文档库 最新最全的文档下载
当前位置:文档库 › 纳秒级脉冲电源的研究与设计

纳秒级脉冲电源的研究与设计

纳秒级脉冲电源的研究与设计
纳秒级脉冲电源的研究与设计

纳秒级脉冲电源的研究与设计

随着脉冲功率技术在军事、医疗、环保等领域的快速发展,对于大功率脉冲电源的上升沿宽度要求日益提高,高功率快脉冲也逐渐成为脉冲功率技术的研究热点和发展趋势。而如何以较低的成本在提高脉冲电源电压等级的同时陡化脉冲宽度也是研究的难点之一。

以高压快脉冲为技术核心,以小型化、高重频和高效率为发展方向,本论文提出了一种低成本对称式的脉冲发生拓扑,同时以磁压缩技术陡化脉冲宽度,并深入研究了磁开关的控制技术,以实现高稳定性的纳秒级脉冲电源的研制,论文主要内容分为以下三个部分:1、提出了一种具有对称串联结构的高压脉冲电源拓扑,大幅降低成本;基于这种新型的高压脉冲电源拓扑,分析并初步验证了各种工作环境下的可行性。搭建了该高压脉冲电源的仿真模型,仿真验证了在正常运行和发生闪络等不同状态下电路的工作原理。

在实验室完成了该高压脉冲电源的研制,实验验证了在正常运行和发生闪络等不同状态下对于电路的分析,并在实际应用中证明了该拓扑相对于现有研究的优越性。2、介绍了脉冲磁压缩技术的工作原理,分析了各个磁芯参数对磁开关性能的影响,基于此,确定了磁芯材料的选择,并搭建了磁芯检测平台测量磁芯的磁滞曲线,对比了不同磁芯材料的区别。

基于脉冲电源体积小型化原则,分析了影响磁开关体积的因素,并利用数学模型确定了磁开关参数的最优解。系统地分析了磁复位原理以及磁复位电路与脉冲电源的匹配问题。

最后搭建了30kV/3kW的纳秒级脉冲电源样机,验证了磁复位原理的可行性,以及在高压大功率应用场合可能遇到的问题及其解决方案。3、针对电流型磁复

位方式存在的不足,指出了对于磁开关控制的必要性,并系统地分析了磁开关控制原理,提出了相应的控制方案。

最后基于PLECS软件搭建了35kV的纳秒级脉冲电源的仿真模型,通过仿真验证了控制方案的可行性和稳定性,并从实际应用角度分析了磁开关的最佳工作区间。

LED日光灯电源的设计要求

关于外形 现在LED日光灯电源,做灯的厂家普遍要求放在灯管内,如放T8灯管内.很少一部分外置.不知道为什么都要这样.其实内置电源又难做,性能也不好.但不知为什么还有这么多人这样要求.可能都是随风倒吧.外置电源应该说是更科学,更方便才对.但我也不得不随风倒,客户要什么,我就做什么.但做内置电源,有相当难度哦.因为外置的电源,形状基本没有要求,想做多大做多大,想做成什么形状也没关系.内置电源,只能做成两种,一种是用的最多的,就是说放在灯板下面,上面放灯板。 下面是电源,这样就要求电源做的很薄,不然装不进.而且这样只能把元件倒下,电源上的线路也只有加长.我认为这样不是个好办法.不过大家普遍喜欢这样搞.我就搞.还有就是用的少一些,放两端的,即放在灯管两头,这样好做些,成本也低些.我也有做过,基本就是这两种内置形状了。 关于此种电源的要求和电路结构的问题 我的看法是,因为电源要内置在灯里,而发热是LED光衰最大的杀手,所以发热一定要小,就是效率一定得高.当然得有高效率的电源.对于T8一米二长的那种灯,最好是不要用一支电源,而是用二支,两端各一只,将热量分散.从而不使热量集中在一个地方.电源的效率主要取决于电路的结构和所用的器件.先说电路结构,有些人还说要隔离电源,我想绝对是没必要的,因为这种东西本来就是置于灯体内部,人根本摸不到.没必要隔离,因为隔离电源的效率比不隔离效率要低,第二是,最好输出要高电压小电流,这样的电源才能把效率做高.现在普遍用到的是,BUCK电路,即降压式电路.最好是把输出电压做到一百伏以上,电流定在100MA 上那样,如驱动一百二十只,最好是三串,每串四十只,电压就是一百三十伏,电流60MA.这种电源用的很多,本人只是认为有一点不好,如果开关管失控通咱,LED会玩完.现在LED这么贵.我比较看好升压式电路,此种电路的好处,我反复的说过,一是效率较降压式的高些,二是电源坏了,LED灯不会坏.这样能确保万无一失,如果烧坏一个电源,只是损失几块钱,烧一个LED日光灯,就会赔掉上百元的成本.所以我一直首推还是升压式的电源.还有就是,升压式电路,很容易把PF值作高,降压式的就麻烦一些.我绝对升压式电路用于LED日光灯的好处还是有压倒性的强于降压式的.只是有一年缺点,就是在220V市电输入情况下,负载范围比较窄,一般只能适用于100至140个一串或两串LED,对于少于此数的,或是夹在中间的,却用起来不方便.不过现在做LED日光灯的,一般60CM长那种都是用100至140,一米二的那种,一般就是用二百到二百六那样,使用起来还是可以的.所以现在LED日光灯一般使用的是不隔离降压电路,还有不隔离升压电路,此种电路用于LED日光灯,应该可以算是本人首创。 关于高PFLED日光灯电源,大电流的LED日光灯电源的看法: 个人认为这些做法有很多时候实在是舍本逐末而已.现在先请问一下LED相对于传统灯具的优势在哪,第一,节能,第二长寿,然后是不怕开关,对吧.但是现在使用的高PF的方法,均是使用无源填谷PF电路,由原来的驱动方式,即48串,6并改为,24串12并,这样的话,在220V榭鱿?效率会降下五个百分点左右,于是LED日光灯电源,发热量更高了,灯珠也会受到一点影响。 还有一个问题,就是,24串12并的做法,会让LED日光灯灯珠的布线变的很难受,不好布线了.我看,最好的方式还是48串一串方式好,主要是效率高,发热小,而且布线容易,不复杂。 更有甚者,现在还有人提出什么24并,12串,这种方式只适合用于隔离电源,不隔离电源根本不适用.更有些不懂电源常识的人觉得自己非隔离电源做到恒流600MA输出就好牛比了,其实他都没有自己仔细的放在灯管里试过,象这种不热爆了才怪。所以说,现在搞什么低压大

