文档库 最新最全的文档下载
当前位置:文档库 › 高中物理能量专题总结资料讲解

高中物理能量专题总结资料讲解

高中物理能量专题总结资料讲解
高中物理能量专题总结资料讲解

高中物理能量专题总

精品文档

高中物理常见的各种能量及能量守恒定律

收集于网络,如有侵权请联系管理员删除

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

高中物理弹簧专题总结

高中物理弹簧专题总结弹簧涉及的力学问题通常是动态的,常与能量、电场、简谐振动相结合,综合性强、能力要求高,且与日常生活联系密切,近几年来成为高考的热点。下面从几个角度分析弹簧的考查。 一弹簧中牛顿定律的考查与弹簧相连的物体运动时通常会引起弹力及合力发生变化,给物体的受力分析带来一定难度,这类问题关键是挖掘隐含条件,结合牛顿第二定律的瞬时性来分析。 例1 如图1 所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态。设拔去销钉M 瞬间,小球加速度的大小为12m/s2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(g 取10m/s2)(BC )A、22 m/s2,竖直向上B、22 m/s2,竖直向下 C、2 m/s2,竖直向上 D、2 m/s2,竖直向下 解析:开始小球处于平衡状态所受的合力为零,拔去销钉M 瞬间小球受的合力与上面弹簧弹力大小相等方向相反。若此时加速度方向向上,则上面弹簧弹力F= m × 12, 方向向下。若拔去销钉N 瞬间则小球受到本身的重力和F,故加速度a=22m/s2,方向竖直向下; 反之则为C。 图2 图1 练习1如图 2 所示,质量为m 的物体A,放置在质量为连,它们一起在光滑的水平面上做简谐运动,振动过程中的物体 B 上,B与轻质弹簧相 A、B 之间无相对运动,设弹簧的劲 度系数为k,当物体离开平衡位置的位移为x时,A、B 间的摩擦力的大小等于( mm kx D 、kx M M m A 、0 B、kx C、D、 练习2如图3所示,托盘 A 托着质量为m的重物B, 弹簧的上端悬于O 点,开始时弹簧竖直且为原长。今让托盘 速直线运动,其加速度为a(a

人教版高中物理第十二章 电能 能量守恒定律精选试卷专题练习(解析版)

人教版高中物理第十二章电能能量守恒定律精选试卷专题练习(解析版) 一、第十二章电能能量守恒定律实验题易错题培优(难) 1.某位同学用如图甲所示的多用电表测量电阻,要用到选择开关和两个部件.请根据下列步骤完成电阻测量: (1)在使用前,发现多用电表指针如图乙所示,则他应调节__________ (选填或或). (2)正确处理完上述步骤后,他把开关打在欧姆挡,把红黑表笔短接,发现指针如图丙所示,则他应调节__________ (选填或或). (3)正确处理完上述步骤后,他把红黑表笔接在某定值电阻两端,发现指针如图丁所示,则他应采取的措施是①___________________;②____________________. (4)正确处理完上述步骤后,他把红黑表笔接在定值电阻两端,发现指针如图戊所示,则该定值电阻的阻值___________. 【答案】(1)S (2)T (3)①将打到欧姆挡;②将两表笔短接,重新调节,使指针指在欧姆零刻度线处(4) 【解析】 【分析】 【详解】 (1)在使用前,发现多用电表指针如图乙所示,则应机械调零,即他应调节S使针调到电流的零档位. (2)把开关打在欧姆挡,把红黑表笔短接,即欧姆调零,应该调到电阻的零档位,此时要调节欧姆调零旋钮,即T (3)他把红黑表笔接在某定值电阻两端,发现指针如图丁所示,说明待测电阻较小,应该换小挡,即换挡,换挡必调零,所以要重新调零即将两表笔短接,重新调节,使指针指

