文档库 最新最全的文档下载
当前位置:文档库 › 人教版高中数学【必修一】[知识点整理及重点题型梳理]_指数函数、对数函数、幂函数综合_提高

人教版高中数学【必修一】[知识点整理及重点题型梳理]_指数函数、对数函数、幂函数综合_提高

人教版高中数学【必修一】[知识点整理及重点题型梳理]_指数函数、对数函数、幂函数综合_提高
人教版高中数学【必修一】[知识点整理及重点题型梳理]_指数函数、对数函数、幂函数综合_提高

人教版高中数学必修一

知识点梳理

重点题型(常考知识点)巩固练习

指数函数、对数函数、幂函数综合

【学习目标】

1.理解有理指数幂的含义,掌握幂的运算.

2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质.

4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理.

5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质.

6.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a≠1). 【知识框图】

【要点梳理】

要点一:指数及指数幂的运算 1.根式的概念

a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈

当n 为奇数时,正数的n 次方根为正数,负数的n n 为偶数时,正数

的n 次方根有两个,这两个数互为相反数可以表示为

负数没有偶次方根,0的任何次方根都是0.

n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质:

(1)当n a =;当n ,0,

,0;a a a a a ≥?==?

-

(2)

n

a =

3.分数指数幂的意义:

)0,,,1m n

a a m n N n =>∈>;()10,,,1m n

m n

a

a m n N n a

-

=

>∈>

要点诠释:

0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:

()0,0,,a b r s Q >>∈

(1)r

s

r s

a a a

+= (2)()r s

rs

a a = (3)()r

r r

ab a b =

要点二:指数函数及其性质 1.指数函数概念

一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R . 2

要点三:对数与对数运算 1.对数的定义

(1)若(0,1)x

a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,

N 叫做真数.

(2)负数和零没有对数.

(3)对数式与指数式的互化:log (0,1,0)x

a x N a N a a N =?=>≠>.

2.几个重要的对数恒等式

log 10a =,log 1a a =,log b a a b =.

3.常用对数与自然对数

常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 4.对数的运算性质

如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a a

M

M N N

-= ③数乘:log log ()n

a a n M M n R =∈

④log a N

a

N =

⑤log log (0,)b n

a a n

M M b n R b

=

≠∈ ⑥换底公式:log log (0,1)log b a b N

N b b a

=

>≠且

要点四:对数函数及其性质 1.对数函数定义

一般地,函数()log 0,1a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域()0,+∞. 2

要点五:反函数 1.反函数的概念

设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ?=.如果对于y 在C 中的任何一个值,

通过式子()x y ?=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ?=表示x 是y 的函数,函数()x y ?=叫做函数()y f x =的反函数,记作1

()x f y -=,习惯上改写成

1()y f x -=.

2.反函数的性质

(1)原函数()y f x =与反函数1

()y f

x -=的图象关于直线y x =对称.

(2)函数()y f x =的定义域、值域分别是其反函数1

()y f x -=的值域、定义域.

(3)若(,)P a b 在原函数()y f x =的图象上,则'

(,)P b a 在反函数1

()y f x -=的图象上.

(4)一般地,函数()y f x =要有反函数则它必须为单调函数.

要点六:幂函数 1.幂函数概念

形如()y x R α

α=∈的函数,叫做幂函数,其中α为常数. 2.幂函数的性质

(1)图象分布:幂函数图象分布在第一、二、三象限,第四

象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.

(2)过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).

(3)单调性:如果0α>,则幂函数的图象过原点,并且在

[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为

减函数,在第一象限内,图象无限接近x 轴与y 轴.

(4)奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q

p

α=

(其中,p q 互质,p 和q Z ∈)

,若p 为奇数q 为奇数时,则q

p

y x =是奇函数,若p 为奇数q 为偶数时,则q p

y x =是偶函数,若p 为偶数q 为奇数时,则q

p

y x =是非奇非偶函数.

(5)图象特征:幂函数,(0,)y x x α

=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.

【典型例题】

类型一:指数、对数运算 例1.计算

(1) 2

221

log log 12log 422

-; (2)33lg 2lg 53lg 2lg 5++; (3)2

2

2lg5lg8lg5lg 20lg 23+++;(4)lg0.7

lg20172??? ?

??

【思路点拨】运算时尽量把根式转化为分数指数幂,而小数也要化为分数为好. 【答案】(1)1

2

-

;(2)1;(3)3;(4)14.

【解析】(1)原式=1

2

2221log 12log log 22-?===-; (2)原式=()()

2

2

lg 2lg5lg 2lg 2lg5lg 53lg 2lg5+-++

=()2

lg10lg 5lg 23lg 2lg 53lg 2lg 5???+-+??