高压大功率脉冲电源的设计

1绪论 1.1论文的研究背景 电源设备用以实现电能变换和功率传递,是一种技术含量高、知识面宽、更新换代快的产品。现今已广泛应用到工业、能源、交通、运输、信息、航空、航天、航运、国防、教育、文化等领域。在信息时代,上述各行各业都在迅猛地发展,发展的同时又对电源产业提出了更多更高的要求。显然,电源技术的发展将 带动相关技术的发展,而相关技术的发展反过来又推动了电源产业的发展。当前在电源产业,占主导地位的产品有各种线性稳压电源、通讯用的AC y DC开关电源、DC y DC开关电源、交流变频调速电源、电解电镀电源、高频逆变式整流焊接电源、中频感应加热电源、电力操作电源、正弦波逆变电源、大功率高频高压直流稳压电源、绿色照明电源、化学电源、UPS可靠高效低污染的光伏逆变电 源、风光互补型电源等。而与电源相关的技术有高频变换技术、功率转换技术、数字化控制技术、全谐振高频软开关变换技术、同步整流技术、高度智能化技术、电磁兼容技术、功率因数校正技术、保护技术、并联均流控制技术、脉宽调制技术、变频调速技术、智能监测技术、智能化充电技术、微机控制技术、集成化技术、网络技术、各种形式的驱动技术和先进的工艺技术。 1.2脉冲电源的特点及发展动态 脉冲电源是各种电源设备中比较特殊的一种,顾名思义,它的电压或电流波 形为脉冲状。按脉冲电源的输出特性分类,有高频、低频、单向、双向、高压、低压等不同的分类,具体选择怎样的输出电压、输出电流和开关频率,根据具体的应用场合而定。按脉冲波形分,有矩形波、三角波、梯形波、锯齿波等多种形式,如图1. 1所示。 图1 . 1各种脉冲波形 由于矩形波具有较好的可控性和易操作性,所以这种波形的应用居多。究其本质,

高压强脉冲电源的设计

高压强脉冲电源的设计 摘要:本文提出了一种强脉冲发生器电源的设计方案,应用此方案设 计了高压电源、IGB T控制充电、可控硅控制放电,可以自动运行的 脉冲磁场发生设备。最大直流电压达到3KV且连续可调,放电脉冲电 流高达10000A。该设备由一片AT89C52单片机控制,可实现与计算 机的连接。 关键词:高压电源; IGBT ;可控硅 The Design of High Voltage Pulsed Power Supply Abstract: This paper presents a strong pulse generator power supply design, applications for this program designed high-voltage power supply, IGBT control the charging and SCR controlled discharge, can be run automatically pulse magnetic field equipment. Maximum DC voltage 3KV and continuously adjustable discharge pulse currents up to 10000A. The device is controlled by an AT89C52 microcontroller can be realized with the computer. Key words: high voltage power supply;IGBT;SCR, 引言:强脉冲磁场对工业装置及医疗的作用[1],强脉冲磁场对金属 形成时的影响[2]以及脉冲磁场刺激对生物体的效应等已经越来越 引起人们的关注。目前国内的脉冲磁场设备,一般电压较低,频率也 较低。特别是高压充电部分采用调压器调压[3],这样体积太大也显 笨重。要产生更高的磁场强度,可以改变脉冲磁场频率的自动运行的