在欧姆零刻度线处. (4)根据欧姆表读数原则可知欧姆表的读数为 【点睛】 要熟练万用表的使用规则,并且要注意在换挡时一定要欧姆调零. 2.(1)下列给出多种用伏安法测电池电动势和内阻的数据处理方法,其中既能减小偶然误差又直观、简便的是_____ A.测出两组I、U 的数据,代入方程组E=U1+I1r 和E=U2+I2r B.多测几组I、U 的数据,求出几组E、r,最后分别求出其平均值 C.测出多组I、U 的数据,画出U-I 图像,在根据图像求E、r D.多测几组I、U 的数据,分别求出I 和U 的平均值,用电压表测出断路时的路端电压即为电动势E,再利用闭合电路欧姆定律求出内电阻r (2)(多选)用如图甲所示的电路测定电池的电动势和内阻,根据测得的数据作出了如图乙所示的U-I 图像,由图像可知_______ A.电池的电动势为1.40V B.电池内阻值为3.50Ω C.外电路短路时的电流为0.40A D.当电压表示数为1.20V 时,电路电流为0.2A (3)如上(2)中甲图所示,闭合电键前,应使变阻器滑片处在________(填“左”或“右”)端位置上. (4).(多选)为了测出电源的电动势和内阻,除待测电源和开关、导线以外,配合下列哪组仪器,才能达到实验目的_______ A.一个电流表和一个电阻箱 B.一个电压表、一个电流表和一个滑动变阻器 C.一个电压表和一个电阻箱 D.一个电流表和一个滑动变阻器 【答案】C;AD;左;ABC 【解析】 (1) A项中根据两组测量数据可以算出一组E、r值,但不能减少偶然误差;B项中可行,但不符合题目中“直观、简便”的要求,D选项的做法是错误的,故符合要求的选项为C.(2) A项:由图示图象可知,电源U-I图象与纵轴交点坐标值为1.40,则电源的电动势测量值为1.40V,故A正确;

高一物理天体运动方面练习题

物理测试 1、 两颗人造卫星A 、B 绕地球做圆周运动,周期之比为TA :TB=1:8;则轨道半径之比和运动速率之比分别为( ) A 、RA :RB=4:1 vA :vB=1:2 B、RA :RB=4:1 vA :vB=2:1 C、RA :RB=1:4 vA :vB=1:2 D、RA :RB=1:4 vA :vB=2:1 2、如图,在一个半径为R、质量为M的均匀球体中,紧贴着球的边缘挖去一个半径为R/2的球星空穴后,剩余的 阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大? 3、两个球形的行星A、B各有一个卫星a和b,卫星的圆轨迹接近各行星的表面。如果两行星质量之比为MA/MB=p,两个行星半径之比RA/RB=q,则两卫星周期之比TA/TB为______ 4、一颗人在地球卫星以初速度v发射后,可绕地球做匀速圆周运动,若使发射速度为2v,该卫星可能( ) A、绕地球做匀速圆周运动,周期变大 B、绕地球运动,轨道变为椭圆 C、不绕地球运动,轨道变为椭圆 D、挣脱太阳引力的束缚,飞到太阳系以外的宇宙 5、如图,有A、B两颗行星绕同一颗恒星做圆周运动,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 (1)至少经过多长时间,两行星再次相距最近? (2)至少经过多长时间,两行星相距最远? 6、已知地球的质量为M,地球的半径为R,地球的自传周期为T,地球表面的重力加速度为g,无线电信号的传播 速度为C,如果你用卫星电话通过地球卫星中的转发器发的无线电信号与对方通话,则在你讲完话后要听到对 方的回话,所需要的最短时间为( ) A、322244πT gR c ? B 、322242πT gR c ? C 、)4(43222R T gR c -?π D 、)4(23222R T gR c -?π 7、在天体演变过程中,红色巨星发生爆炸后,可以形成中子星,中子星具有极高的密度。 (1)若已知某中子星的密度为ρ,该中子星的卫星绕它作圆周运动,试求该中子星运行的最小周期。

2019高考物理一轮复习天体运动题型归纳

天体运动题型归纳 李仕才 题型一:天体的自转 【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .1 2 4π3G ρ?? ??? B .1 2 34πG ρ?? ??? C .1 2 πG ρ?? ??? D .1 2 3πG ρ?? ??? 解析:在赤道上2 2 R m mg R Mm G ω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为 22R m R Mm G ω=②又 T π ω2= ③ 33 4 R M ρπ= ④ ②③④得:2 3GT π ρ= ④即21 )3(ρπG T =选D 练习 1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN ,假设地球是质量分布 均匀的球体,半径为R 。则地球的自转周期为( ) A. 2T = 2T =R N m T ?=π2 D.N m R T ?=π2 2、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为: A. 0203g g g GT π- B. 0203g g g GT π- C. 23GT π D. 23g g GT πρ=