=1-3lg 2lg5+3lg 2lg5=1

(3)原式=()22lg52lg2lg51lg2lg 2++++ =()2lg5lg2lg5lg2(lg2lg5)++++ =2+lg5lg 2+=3;

(4)令x =lg0.7

lg20172??

? ?

??

,两边取常用对数得

lg0.7lg 201lg lg 72x ??

??=??? ???????

=()1lg2lg7(lg71)(lg2)++--

=lg7lg 2lg7lg 2lg7lg 2+-+ =lg14

14,x ∴=即lg0.7

lg20

17

2??? ???

=14.

【总结升华】这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧.

举一反三:

【变式1】552log 10log 0.25+=( )

A .0

B .1

C .2

D .4 【答案】C

【解析】552log 10log 0.25+=2

5555log 10log 0.25log (1000.25)log 252+=?==.

【变式2】(1)2

(lg 2)lg 2lg 50lg 25+?+;(2)3948(log 2log 2)(log 3log 3)+?+. 【答案】(1)2;(2)

5

4

. 【解析】(1) 原式2

2

(lg 2)(1lg5)lg 2lg5(lg 2lg51)lg 22lg5=+++=+++ (11)lg 22lg52(lg 2lg5)2=++=+=; (2) 原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3

(

)()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+?+=+?+ 3lg 25lg 35

2lg 36lg 24

=

?=.

类型二:指数函数、对数函数、幂函数的图象与性质

例2.设偶函数()f x 满足3

()8(0)f x x x =-≥,则{}|(2)0x f x ->= ( )

A .{}|24x x x <->或

B . {}

|04x x x <>或 C . {}|06x x x <>或 D . {}

|24x x x <->或 【答案】 B 【解析】

3()8(0)f x x x =-≥且()f x 是偶函数.

33

8,0,

()8,0,

x x f x x x ?-≥?∴=?--??或(

)3

20,

280x x -?? ∴2,4,x x ≥??>?或2,0.

x x 或0x <,故选B .

【总结升华】考查解不等式组及函数解析式,考查函数性质的综合运用. 举一反三:

【变式1】已知函数123,0,

()log ,0,

x x f x x x +?≤=?>?若0()3f x >,则0x 的取值范围是( ).

A . 08x >

B . 00x <或08x >

C . 008x <<

D . 00x <或008x << 【答案】A 【解析】依题意001

0,

33

x x +≤??

>?或0200,log 3x x >??

>?即000,11x x ≤??+>?或02020,

log log 8

x x >??>?,所以08x >,故选A .

例3.设函数21

2

log ,0,()log (),0x x f x x x >??

=?--,则实数a 的取值范围是( ) .

A .()()1,00,1-

B .()(),11,-∞-+∞

C .()

()1,01,-+∞ D .()(),10,1-∞-

【答案】C

【解析】解法一:①若0a >,则0a -<,

∴212

log log a a >,得22

1log log a a >,得1

a a

>,解得1a >. ②若0,a <则0a ->,

∴122

log ()log ()a a ->-,221

log ()log ()a a ∴->-

解得()1,1a ∈- 由①②可知()()1,01,a ∈-+∞

解法二:特殊值验证 令22,(2)log 21,a f ===

(2)1f -=-,满足()()f a f a >-,故排除A 、D .

令2a =-,(2)1f -=-,(2)1f = 不满足()()f a f a >-,故排除B .

【总结升华】本题考查了分段函数的性质、分类思想的应用. 【幂指对函数综合377495 例1】

例4.函数)86(log 2

3

1+-=x x y 的单调递增区间是( )

A .(3,+∞)

B .(-∞,3)

C .(4,+∞)

D .(-∞,2)

【思路点拨】这是一个内层函数是二次函数,外层函数是对数函数的复合函数,其单调性由这两个函数的单调性共同决定,即“同增异减”.

【答案】D

【解析】函数)86(log 2

3

1+-=x x y 是由213log ,68y u u x x ==-+复合而成的,13

log y u =是减函

数,2

68u x x =-+在(),3-∞上单调递增,在()3,+∞上单调递减,由对数函数的真数必须大于零,即

2680x x -+>,解得4x >或2x <,所以原函数的单调递增区间是(),2-∞,故选D .

例5.(2016 上海模拟)已知函数()x

f x a =(a >0,a ≠1)在区间[―1,2]上的最大值为8,最小值

为m .若函数()(310g x m =-是单调增函数,则a =________.

【思路点拨】根据题意求出m 的取值范围,再讨论a 的值,求出f (x )的单调性,从而求出a 的值. 【答案】

1

8 【解析】根据题意,得3-10m >0, 解得310

m <

当a >1时,函数()x

f x a =在区间[-1,2]上单调递增,最大值为2

8a =,解得a =

13

410

m a -==

=

>,不合题意,舍去; 当1>a >0时,函数()x

f x a =在区间[―1,2]上单调递减,最大值为1

8a -=,解得1

8

a =

,最小值为2

13

6410m a ==

<,满足题意; 综上,1

8a =.