备用电源自动投入装置设计及应用的注意事项

备用电源自动投入装置设计及应用的注意事项 备用电源自动投入装置设计及应用的注重事项 摘要:备用电源自动投入(以下简称备自投)装置在电网中的使用,是保证电网安全、稳定、可靠运行的有力技术手段。备自投装置的逻辑是否完善和接线是否正确,直接影响着备自投装置动作的可靠性。本文从备自投的基本原则展开来讨论备自投装置的一些注重事项,希望能对装置的设计和应用起到必定的指引作用。 要害字:备自投;应用;设计 电力系统很多重要场合对供电可靠性要求很高,采纳备用电源自动投入装置是提高供电可靠性的重要方法之一。所谓备用电源自动投入装置,就是当工作电源因故障被断开后,能自动将备用电源迅速投入工作的装置。 1.基本备自投方式: 1)变压器备自投 2)分段断路器备自投 3)桥断路器备自投 4)进线断路器备自投 对更复杂的备自投方式,都可以看成是上述典型方式的组合。 2.备自投的逻辑分析 备自投逻辑尽管很复杂,但仍有规律可循。一般说来,备自投的逻辑分为以下4个逻辑进程: 1)备自投充电。当工作电源运行在正常供电状态、备用电源工作在热备用状态(明备用),或两者均在正常供电状态(暗备用)时,备自投装置按照所采集的电压、电流及开关位置暗号来判定一次设备是否处于这一状态,经过10s~15s延时后,完成充电过程。 2)备自投放电。当备自投退出运行;工作断路器由人为操作跳开;备用断路器不在备用状态;断路器拒跳、拒合;备用对象故障等不认可备自投动作的情况下,将备自投放电,使其行为终止。 3)备自投充电后,满足其启动条件,经或不经延时执行其跳闸逻辑(可能断路器已跳开),跳闸对象可能有多个。 4)备自投执行完跳闸逻辑后,满足其合闸条件,经或不经延时执行其合闸逻辑,合闸对象也可能有多个。 3.备自投的设计和应用的事项 1)母线有电压、无电压的判定 母线有电压:指接入的三个相(线)电压至少有一个大于检有电压定值,三个有电压条件相或可以防止TV一相或两相断线时备自投误动。 母线无电压:指接入的三个相(线)电压均小于检无电压定值,即用逻辑与门来判定母线无电压,可以幸免工作电源TV一相或两相断线时备自投的误动。 2)当工作母线上的电压低于检无电压定值,并且持续时间大于给按时间定值时,备自投装置方可起动。 备自投延时是为了躲母线电压短暂下降,故备自投延时应大于最长的外部故障切除时间。因母线的进线断路器跳开而引起的母线失压,且进线无重合闸功能时,可不经过延时直接跳开断路器,以加速合备用电源。如主变差动庇护或本体庇护动作全跳主变时,可加速低压侧分段备自投和变压器备自投动作。备自投的时间定值应与相关的庇护及重合闸的时间定值相配合。 3)备用电源的电压应工作于正常范围,或备用设备应处于正常的预备状态,备自投装

摘要_论述了冗余热备份电源的工作原理和设计方案

一种冗余热备份电源的设计 摘要:在设计某高可靠性计算机系统时,要求其配套电源采取冗余设计。一般来说,可以采取的方案有容量冗余、冗余冷备份方式、并联均流的N+1备份方式、冗余热备份方式。本文论述了冗余热备份电源的工作原理和设计方案。 关键词:正激变换器;冗余热备份;或门二极管 0、引言 在设计某高可靠性计算机系统时,要求其配套电源采取冗余设计。一般来说,可以采取的方案有容量冗余、冗余冷备份方式、并联均流的N+1备份方式、冗余热备份方式。 容量冗余是指电源的最大负载能力大于实际负载,也就是“大马拉小车”,其缺点是不利于提高电源的效率,而且对提高电源的可靠性意义不大。 冗余冷备份方式是指电源由两个或多个功能相同的单元模块组成,电源启动后由其中一个单元模块向设备供电,当工作单元发生故障时,备份单元立刻启动向设备供电。这种方式的缺点是备份单元的启动到输出电压的建立需要一定的时间,容易造成输出电压出现较大的豁口,这样会对被供电的设备产生影响。 并联均流的N+1备份方式是指电源由多个功能相同的单元组成,所有单元的输出功率之和大于系统要求的功率,各单元的输出通过或门二极管并联在一起,有时输出采取均流控制电路,目前采用较多的就是这种方式。N+1备份方式由于是多个单元同时向设备供电,单个单元故障(失效)一般不会对输出电压产生影响,但是,如果输出线发生故障容易波及到所有单元。 冗余热备份方式是指电源由多个功能相同的单元组成,电源启动时所有单元同时工作,由其中预先设定的单元向设备供电,备份单元处于空载状态,当向设备供电的单元出现故障时,备份单元立刻向设备供电,维持了输出电压的稳定。这种方式的优点是工作单元故障后,备份单元输出响应速度快,可以保证输出电压只在一个很小的范围内波动。 本文详细论述了采取冗余热备份方式的电源设计方案。 1、工作原理 冗余热备份结构的主电路由两个功能相同且同时处于工作状态的单元组成,由切换电路控制其中一路向设备供电,另一路空载。当向设备供电的单元发生故障时,切换电路立即动作,使另一个单元向设备供电,同时切断故障单元的输出。 主电路拓扑采用正激变换器,由输入滤波电路、功率变换电路、控制电路、输出滤波电路、监测切换电路组成。电源框图如图1所示。DC 28V输入经过滤波后提供给功率变换电路,控制电路通过实时检测来控制功率变换电路,以实现输出隔离稳定的5V电压,同时对输出电压进行过压、过流保护。

汽车电源设计的六项基本原则

汽车电源设计的六项基本原则 大多数汽车电源架构需要遵循六项基本原则: 1.输入电压VIN范围:12V电池电压的瞬变范围决定了电源转换IC的输入电压范围。 典型的汽车电池电压范围为9V至16V,发动机关闭时,汽车电池的标称电压为12V;发动机工作时,电池电压在14.4V左右。但是,不同条件下,瞬态电压也可能达到±100V。ISO7637-1行业标准定义了汽车电池的电压波动范围。图1和图2所示波形即为ISO7637标准给出的部分波形,图中显示了高压汽车电源转换器需要满足的临界条件。 除了ISO7637-1,还有一些针对燃气发动机定义的电池工作范围和环境。大多数新的规范是由不同的OEM厂商提出的,不一定遵循行业标准。但是,任何新标准都要求系统具有过压和欠压保护。 2.散热考虑:散热需要根据DC-DC转换器的最低效率进行设计。 空气流通较差甚至没有空气流通的应用场合,如果环境温度较高(>30°C),外壳存在热源(>1W),设备会迅速发热(>85°C)。例如,大多数音频放大器需要安装在散热片上,并需要提供良好的空气流通条件以耗散热量。另外,PCB材料和一定的覆铜区域有助于提高热传导效率,从而达到最佳的散热条件。如果不使用散热片,封装上的裸焊盘的散热能力限制在2W 至3W(85°C)。随着环境温度升高,散热能力会明显降低。 将电池电压转换成低压(例如:3.3V)输出时,线性稳压器将损耗75%的输入功率,效率极低。为了提供1W的输出功率,将会有3W的功率作为热量消耗掉。受环境温度和管壳/结热阻的限制,将会明显降低1W最大输出功率。对于大多数高压DC-DC转换器,输出电流在150mA 至200mA范围时,LDO能够提供较高的性价比。