题型二:近地问题+绕行问题 【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。已知月球半径为R ,引力常量为G 。则下列说法正确的是 A .月球表面的重力加速度g 月=hv 2 L 2 B .月球的质量m 月=hR 2v 20 GL C .月球的第一宇宙速度v = v 0 L 2h D .月球的平均密度ρ=3hv 2 2πGL 2R 解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2 ,联立解得g 月=2hv 2 0L 2;由mg 月=G mm 月R 2, 解得m 月=2hR 2v 2 0GT 2;由mg 月=m v 2 R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3hv 2 2πGL 2R 。 练习:“玉兔号”登月车在月球表面接触的第一步实现了中国人“奔月”的伟大梦想。机器人“玉兔号”在月球表面做了一个自由下落试验,测得物体从静止自由下落h 高度的时间t ,已知月球半径为R ,自转周期为T ,引力常量为G 。则下列说法正确的是 A .月球表面重力加速度为t 2 2h B .月球第一宇宙速度为 Rh t C .月球质量为hR 2 Gt 2 D .月球同步卫星离月球表面高度 3hR 2T 2 2π2t 2-R 【例题2】过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕。“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的1 20 。该中心恒星与太阳的质量比约为 A.1 10 B .1 C .5 D .10

高中物理复习专题 动量与能量(精选.)

专题三动量与能量 思想方法提炼 牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题. 一、能量 1.概述 能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度. 高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。在每年的高考物理试卷中都会出现考查能量的问题。并时常发现“压轴题”就是能量试题。 2.能的转化和守恒定律在各分支学科中表达式 (1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。(动能定理) (2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。(功能原理) 注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能 (2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。 (3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。重力势能 变化只与重力做功有关,与其他做功情况无关。 (4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。 注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。 (5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。 (6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之 差。 (7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。(可以以粒子的动

高中物理天体运动习题

一.开普勒三大定律 第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 第二定律:从太阳到行星的连线在相等的时间内扫过相等的面积。 第三定律:行星轨道半长轴的三次方与公转周期的二次方的比值是一个常量。 1.(2016新课标3)关于行星运动的规律,下列说法符合史实的是 A.开普勒在牛顿定律的基础上,导出了行星运动的规律 B B.开普勒在天文观测数据的基础上,总结出了行星运动的规律 C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因 D.开普勒总结出了行星运动的规律,发现了万有引力定律 2.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知(C ) A .太阳位于木星运行轨道的中心 B .火星和木星绕太阳运行速度的大小始终相等 C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 二.星体密度 1.假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g,地球自转的周期为T ,引力常数为G ,则地球的密度为:B A.002π3g g g GT - B.g g g -002GT π3 C.2GT π 3 D.g g GT 02π3 2.一个物体静止在质量均匀的球形星球表面的赤道上。已知万有引力常量为G ,星 球密度为P ,若由于星球自转使物体对星球表面的压力恰好为零,则星球自转的角速度为A A.π34G ρ B.G π 3ρ C.π34G ρ D.G π3ρ 3.已知地球和月球半径的比值为4,地球和月球表面重力加速度的比值为6,则地球和月球密度的比值为B 4.我国的“嫦娥二号”卫星绕月球表面做匀速圆周运动时,运行周期为T 。则关于月球的平均密度ρ的表达式为(k 为某个常数)C 三.双星系统 1.宇宙中有这样一种三星系统,系统由两个质量为m 的小星体和一个质量为M 的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r.关于该三星系统的说法中正确的是 ( BC ). A.在稳定运行情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧 B.在稳定运行情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧 C.小星体运行的周期为T =) 4(πr 42 3 m M G + D.大星体运行的周期为T =)4(πr 423 m M G + 2.两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是C A.质量大的天体线速度较大 B.质量小的天体角速度较大 C.两个天体的向心力大小相等 D.若在圆心处放一个质点,它受到的合力为零 3.如图所示,两星球相距为L ,质量比为mA :mB=1:9,两星球半径远小于L .从星球A 沿A 、B 连线向B 以某一初速度发射一探测器.只考虑星球A 、B 对探测器的作用,下列说法正确

