚守建筑设计基本原则,并在时代科技化背景环境下,利用行业的发展优势,对工作内容进行创新管理,增强房物建筑结构设计优化的实用价值。 1房屋建筑结构设计原则 房屋建筑结构设计中,功能性是其基本属性。尤其在社会经济环境高速发展的背景下,人们需要建筑结构设计的功能性,作为正常生产生活的支撑条件。而在设计过程中,还需建筑空间中的协调性、美观性以及舒适性,形成完整的室内环境。 同时,由于房屋建筑的使用与居住需要,必须在进行结构设计的过程中,重点关注建筑空间的安全性内容。安全性设计内容,不仅在建筑结构施工过程中起到关键作用,也会在房屋建筑投入使用的过程中,成为保证使用者生命财产安全的重要依据[1]。因此,在进行设计时,材料选择、用量分析、结构科学性等内容,都需要得到建筑结构设计者的高度重视,并作为设计的核心内容,进行完善与优化。 另外,房屋建筑工程结构设计,是指导工程项目施工的重要组成部分。在进行设计优化的同时,需要从经济成本的角度对设计内容进行评估,并在合理优化调整的基础上,降低建设单位在成本投入中的消耗。这一内容,在当前竞争十分激烈的建筑行业中,显得尤为重要,是保证建筑公司市场竞争力的关键,也是实现建设单位良好发展的基础。所以,必须在设计环节上进行调节,在控制成本的基础上,对投入成本消耗与建筑使用节能性提供基础保障条件。 2房屋建筑结构设计优化策略 2.1引入数字化技术手段 房屋建筑结构设计内容有较为悠久的历史,在不同文化环境中形成了风格各异功能明显的建筑空间。在时代资讯条件与技术水平的影响下,通过交流与创新,形成了多种类型的结构设计方案[2]。在对特定建筑项目展开设计工作的过程中,可以尝试通过数字化技术手段,完成结构设计方式的选择与应用。尤其是在数字化程序软件的应用中,对于房屋建筑结构设计,产生了典型的积极影响,是提高设计质量的主要途径与关键手段。 例如,北京奥运会的主体育馆“鸟巢”(如图 1 所示),在进行设计的过程中,其设计师赫尔左德、德梅隆引入了数字化的技术方法,通过计算机软件程序与硬件系统的计算能力,对结构中的细化参数进行分析与计算,并在完成设计数据计算的基础上,对系统使用中的合理性作出全面的辩证分析,以此保证“鸟巢”在结构设计的合理性,为其在结构稳定性的基础上,增添了美观表现效果,提高了应用价值。 图 1 鸟巢 对此,为了保证数字化技术手段的应用条件,需对房屋建筑结构设计的业务能力进行优化升级,使其能够适应计算机程序的使用,并在合理利用先进辅助软件程序的基础上,保证设计内容的科学性。 2.2增加创新性设计理念 房屋建筑项目的施工阶段中,有些具体内容无法用数据信息进行表达,而为了保证此类内容能够正常的在现实环境中构建出来,需要在设计内容上,通过理念思想的内容表达,对工程施工工作形成指导。方法上,需借助信息化时代的背景优势,将计算机程序作为辅助建筑结构设计的有效工具,并在与设计师工作经验相结合的基础上,形成人性化的设计判断,并最终达到开发创新的效果。 实际设计应用中,需以建设条件为基础,在熟练掌握电脑程序软件的基础上,增加其在设计中的功能应用深度。由此,使计算机程序软件的应用条件能够适应设计师的应用需要,并在构成最终设计方案时,可充分表达创新设计理念。 从设计师的角度出发,其经验丰富程度,会对创新性的设计内容产生明显的影响。拥有丰富经验的设计师,可以在房屋建筑结构设计中,更好地对数据条件进行分析与判断,并从中整理出精确的数据内容,为创新型的设计工作提供指导。 例如,在“水立方”的建筑结构设计中,设计师在对 ETFE 膜材料的了解下,发挥其特性优势,并在构筑建筑空间的过程中,形成了外形近似于水泡的建筑结构。在这种创新型设计理念的指导下,使国家游泳中心展现出了独具特色的建筑形式(如图 2 所示),增加观赏性的同时,发挥出了创新理念的应用优势。 2.3保证细化结构完整性 房屋建筑的安全性,是设计工作的核心内容,在保证安全的基础上,还需尽可能地提升家住空间的耐久性,并在保证设计耐久度的同时,实现建筑设计优化的工作目标。尤其在细节化内容的控制上,对于此类内容的设计工作,直接影响到建筑结构的稳定性与连接状态。