10kV配电房备用电源自投装置设计分析

10kV配电房备用电源自投装置设计分析 【摘要】分析我国10kV配电房在常规备用电源自投装置方面的设计,进行方案优化处理,在此基础上推进互为备用电源这种自投装置。 【关键词】10kV配电房;备用电源;自投装置 10kV配电房在备用电源自投装置上,应该根据常规方案进行设计。一般所使用的都是工作路线,再备用路线的形式,但在使用的时候会存在很多不便。对常规的设计方案进行分析,针对10kV的配电房两路电源,进一步提出设计规划方案。根据电源自投装置所需要的相关条件以及环境,进行具体且全面的整合,拟定一个合理的方案设计。 1 10kV配电房备用电源自投装置,常规设计方案概要 (1)10kV配电房在备用电源自投装置上,常规设计方案所使用的都是一备一用方式,也就是工作电源消失及备用电源的自动投入的自动方式,而当工作电源恢复正常后,备用电源就会退出,也就不可能再实现工作电源自动投入,只能进行人工切换。使用的时候,会带来很多不便,不能够充分的发挥这两个电源互为备用的优点。 (2)在以往常规的设计方案中,两电源在线路断路器1DL和2DL彼此之间没有互相闭锁设计,致使现场操作事故增多。例如:某个单位配电房,就有因为错误、失误操作,致使三相短路接地,参见图1所示: 2 两电源线路都是互为备用自投装置方案 (1)关于两电源互为备用自投装置可以参考图2所示,其中图2中a是10kV 配电房电源那一部分的主接线图,而图2中b、c是1DL和2DL柜的操作回路图。在接I和Ⅱ电源线路侧上两只小型的变压器提供具体的电源操作,为1YH 和2YH,并且要经过图2之中的b和c两者之间的中间继电器,为1ZJ和2ZJ,实现其两个电源之间能够自动的进行切换。 (2)对于1DL和2DL在合闸回路上应该是相互闭锁的。根据下面图2中b 与c能够看出,把1DL或者是2DL在常闭触点上穿入2DL或者是1DL的这种合闸回路,为203、207或者是103和107之间,就实现了两个断路器在合闸回路上相互闭锁。其中1DL或者2DL被合上以后,2DL或者1DL就不可能再合闸,避免了前面所说的误操作。 (3)对备用电源自投装置动作过程要有基本的掌握。在两电源线路互为备用的前提下,把I电源投入到了II的电源。利用1DL的开关把1DL在合上以后,把BK的开关置放于“投入”这一位置,其中BK1-3和5-7的触点进行作业接通,备用自投装置在突入工作。当1DL的动合触点进行闭合作业的时候,动断触点

电源设计规范

整车电负荷设计规范 编制_______________ 校对_______________ 审核—批准 北汽福田汽车股份有限公司 汽车工程研究院 电子电器中心

、发动机、发电机基本状态 X X发动机匹配额定电流时发电机特性曲线(见下图一、根据具体的发动机匹配的发电机的特性曲线): 图一(发电机特性曲线)

编号 BJ X X X系列车型整车电负荷设计规范一—J_e_-——— ------------- 共3 页第2页 二、发电机的功率确定 按以下两个方面确定发电机的功率: 1、发电机对应发动机怠速输出电流最低限度应超过永久及长期耗电器的耗电电流的1.1~1.3 倍。考虑倍乘因子后,即使短途行驶、发动机空转也可保证蓄电池充分充电; 2、发电机额定电流应大于永久及长期耗电器、短期耗电器耗电电流之和。 三、整车电气设备功率与发电机的功率平衡计算 1、按用电器耗电功率加权计算(参考Robert Bosch公司的倍数规则)

2、按爬长坡极限工况下用电器耗电功率计算(整车最大连续用电组合) 结论:(按用电器耗电功率加权计算,确认发电机的功率是否满足要求。)具体实例见下页:

实例 : 轴叙(xlOOOrpj } 4G64二加PDA :送泪谑桝 编号 共3页 第1页 发动机型号 4G64 发电机皮带轮外径 62 发动机曲轴皮带轮外径 149 发电机皮带轮传动速比 2.4 发动机怠速(rpm ) 750 ± 30 发电机对应怠速(rpm ) 1800 发动机最大扭矩点(rpm ) 2400~2800 发电机对应最大扭矩点(rpm ) 5760 发电机初始临界转速(rpm ) 1300 蓄电池容量(A.h ) 65 畜电池补充充电电流(A ) 6.5 蓄电池标称电荷量的10% 发电机输出电压(V ) 13.5 折合充电功率88W BJ6486系列轻型客车整车电负荷设计规范 、发动机、发电机基本状态 4G64发动机配额定电流120A 发电机特性:

纳秒级脉冲电源的研究与设计

纳秒级脉冲电源的研究与设计 随着脉冲功率技术在军事、医疗、环保等领域的快速发展,对于大功率脉冲电源的上升沿宽度要求日益提高,高功率快脉冲也逐渐成为脉冲功率技术的研究热点和发展趋势。而如何以较低的成本在提高脉冲电源电压等级的同时陡化脉冲宽度也是研究的难点之一。 以高压快脉冲为技术核心,以小型化、高重频和高效率为发展方向,本论文提出了一种低成本对称式的脉冲发生拓扑,同时以磁压缩技术陡化脉冲宽度,并深入研究了磁开关的控制技术,以实现高稳定性的纳秒级脉冲电源的研制,论文主要内容分为以下三个部分:1、提出了一种具有对称串联结构的高压脉冲电源拓扑,大幅降低成本;基于这种新型的高压脉冲电源拓扑,分析并初步验证了各种工作环境下的可行性。搭建了该高压脉冲电源的仿真模型,仿真验证了在正常运行和发生闪络等不同状态下电路的工作原理。 在实验室完成了该高压脉冲电源的研制,实验验证了在正常运行和发生闪络等不同状态下对于电路的分析,并在实际应用中证明了该拓扑相对于现有研究的优越性。2、介绍了脉冲磁压缩技术的工作原理,分析了各个磁芯参数对磁开关性能的影响,基于此,确定了磁芯材料的选择,并搭建了磁芯检测平台测量磁芯的磁滞曲线,对比了不同磁芯材料的区别。 基于脉冲电源体积小型化原则,分析了影响磁开关体积的因素,并利用数学模型确定了磁开关参数的最优解。系统地分析了磁复位原理以及磁复位电路与脉冲电源的匹配问题。 最后搭建了30kV/3kW的纳秒级脉冲电源样机,验证了磁复位原理的可行性,以及在高压大功率应用场合可能遇到的问题及其解决方案。3、针对电流型磁复

位方式存在的不足,指出了对于磁开关控制的必要性,并系统地分析了磁开关控制原理,提出了相应的控制方案。 最后基于PLECS软件搭建了35kV的纳秒级脉冲电源的仿真模型,通过仿真验证了控制方案的可行性和稳定性,并从实际应用角度分析了磁开关的最佳工作区间。

脉冲式激光驱动电源的研究与设计2

脉冲式激光驱动电源的研究与设计 1.1 引言 二十世纪后期到二十一世纪初,超短脉冲激光成为强有力的科学研究手段,使科研上升到一个新的层次。一些国家和部门重点实验室的科研项目,有很大比例围绕着超短脉冲激光及其应用。由于半导体激光器的增益带宽很宽适于产生超短脉冲激光,且体积小、能耗低、寿命长、价格低廉,操作控制简便,特别适用于军用、工业、交通、医学和科研应用[62]。因此,研究如何从LD获得超短脉冲激光就一直受到人们的高度重视,超短脉冲激光器以其自身的优点在激光领域里得到了广泛的应用。大电流超短脉冲半导体激光器可以直接作为仪器使用,它更可以作为系统的一个关键部件、一个激光光源。它将作为火花启动庞大的仪器装备制造业,因此研究如何从半导体激光器获得大电流超短脉冲激光备受重视,也是我国亟待解决的科技问题。目前,美、德、日等国在脉冲驱动源的发展走在了前列,已经达到很高的水平,据文献报道[62,63],他们目前已能获得电流达几十安培甚至上百安培,脉冲宽度达到纳秒,甚至皮秒级的半导体激光器驱动电源,但该电源还处于实验阶段,尚未商品化。一些半导体器件公司研制的LD驱动电源指标也已经很高,并且商品化。如专门生产小型化高速脉冲源著称的A VTECH 公司生产的型号为A VOZ-A1A-B、A V-1011-BDE驱动电源,其电流脉冲峰值可达2A,脉宽为100nS脉冲上升时间仅为10nS,重复频率可达1MHz。并带有通用的接口总线,通用性强,可用于驱动多种类型的半导体激光器。DEI公司的PCO-7210驱动电源脉宽小于50nS,重复频率也达到1MHz,峰值电流为十几安培,但这些产品价格昂贵,需要一到两万美金左右。在国内,对于脉冲式驱动电源的开发,大多用于光纤通信,其对输出电流的要求很低,只有几十毫安即可。由于半导体激光器的增益带宽很宽,适于产生超短脉冲激光,且体积小、能耗低、寿命长、价格低廉,操作控制简便,特别适用于军用、工业、交通、医学和科研应用。因此,研究如何从LD获得超短脉冲激光就一直受到人们的高度重视,超短脉冲激光器以其自身的优点在激光领域里得到了广泛的应用[64,65]。本章通过分析比对,选取快速开关器件VMOSFET作为半导体激光器脉冲驱动电路的核心元件,得到了大电流、窄脉冲输出。本设计具有结构简单、小型化、低电压供电、脉冲指标易于调整等优点。其主要设计指标如下: 1.脉冲宽度最小为30nS且连续可调; 2.脉冲频率在500Hz~50KHz连续可调; 3.最大输出电流峰值为5A。 1.2 超短脉冲驱动电源的设计 1.2.1超短脉冲驱动电源的整体设计 一、脉冲驱动电源的主要技术指标 从半导体激光器脉冲驱动电源的发展趋势来看,驱动技术是向着重复频率变高、功率输出增大、响应时间缩短,脉宽越来越窄的方向发展[66]。 (1)重复频率。重复频率是指电源向负载每秒中放电的次数,它是脉冲电源的一项重要指标。一般情况下,把每秒低于一次的电源叫低重复频率电源;而把