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

电磁感应中的能量问题分析高中物理专题.docx

第 10 课时电磁感应中的能量问题分析 一、知识内容: 1、分析:棒的运动过程→ 运动性质→ 遵从规律; 2、掌握能量的转化方向:哪些能量减少,哪些能量增加; 3、电能→内能 Q:I 恒定→Q I 2 Rt ;I变化:用有效值求,或能量守恒; 4、常用知识点:动能定理、能量守恒、W 、P、Q、等。 二、例题分析: 【例 1】如图所示, PQ 、MN 为足够长的两平行金属导轨,它们之间连接一个阻值为R=8 Ω的电阻,导轨间距为 L=1m ,一质量 m=0.1kg,电阻 r=2 Ω的均匀金属杆水平放在 导轨上,它与导轨的滑动摩擦因数 3 / 5 ,导轨平面倾角300,在垂直导轨平面方向有匀强磁场, B=0.5T ,今让金属杆由静止开始下滑,从杆静止开始到杆 AB恰好匀速运动的过程中经过杆的电量q 1C ,求: (1)当 AB 下滑速度为2m/ s时加速度的大小 (2)AB 下滑的最大速度 (3)从静止开始到 AB 匀速运动过程R 上产生的热量? 【例2】如图所示,两根间距为l 的光滑金属导轨(不计电阻),由 一段圆弧部分与一段无限长的水平段部分组成,其水平段加 有竖直向下方向的匀强磁场,其磁感应强度为B,导轨水平段 上静止放置一金属棒cd,质量为2m,电阻为2r,另一质量为 m,电阻为 r 的金属棒ab,从圆弧段M 处由静止释放下滑至 N 处进入水平段,圆弧段 MN 半径为 R,所对圆心角为 60°,求: (1) ab 棒在 N 处进入磁场区速度多大?此时棒中电流是多少? (2) cd 棒能达到的最大速度是多大? (3) cd 棒由静止到达最大速度过程中,系统所能释放的热量是多少? 【例 3】用质量为m、总电阻为R 的导线做成边长为l 的正方形线框MNPQ ,并将其放在倾 光磁静角为θ的平行绝缘导轨上,平行导轨的间距也为l,如图所示。线框与导轨之间是滑的,在导轨的下端有一宽度为l(即 ab=l)、磁感应强度为 B 的有界匀强磁场,场的边界aa′、bb′垂直于导轨,磁场的方向与线框平面垂直。某一次,把线框从 止状态释放,线框恰好能够匀速地穿过磁场区域。若当地的重力加速度为g,求:(1)线框通过磁场时的运动速度; (2)开始释放时, MN 与 bb′之间的距离; (3)线框在通过磁场的过程中所生的焦耳热。