故答案为:1

8

【总结升华】本题主要考查指数函数的图象与性质的应用问题,通过讨论对数函数的底数确定函数的单调性是解决本题的关键.

举一反三:

【变式1】已知|1|

()2

x f x -=,该函数在区间[a ,b ]上的值域为[1,2],记满足该条件的实数a 、b 所形成的实数对为点P (a ,b ),则由点P 构成的点集

组成的图形为( )

A . 线段AD

B . 线段AB

C . 线段A

D 与线段CD D . 线段AB 与BC

【思路点拨】由指数函数的图象和性质,我们易构造出满足条件

函数|1|()2x f x -=在闭区间[a ,b ]上的值域为[1,2]的不等式组,画出函数的

图象后

与答案进行比照,即可得到答案.

【答案】C

【解析】∵函数|1|

()2

x f x -=的图象为开口方向朝上,以x =1为对称轴的曲线,如图.

当x =1时,函数取最小值1, 若|1|

2

2x y -==,则x =0,或x =1

而函数|1|2

x y -=|

在闭区间[a ,b ]上的值域为[1,2],

则012a b =??

≤≤?或01

2

a b <≤??=?,

则有序实数对(a ,b )在坐标平面内所对应点

组成图形为

故选C .

【总结升华】本题考查的知识点是指数函数的性质,函数的值域,其中熟练掌指数函数在定区间上的值域问题,将已知转化为关于a ,b 的不等式组,是解答本题的关键.

【变式2】已知函数|lg |,010,()16,10.2

x x f x x x <≤??

=?-+>??若,,a b c 互不相等,且()()()f a f b f c ==,则abc 的

取值范围是( ).

A .(1,10)

B .(5,6)

C .(10,12)

D .(20,24) 【答案】C

【解析】由,,a b c 互不相等,结合图象可知:这三个数分别在区间(0,1),(1,10),(10,12)上,不妨设(0,1),(1,10),(10,12)a b c ∈∈∈,由()()f a f b =得lg lg 0,a b +=即lg 0ab =,所以1ab =,所以

()10,12abc ∈,故选C .

【总结升华】考查利用图象求解的能力和对数的运算,考查数形结合的思想方法. 类型三:综合问题

例6.已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数。

(Ⅰ)求,a b 的值;

(Ⅱ)若对任意的t R ∈,不等式0)()2(2

2

<--+-k t t f t t f 恒成立,求k 的取值范围

【思路点拨】(Ⅰ)利用奇函数的定义去解。(Ⅱ)先判断函数()f x 的单调性,由单调性脱掉函数符号f ,转化成二次函数问题去解决。

【答案】(Ⅰ)2a =,1b =;(Ⅱ)1

3

k <-

【解析】(Ⅰ)因为()f x 是奇函数,所以(0)f =0,即1

11201()22x

x b b f x a a +--=?=∴=++ 又由f (1)=-f (-1)知1112

2 2.41

a a a -

-=-?=++

(Ⅱ)解法一:由(Ⅰ)知11211

()22221

x x x f x +-==-+++,易知()f x 在(,)-∞+∞上

为减函数。又因()f x 是奇函数,从而不等式:0)()2(2

2<--+-k t t f t t f

等价于)()2(2

2

k t t f t t f ---<-=)(2

k t t f ++-,因()f x 为减函数,由上式推得: 即对一切t R ∈有:2320t t k -->, 从而判别式14120.3

k k ?=+

(或: 即对一切t R ∈有:2

32k t t <-,又2

2

111323()3

33

t t t -=--≥- ∴1

3

k <-

解法二:由(Ⅰ)知1

12()22

x

x f x +-=+.又由题设条件得: 22

22222121

121202222

t t t k

t t t k ---+-+--=<++,

即 :222221

221

2(2

2)(12

)(2

2)(12

)0t k t t

t t t k

-+--+-+-++-<,

整理得 2322

1t t k

-->,因底数21>,故:2320t t k -->

上式对一切t R ∈均成立,从而判别式1

4120.3

k k ?=+

【总结升华】对于含指数式、对数式等式的形式,解题思路是转化为不含指数、对数因式的普通等式或方程的形式,再来求解.

举一反三:

【变式1】已知函数()()()log 1log 1a a f x x x =+--,(a >0,且a ≠1). (1)求函数f (x )的定义域;

(2)判断函数f (x )的奇偶性,并说明理由; (3)设1

2

a =

,解不等式f (x )>0. 【解析】(1)依题意知,10,

10.x x +>??->?