变电站备用电源自动投入装置--课程设计

变电站备用电源自动投入装置--课程设计

1.概述 1.1概念 为保证供电的可靠性,电力系统经常采用两个或两个以上的电源进行供电,并考虑相互之间采取适当的备用方式。当工作电源失去电压时,备用电源由自动装置立即投入,从而保证供电的连续性,这种自动装置称为备用电源自动投入装置,简称AAT。备用电源自动投入是保证电力系统连续可靠供电的重要措施。 备用电源自动投入装置遵循的基本原则如下: ①当工作母线上的电压低于检无压定值,并且持续时间大于时间定值时,备自投装置方可起动。备自投的时间定值应与相关的保护及重合闸的时间定值相配合。 ②备用电源的电压应工作于正常范围,或备用设备应处于正常的准备状态,备自投装置方可动作,否则应予以闭锁。 ③必须在断开工作电源的断路器之后,备自投装置方可动作。 工作电源消失后,不管其进线断路器是否已被断开,备自投装置在起动延时到了以后总是先跳该断路器,确认该断路器在跳位后,方能合备用电源的断路器。按照上述逻辑动作,可以避免工作电源在别处被断开,备自投动作后合于故障或备用电源倒送电的情况发生。 ④人工切除工作电源时,备自投装置不应动作。 装置引入进线断路器的手跳信号作为闭锁量,一旦采到手跳信号,立即使备自投放电,实现闭锁。

(a)明备用 (b) 暗备用之一

(c) 暗备用之二 图1-1 几种备用方式的简单接线图1.2.1 明备用的控制 有一个工作电源和一个备用电源的接线,即为明备用的配置,如图1-1(a)所示。图中。TI为工作变压器,T2为备用变压器。正常工作时。QF1、QF2处于合闸位置,工作母线Ⅲ上的负荷由工作电源通过T1供给;此时QF3合上(也可断开)、QF4断开,T2处于别用状态。当工作母线Ⅲ因某种愿意失电时,在QF2断开后,QF4合上(QF3断开时,要与QF4同时合上),恢复对工作母线Ⅲ的供电。 1

开关电源类产品设计的安全规范

仅供参考[整理] 安全管理文书 开关电源类产品设计的安全规范 日期:__________________ 单位:__________________ 第1 页共14 页

开关电源类产品设计的安全规范 1.范围 1.1本规范规定了0公司户内使用、额定电压≤600V的开关电源类产品的设计安全要求,它包括参考标准资料、标志说明、一般要求和试验一般条件、电气技术参数规格、材料和结构、电气试验、机械试验、环境可靠性试验、包装、存放、出货和附录项内容。 1.2它主要以信息技术设备,包括电气事务设备及与之相关设备的安全标准为基础编写。 2.主要参考资料 2.1IEC60950-1999:信息技术设备的安全。 2.2IEC61000-4(所有系列):电磁兼容--试验和测量技术。 2.3IEC61000-3-2-1998:电磁兼容第3部分:限值第2章低压电气及电子设备发出的谐波 电流限值(设备每相输入电流≤16A)。 2.4IEC61000-3-3-1998:电磁兼容第3部分:限值第3章标称电流≦16A的低压电气及电子设备的供电系统中电压波动和变化的限值。 2.5IEC60384-14-1993:电子设备用固定电容器第14部分:分规范拟制电源电磁干扰用固定电容器。 2.6CISPR22-1998:信息技术设备的无线电干扰特性的限值和测量方法。 2.7CISPR24-1997:信息技术设备的无线电抗干扰特性的限值和测量方法。 2.8IEC60695-10-2:1995:着火危险试验第10部分:减少着火对电子技术产品而引起的不正常发热效应的指南和试验方法第2部分: 第 2 页共 14 页

消防备用电源及其供电时间常见问题

消防备用电源及其供电时间常见问题 《建筑设计防火规范》(GB 50016—2014)的有关强制性条文: 10.1.5 建筑内消防应急照明和灯光疏散指示标志的备用电源的连续供电时间应符合下列规定: 1.建筑高度大于100m的民用建筑,不应小于; 2.医疗建筑、老年人建筑、总建筑面积大于100000㎡的公共建筑,不应少于; 3.其他建筑,不应少于。 10.1.6 消防用电设备应采用专用的供电回路,当建筑内的生产、生活用电被切断时,应仍能保证消防用电。 备用消防电源的供电时间和容量,应满足该建筑火灾延续时间内各消防用电设备的要求。 10.1.8 消防控制室、消防水泵房、防烟和排烟风机房的消防用电设备及消防电梯等的供电,应在其配电线路的最末一级配电箱处设置自动切换装置。 10.3.3 消防控制室、消防水泵房、自备发电机房、配电室、防排烟机房以及发生火灾时仍需正常工作的消防设备房应设置备用照明,其作业面的最低照度不应低于正常照明的照度。 理解:以上四条强制性条文中,依次有“备用消防电源”(前2条)、“ 消防用电设备” (第3条)、“ 备用照明” (第4条)三个概念。 这三者的逻辑关系是:备用消防电源是另行为疏散照明(应急照明的一种)、消防用电设备、备用照明(应急照明的一种)准备的一路电源。即发生火灾后,在非消防电源(普通强电)被切断的情况下,为了保证疏散照明、消防用电设备、备用照明用电的可靠性,就应让备用消防电源通过其专用的供电回路为消防用电设备、备用照明供电。 问题一:那么备用消防电源的连续供电时间如何确定呢 《建筑设计防火规范》(GB 50016—2014)第10.1.6条已要求“备用消防电源的供电时间和容量,应满足该建筑火灾延续时间内各消防用电设备的要求”。由此可知,备用消防电源的供电时间应大于等于建筑火灾延续时间内消防设备(含疏散照明、备用照明)应保证持续运行的时间,即备用消防电源的供电时间应大于等于建筑的火灾延续时间。此时已经回答了前面提出的问题。