高中物理天体运动专题练习

2014—2015学年高三复习———《天体运动》练习 1(2014年海淀零模)“神舟十号”飞船绕地球的运行可视为匀速圆周运动,其轨道高度距离地面约340km,则关于飞船的运行,下列说法中正确的是() A.飞船处于平衡状态 B.地球对飞船的万有引力提供飞船运行的向心力 C.飞船运行的速度大于第一宇宙速度 D.飞船运行的加速度大于地球表面的重力加速度 2(2014东城零模)“探路者”号宇宙飞船在宇宙深处飞行的过程中,发现A、B两颗均匀球形天体,两天体各有一颗靠近其表面飞行的卫星,测得两颗卫星的周期相等,以下判断正确的是() A. 两颗卫星的线速度一定相等 B. 天体A、B的质量一定不相等 C. 天体A 、B的密度一定相等 D. 天体A 、B表面的重力加速度一定不相等 3(2014顺义二模)地球赤道上有一相对于地面静止的物体A,所受的向心力为F1,向心加速度为a1,线速度为v1,角速度为ω1;绕地球表面附近做匀速圆周运动的人造地球卫星B (离地面的高度忽略)所受的向心力为F2,向心加速度为a2,线速度为v2,角速度为ω2;地球同步卫星C所受的向心力为F3,向心加速度为a3,线速度为v3,角速度为ω3。若上述的A、B、C三个物体的质量相等,地球表面重力加速度为g,第一宇宙速度为v,则() A.F1=F2>F3 B.a1=a2=g>a3 C.ω1=ω3<ω2 D. v1=v2=v>v3 4(2014昌平二模)“马航MH370”客机失联后,我国已紧急调动多颗卫星,利用高分辨率对地成像、可见光拍照等技术对搜寻失联客机提供支持。关于环绕地球运动的卫星,下列说法正确的是() A.低轨卫星(环绕半径远小于地球同步卫星的环绕半径)都是相对地球运动的,其环绕速率可能大于7.9km/s B.地球同步卫星相对地球是静止的,可以固定对一个区域拍照,但由于它距地面较远,照片的分辨率会差一些 C.低轨卫星和地球同步卫星,可能具有相同的速率 D.低轨卫星和地球同步卫星,可能具有相同的周期 5(2014丰台二模)“嫦娥三号”探测器已成功在月球表面预选着陆区实现软着陆,“嫦娥三号”着陆前在月球表面附近绕月球做匀速圆周运动,经测量得其周期为T。已知引力常量为G,根据这些数据可以估算出() A.月球的质量B.月球的半径 C.月球的平均密度D.月球表面的重力加速度 6(2014顺义二模)地球赤道上有一相对于地面静止的物体A, 所受的向心力为F1,向心加速度为a1,线速度为v1,角速度 为ω1;绕地球表面附近做匀速圆周运动的人造地球卫星B(离 地面的高度忽略)所受的向心力为F2,向心加速度为a2,线速 度为v2,角速度为ω2;地球同步卫星C所受的向心力为F3,

高中物理必修第3册第十二章 电能 能量守恒定律试卷专题练习(word版

高中物理必修第3册第十二章电能能量守恒定律试卷专题练习(word版 一、第十二章电能能量守恒定律实验题易错题培优(难) 1.某同学在做“测电源电动势与内阻”的实验中,可使用的器材有: A.两只相同的毫安表(量程I g=3mA,内阻R g=1000Ω); B.滑动变阻器R1(最大阻值20Ω); C.滑动变阻器R2(最大阻值2000Ω); D.各种规格的定值电阻R0; E.电源E(电动势约为3.0V); F.开关、导线若干. 由于给出的毫安表量程太小,该同学首先要把一只毫安表改装成量程为0.6A的电流表,他需要把阻值为__________Ω的定值电阻R0与毫安表并联(结果保留一位小数).该同学将用如右上方的电路图进行实验,测定电源的电动势和内阻.在实验中发现变阻器的滑片由左向右逐渐滑动时,电流表G1示数逐渐增大,电流表G2示数接近3.0mA并且几乎不变,当滑片临近最右端时,电流表G2示数急剧变化.出现这种问题,应更换一个总阻值比原来______(选填“大”或“小”)的变阻器.在更换变阻器后,该同学连好电路,改变滑动变阻器滑片的位置,读出毫安表G1、G2的示数分别为I1、I2,并得到多组数据,建立直角坐标系,作出了I2和I1的关系图线,经拟合得到直线I2=3.0mA-0.4I1 ,则得出电源电动势E=_____V,内阻r=_____Ω.(保留一位小数) 【答案】5.0 Ω小 3.0V 2.0Ω 【解析】 【详解】 [1]已知量程I g=3mA,内阻R g=1000Ω, 0.6 I=A,设电流表的量程扩大的倍数为n, g I n I = 并联的电阻为R,根据并联电路的特点则有 1 g R R n = - 解得R=5.0Ω [2]当变阻器的滑片由左向右逐渐滑动时,变阻器的阻值逐渐减小,外电路电阻减小,电流表G1示数逐渐增大,电流表G2示数接近3.0mA并且几乎不变,说明变阻器的电阻接近零时,路端电压才接近电源电动势,出现这种问题,应更换一个总阻值比原来小的变阻器,[3][4]G1示数是1I时,电路中的总电流是21 200 I I +,由闭合电路的欧姆定律得