高层设计七大比值调整方法

高层设计七大比值调整方法 2010-06-22 23:38 确保结构安全性,以免竖向刚度突变,见抗规3.4.2,见高规4.3.5。周期比不满足要求,提高结构的扭转刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,则说明结构的经济技术指标。 1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14。 轴压比不满足时的调整方法: 1)程序调整:SATWE程序不能实现。 2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。 2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规3.3.13。这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。 剪重比不满足时的调整方法: 1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。2)人工调整:如果还需人工干预,可按下列三种情况进行调整: a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度; b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标; c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。 3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2,高规4.4.2;对于形成的薄弱层则按高规5.1.14予以加强。 刚度比不满足时的调整方法: 1)程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。 2)人工调整:如果还需人工干预,可适当降低本层层高和加强本层墙、柱或梁的刚度,适当提高上部相关楼层的层高和削弱上部相关楼层墙、柱或梁的刚度。 4、位移比:主要为控制结构平面规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。见抗规3.4.2,高规 4.3.5。 位移比不满足时的调整方法: 1)程序调整:SATWE程序不能实现。

结构限额设计控制指标(版)

地产集团结构设计限额控制指标 地产集团研发中心 二〇一五年四月一日

目录 一、总则................................................ 错误!未定义书签。 二结构设计限额控制指标说明 ............................. 错误!未定义书签。三、附表.. (6) 附表A:钢筋和混凝土含量统计表 \ 一、总则 编制目的:加强结构专业设计管理,做好限额设计和成本控制工作。 编制时间:2015年4月 主编单位:地产集团研发中心 使用说明:1. 项目结构材料用量指标(包括钢筋和混凝土)均不得大于本限额控制值。各项目完成施工图预算统计后,按《钢筋和混凝土含量统计表》(见附表A)的要求统 计、上报。 2. 在结构方案定案与扩初设计之间,由设计院编写项目《结构统一技术措施》, 经集团工程、地区公司设计管理部评审后,进行结构限额设计。 3. 本标准由地产集团研发中心负责管理和条文解释。 制订依据:《混凝土结构设计规范》(GB50010-2010) 《建筑抗震设计规范》(GB50011-2010) 《高层建筑混凝土结构技术规程》(JGJ3-2010) 《建筑结构荷载规范》(GB50009-2012) 《建筑地基基础设计规范》(GB50007-2011) 《建筑工程建筑面积计算规范》(GB/T50353-2013)

二、结构设计限额控制指标使用说明 1.结构材料用量指标计算规则为:计算范围内相应结构材料(包含梁、板、柱及女儿墙、 拉板、凸窗板、空调板等(除构造柱、过梁、砌体拉筋、室外楼梯等二次构造)的钢筋(G)和混凝土(V))用量除以计算范围内的“建筑面积”(M),即钢筋用量指标=G/M(kg/m2),混凝土用量指标=V/M(m3/m2)。 2.统计结构材料用量指标所用的“建筑面积”为成本计算方式采用的《建筑工程建筑面积 计算规范》GB/T50353-2013为准,其与建筑设计计算方式的规划面积主要差异处如下: 3.当项目存在留给装修加层的两层高房间面积(M7)时,钢材用量计算规则为:

相关文档
相关文档 最新文档