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

基于SiCMOSFET的纳秒级脉冲电源研制

基于SiC MOSFET的纳秒级脉冲电源研制 脉冲功率技术广泛应用于军事、环境保护、生物技术等领域,比如脱硫脱硝、脉冲杀菌、激光管驱动、阴极射线管扫描电路等。传统脉冲电源的主放电开关主要以真空弧光放电管、氢闸流管、火花隙为主,存在成本高、寿命短、外围电路复杂等缺点。 随着电力电子技术的发展,功率MOSFET和IGBT的性能越来越高,众多研究学者利用MOSFET或IGBT串并联组成高压固态开关替代传统放电开关,进而设计出纳秒级上升沿的高重复频率脉冲发生器。本文以SiC MOSFET为核心功率器件,设计了一台纳秒级脉冲电源,电源主要技术指标为:输出脉冲峰值可调范围为 0~30kV,脉冲重复频率为10Hz~1kHz可调,最大输出电流为80A,脉冲上升时间小于100ns。 本论文的主要工作如下:设计了纳秒脉冲电源的拓扑结构,主电路采用三级Marx发生器结构,研究了SiC MOSFET串联开关的静态和动态电压不均衡机制,给出了影响SiC MOSFET串联均压的关键因素。针对静态均压电路的特性,明确了均压电阻的设计方法,对于动态均压电路,采用负载侧RCD电路作为均压措施,并确定了相应参数的选取依据。 对比分析了正激式驱动、半桥驱动、反激驱动三种驱动方式的优缺点,确定采用半桥驱动的方式作为SiC MOSFET的串联驱动电路,该电路的隔离强度高、驱动电路设计方便,其驱动变压器的原边和副边绕组匝数均为1匝,可减少其分布参数的影响。通过实验测试了驱动电路的同步性,其驱动的延迟时间差异小于 10ns,同步性良好。 采用Microchip公司的dsPIC33FJl28MC706作为主控制芯片,整个控制系统

脉冲电路设计

脉冲电路脉冲电路的基本知识在数字电路中分别以高电平和低电平表示1状态和0状态。此时电信号的波形是非正弦波。通常,就把一切既非直流又非正弦交流的电压或电流统称为脉冲。图Z1601表示出几种常见的脉冲波形,它们既可有规律地重复出现,也可以偶尔出现一次。脉冲波形多种多样,表征它们特性的参数也不尽相同,这里,仅以图Z1602所示的矩形脉冲为例,介绍脉冲波形的主要参数。(1)脉冲幅度Vm--脉冲电压或电流的最大值。脉冲电压幅度的单位为V、mV,脉冲电流幅度的单位为A、mA。(2)脉冲前沿上升时间tr--脉冲前沿从0.1Vm上升到0.9Vm所需要的时间。单位为ms、μs、ns。(3)脉冲后沿下降时间tf--脉冲后沿从0.9Vm下降到0.1Vm所需要的时间。单位为:ms、μs、ns。(4)脉冲宽度tk--从脉冲前沿上升到0.5Vm处开始,到脉冲下降到0.5Vm处为止的一段时间。单位为:s、ms、μs或ns。(5)脉冲周期T--周期性重复的脉冲序列中,两相邻脉冲重复出现的间隔时间。单位为:s、ms、μs。(6)脉冲重复频率--脉冲周期的倒数,即f =1/T,表示单位时间内脉冲重复出现的次数,单位为Hz、kHz、MHz。(7)占空比tk/T--脉冲宽度与脉冲周期的比值,亦称占空系数。 对电路来说,有个阻抗匹配问题,只有当阻抗匹配时,输出效果才最好,否则,有可能导致负载力不足,导致一旦外加电路,就会把电压拉下了,建议后面加一级运放增大负载能力 交流电源的零交越脉冲电路设计 时间:2012-04-25 14:58:04 来源:作者:本设计中的电路可生成一个交流电源的零交越脉冲,并提供电气绝缘。输出脉冲的下降沿出现在零交越点前约200μs。使用这个电路可以安全地停止一个可控硅栅极的触发,使之有时间正常地关断。只有当主电压约为0V时,电路才产生短脉冲,因此在230V、50Hz输入下只耗电200mW。 电路为电容C1充电,直至达到22V齐纳二极管D3的上限(图1与参考文献1)。电阻R1和R5用于限制输入电流。当输入整流电压降至C1电压以下时,Q1开始导通,产生一个几百微秒长的脉冲。IC1的耦合使得Q1方波发生器作出响应。rms工作电压只需要R1和R5。SMD的1206型电阻一般能承受rms为200V的电压。本设计将R1和R5之间的输入电压一分为二,总额定电压为rms值400V。D3用于将桥的电压限制在22V,因此后面所有元件都有较低的额定电压。22V齐纳管可以箝位在30V,因此本设计使用了一只50V、470nF的陶瓷电容。陶瓷电容较电解电容或钽电容有更好的可靠性,尤其是在高温下。如果愿意使用更便宜更小的25V元件,可以将齐纳管的电压改为18V,仍保有不错的安全边际。R4用于限制LED上的峰值电流。对LED电流的主要限制是整流AC输入的斜率。缓慢的斜率使得C1释放储存的能量时,Q1不会产生电流尖峰。