高中物理天体运动多星问题 (2)

双星模型、三星模型、四星模型 天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万 有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。 【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银 r ,1、 持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。 解析:双星绕两者连线上某点做匀速圆周运动,即: 22 21212 21L M L M L M M G ωω==---------? ..L L L =+21-------?由以上两式可得:L M M M L 2121+= ,L M M M L 2 12 2+= 又由1 2212214L T M L M M G π=.----------?得:) (221M M G L L T +=

【例题3】我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两 星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为(D ) A .2 12)(4GT r r r -2π B .2 312π4GT r C .2 32π4GT r D .2 122π4GT r r 答案:D , 球A 引球看成似处理 这样算得的运行周期T 。已知地球和月球的质量分别为且A 对A 根据牛顿第二定律和万有引力定律得L m M T m L +=22)( 化简得) (23 m M G L T +=π ⑵将地月看成双星,由⑴得) (23 1m M G L T +=π 将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得 L T m L GMm 2 2 )2(π= 化简得GM L T 3 22π=

人教高中物理天体运动练习题

人教版高中物理天体运动练习题

————————————————————————————————作者:————————————————————————————————日期:

必修二天体运动专项练习 一.选择题(共10小题) 1.(2014?南京模拟)宇宙空间中任何两个有质量的物体之间都存在引力,在实际生活中,为什么相距较近的两个人没有吸在一起?其原因是(B) A.他们两人除万有引力外,还有一个排斥力 B.万有引力太小,只在这一个力的作用下,还不能把他们相吸到一起 C.由于万有引力很小,地面对他们的作用力总能与之平衡 D.人与人之间没有万有引力 2.(2014?武汉模拟)牛顿时代的科学家们围绕万有引力的研究,经历了大量曲折顽强而又闪烁智慧的科学实践.在万有引力定律的发现历程中,下列叙述不符合史实的是(D)A.开普勒研究了第谷的行星观测记录,提出了开普勒行星运动定律 B.牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律 C.卡文迪许在实验室中准确地得出了引力常量G的数值 D.根据天王星的观测资料,哈雷利用万有引力定律计算出了海王星的轨道 解:A、开普勒总结出了行星运动的三大规律,故A正确; B、牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律,故B正确; C、牛顿发现了万有引力定律,卡文迪许在实验室中准确地得出了引力常量G的数值,故C正确; D、海王星是英国人亚当斯和法国人勒威耶根据万有引力推测出这颗新行星的轨道和位置,柏林天文台年轻的天文学家伽勒和他的助手根据根据勒威耶计算出来的新行星的位置,发现了第八颗新的行星﹣﹣海王星,故D错误; 3.(2014?海南)设地球自转周期为T,质量为M,引力常量为G,假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比为(A) A.B. C.D. 在赤道上物体所受的万有引力与支持力提供向心力可求得支持力,在南极支持力等于万有引力.解:在赤道上:G,可得① 在南极:② 由①②式可得:=.

关于高中物理知识点总结之能量守恒定律与能源知识点

关于高中物理知识点总结之能量守恒定 律与能源知识点 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。这就是能量守恒定律,如今被人们普遍认同。 1.化学能:由于化学反应,物质的分子结构变化而产生的能量。 2.核能:由于核反应,物质的原子结构发生变化而产生的能量。 3.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能的总量保持不变。 ●内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。 即 E机械能1+E其它1=E机械能2+E其它2 ●能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。 1.可再生能源:可以长期提供或可以再生的能源。 2.不可再生能源:一旦消耗就很难再生的能源。