高性能大电流脉冲电源的设计与实现

高性能大电流脉冲电源的设计与实现 曹海源胡婷婷韦尚方万强孙斌卢常勇 (武汉军械士官学校光电技术研究所,湖北武汉 430075) 摘要 本文针对高功率脉冲DPSSL对激光电源的要求,综合运用了ARM7单片机控制技术、串联VICOR模块可调稳压源、IGBT功率器件及各种保护电路,设计并实现了小型、高效的半导体泵浦激光器驱动电源,具有电压调节范围宽、峰值电流高、控制精度高、良好的稳定性和高低温环境适应性等特点。测试表明:电源整机运行稳定可靠,达到了很高的技术指标要求,可广泛应用于军用激光测距、激光雷达、激光对抗等领域。 关键词 驱动电源;ARM7;电流脉冲;IGBT;VICOR模块 中图分类号 TN248.4 文献标识码 B Design and Realization of High Performance and Strong Current Pulse Power Supply Cao,Hai-yuan Hu,Ting-ting Wei,Shang-fang Wan,Qiang Sun,Bin Lu,Chang-yong (Opto-electronics Facility, Wuhan Ordnance Noncommissioned Officers School, Wuhan, Hubei, 430075, P.R.China) Abstract: In this paper, according to the request of the high power pulse DPSSL, we design and implement a compact, high efficiency power supply for DPSSL, which combines the control technology of ARM7 MCU, tunable voltage stabilizer using VICOR modules in series structure, IGBT power components, closed loop adjusting circuit, and various protective measures. It is specified as wide tuning range of the voltage, high peak current, high control precision, high stability, high adaptability to the high-low temperature, and so on. Test and measurement results show that our power supply operates steadily and reliably, and well meets the request of the performance index in the project. It can be widely applied in military laser rangefinder, Lidar, laser counterwork, and so on. Keywords: power supply; ARM7; current pulse; IGBT;VICOR module 1 引言 DPSSL(Diode Pumped Solid-State Laser)出现于八十年代末,与传统的灯泵固体激光器相比,它具有效率高、寿命长、结构紧凑、稳定性高等特点,广泛应用于军事、航空航天等领域中。我国从九十年代中期也开始把DPSSL作为激光应用领域的一个新方向来重点研究。而作为DPSSL的泵浦源,大功率半导体激光器对驱动电源的要求非常苛刻,不仅要提供几十甚至上百安培的电流,而且要求电流非常稳定可靠。驱动电源已经成为DPSSL在各个领域应用的核心技术,近几年来一直是人们研究的热点。本文的任务是研制DPSSL中大功率半导体激光器的脉冲驱动电源,根据系统的要求,电源输出电压为100V~200V连续可调,峰值电流为40A~80A连续可调,工作频率为5Hz~40Hz可调,脉宽为150us~300us可调,脉冲前后沿转换时间小于10 us,频率精度小于0.1%。同时,对驱动电源的保护机制和体积都有一定的要求。 2系统设计原理 脉冲电源的工作原理如图1所示,它由DC-DC变换、直流可调稳压控制、脉冲电流生成、稳流控制等部分组成。本文的输入为24V的低压直流电源,工作电流达6A,可以采用功率匹配的直流稳压电源,也可采用聚合物锂电池。DC-DC变换模块和电压调节电路将该直流低压逆变成100V~200V的直流高压,再采用特定的功率开关器件及其控制电路将直流高压变成所需脉宽及频率的电流脉冲,最后通过稳流控制电路完成对脉冲电流的稳流和整形,使其波形特征符合性能指标要求。

备用电源自投装置设计

备用电源自投装置设计、应用的若干问题 作者:佚名文章来源:不详点击数:857 更新时间:2006-5-18 备用电源自投装置设计、应用的若干问题 郑曲直,程颖 (昆明供电局,云南昆明650011) Asummarization on design and application of backup power switchover unit ZHENGQu-zhi,CHENGYing (Kunming Power Supply Bereau in Yunnan Pronvince,Kunming 650011,China) Abstract:This paper studies severalproblems on design and application of backup power switchover unit,gives some principles ofthe designandthe application ofbackup power switchover unit,such as design ofstart conditions,using oftransmissionline and main bus voltage,designof blocking logic,questionsof matching between multi-levelbackup powerswitchoverunits and matching between backup power switchoverunitand auto-reclosing unit and some other special problems.This paper also analyzes the realizability of adaptive backup power switchover unit,indicatesthatthe microprocessor-based backup power switchover unitshould be ableto automatically select properactuating logic according tothe operating manners of powersystem. Key words:backup power switchover unit;design;adaptive 摘要:针对电力系统中备用电源自投装置在设计、应用中的若干问题进行总结,提出备自投方案设计和应用中备用电源自投的启动条件设计、线路和母线电压的取用、备自投闭锁逻辑的设计、多级备自投间和备自投与重合闸间的配合以及一些特殊情况的处理原则,对自适应备自投功能的实现逻辑进行了分析,提出微机备用电源自投装置应能根据系统运行方式变化自动选择适当的动作逻辑。 关键词:备用电源自投;设计;自适应 1 概述 备用电源自投装置(备自投)是电力系统中为了提高供电可靠性而装设的自 动装置,对提高多电源供电负荷的供电可靠性,保证连续供电有重要作用。备自投装置是当工作电源因故障或其他原因消失后,迅速地将备用电源或其他正常工作电源投入工作,并断开工作电源的自动装置。文献[1]对备自投装置的装设、动作逻辑等都提出了明确的要求。 随着计算机技术的发展,以单片机或可编程逻辑元件构成的微机型备自投得到大量应用,其设计和运行上的灵活性为备自投装置的应用提供了新的思路。笔者近年在工作中遇到很多由于对备自投原理认识不深或限于对常规式备自投的

相关文档