3.能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。 1.太阳能 2.核能 3.核能发电 4、其它新能源:地热能、潮汐能、风能。 能源品种繁多,按其来源可以分为三大类:一是来自地球以外的太阳能,除太阳的辐射能之外,煤炭、石油、天然气、水能、风能等都间接来自太阳能;第二类来自地球本身,如地热能,原子核能(核燃料铀、钍等存在于地球自然界);第三类则是由月球、太阳等天体对地球的引力而产生的能量,如潮汐能。 【一次能源】指在自然界现成存在,可以直接取得且不必改变其基本形态的能源,如煤炭、天然气、地热、水能等。由一次能源经过加工或转换成另一种形态的能源产品,如电力、焦炭、汽油、柴油、煤气等属于二次能源。 【常规能源】也叫传统能源,就是指已经大规模生产和广泛利用的能源。表2-1所统计的几种能源中如煤炭、石油、天然气、核能等都属一次性非再生的常规能源。而水电则属于再生能源,如葛洲坝水电站和未来的三峡水电站,只要长江水不干涸,发电也就不会停止。煤和石油天然气则不然,它们在地壳中是经千百万年形成的(按现在的采用速率,石

高考物理天体运动公式归纳

高考物理天体运动公式归纳 高考物理天体运动公式 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2; ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地 +h)/T2{h&asymp;36000km,h:距地球表面的高度,r地:地球的半径} 强调:(1)天体运动所需的向心力由万有引力提供,F向=F 万;(2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

高考物理分子动理论、能量守恒定律公式 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) (3)r>r0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥&asymp;0,F分子力&asymp;0,E分子势能&asymp;0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册 P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

高中物理天体运动知识

“万有引力定律”习题归类例析 万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析. 一、求天体的质量(或密度) 1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量 由mg=G 得.(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.) [例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为 设初始平抛小球的初速度为v,则水平位移为x=vt.有○1 当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有② 在星球表面上物体的重力近似等于万有引力,有mg=G ③ 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量 卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得 若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为 [例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)() A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r B.月球绕地球运行的周期T和地球的半径r C.月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T和轨道半径r [解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系 可得

2017年高中物理第七章宇宙的结构和恒星的演化天体运动知识点总结

第七章宇宙的结构和恒星的演化天体运动 1.月球的存在对地球的影响:潮汐主要由于月球对地球的的万有引力影响而产生的。地球 上离月球最近和最远的两个点形成了潮汐现象的高潮点。 2.太阳系共有八颗行星。从距离太阳最近行星算起,依次为水星,金星、地球、火星、木 星、土星、天王星和海王星。距离太阳越近的行星,公转速度越大。除水星和金星外,其他行星都有卫星。木星和土星的卫星最多。 3.宇宙:所有的空间及其中的万物。光年的换算:1l.y.=9.46*1015m 4.根据今天宇宙膨胀的速度,宇宙在一二百亿年前脱胎于高温、高密状态,诞生于一次大 爆炸,这就是所谓的宇宙大爆炸假设。 5.银河系是一种旋涡状星系。太阳系正处于其中一条旋臂的边缘。 6.恒星的分类:1)根据恒星的物理特征来分类:体积、温度和亮度。2)按照体积大小分, 依次为超巨星、巨星、中型星、白矮星和中子星。 7.恒星的颜色与它的表面温度有关;恒星的亮度与体积、温度、它与地球的距离有关。 8.视差测距法测恒星距离:以日、地距离为基线,利用周年视差,通过几何方法来测量恒 星的距离的方法,叫做视差测距法。要会计算 9.恒星的物质组成:绝大多数恒星都有着和太阳相同的化学成分:73%氢、25%的氦及2% 的其他元素。 10.恒星演化的几个阶段:1)恒星演化分:诞生期、存在期和死亡期。2)一颗恒星的寿命 取决于它的质量,质量大的恒星寿命短。 11.万有引力定律: 1.宇宙间的一切物体都具有相互吸引力。两个物体间的引力大小,跟它们质量的乘积成正比,跟它们的距离的二次方成反比。 ①公式是引力常量G=6.67×10-11N·m2/kg2 (或写成G= 6.67×10-11N·m2/kg2) ②牛顿发现的万有引力现象并推出万有引力定律。引力常量首先由英国的卡文迪许利用扭秤实验准确测出,扭秤的关键就是在T形架的竖直部分装一个平面镜,将引力作用于扭秤产生的微小扭转效果,通过光点的移动加以放大。 ③万有引力定律的公式严格讲只适用于两个质点间的相互作用,当两个物体间的距离远大于自身直径时,也可以使用,r即两个物体中心距离。

相关文档
相关文档 最新文档