解得11x -<<

函数f (x )的定义域为{}|11x x -<<. (2)函数()f x 是奇函数

任取()1,1x ∈-,()1,1x ∴∈-,所以

()()log (1)log (1)log (1)log (1)a a a a f x f x x x x x +-=+--+-+-+

=0 所以函数()f x 是奇函数. (3)因为1

2a =

,所以12

1()log 1x f x x +=-

由1

21()log 01x f x x

+=>-,得1

011x x +<<-

解得10x -<<

{}|10x x ∴-<<.

【幂指对综合377495 例5】

例7.设123()3

x x a

f x ++=(其中a 为实数),如果当(,1]x ∈-∞时恒有()0f x >成立,求实

数a 的取值范围.

【思路点拨】由题意知,原不等式转化成1233x x a ??

????>-+?? ? ?????????

在(],1-∞上恒成立,只要求出不等式

右边部分的最大值就可以了.

【答案】1a >-

【解析】依题意,1230x x

a ++?>?1233x x

a ??????>-+?? ? ?????????

在(],1-∞上恒成立.

则设(]12(),,133x x x x φ??

????=-+∈-∞?? ? ?????????

只需求()x φ的最大值 任取(]12,,1x x ∈-∞且12x x <

1122121212()()3333x x x x x x φφ????

????????-=-+++???? ? ? ? ?????????????????

=212111223333x x x x ????

????????-+-???? ? ? ? ?????????????????

由于()01x

y a

a =<<是单调递减函数

12()()x x φφ∴<,即()x φ在(],1-∞上是单调递增的, max ()(1)1x φφ∴==-

1a ∴>-

【总结升华】解决本题的关键是把()a f x >转化成max ()a f x >,()a f x <转化成max ()a f x <,这种问题以后还会碰到,希望同学们多注意.

举一反三:

【变式1】设函数222

()log (01)12b

x x f x b b ax

-+=>≠+且.

(1)求()f x 的定义域;

(2)求使()0f x >在()0,+∞上恒成立的实数a 的取值范围. 【解析】(1)

2222(1)10x x x -+=-+>,120,ax ∴+>即21ax >-

∴若0a =,则()f x 的定义域为R ;

若0a >,则()f x 的定义域为1,2a ??

-

+∞ ???

; 若0a <,则()f x 的定义域为1,2a ??

-∞-

??

?

. (2)①当1b >时,在()f x 的定义域内,()0f x >等价于2

2212x x ax -+>+,即

2

2(1)10x a x -++>,于是问题等价于211

2(1)x a x x x

++<=+在()0,+∞上恒成立.

令1

()g x x x

=+,则()g x 在(]0,1上递减,在[)1,+∞上递增,min ()(1)2,2(1)2g x g a ∴==∴+≤,即0a ≤.

另一方面要使()0f x >在()0,+∞上恒成立,则()0,+∞必是()f x 定义域的子集,由(1)可知0.a ≥ 由0a ≥且0a ≤可知0a =.

②当01b <<时,在()f x 的定义域内,()0f x >等价于2

2(1)1a x x +>+,于是问题等价于

1

2(1)a x x

+>+在()0,+∞上恒成立.

显然这样的实数a 不存在.

综上所求的a 的取值范围为0a =.

高中数学对数的运算

对数函数专题 对数及对数运算 【要点梳理】 要点一、对数概念 1.对数的概念 如果()01b a N a a =>≠,且,那么数b 叫做以a 为底N 的对数,记作:log a N=b .其中a 叫做对数的底数,N 叫做真数. 要点诠释: 对数式log a N=b 中各字母的取值范围是:a>0 且a ≠1, N>0, b ∈R . 2.对数()log 0a N a >≠,且a 1具有下列性质: (1)0和负数没有对数,即0N >; (2)1的对数为0,即log 10a =; (3)底的对数等于1,即log 1a a =. 3.两种特殊的对数 通常将以10为底的对数叫做常用对数,N N lg log 10简记作.以e (e 是一个无理数, 2.7182e =???)为底的对数叫做自然对数, log ln e N N 简记作. 4.对数式与指数式的关系 由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示. 由此可见a ,b ,N 三个字母在不同的式子中名称可能发生变化. 要点二、对数的运算法则 已知()log log 010a a M N a a M N >≠>,且,、 (1)正因数的积的对数等于同一底数各个因数的对数的和; ()log log log a a a MN M N =+ 推广: ()( )1 2 1 l o g a k a N N N = + 、、、 (2)两个正数的商的对数等于被除数的对数减去除数的对数; log log log a a a M M N N =- (3)正数的幂的对数等于幂的底数的对数乘以幂指数; log log a a M M αα= 要点诠释: (1)利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

高中数学指数函数与对数函数

2020-2021学年高一数学单元知识梳理:指数函数与对数函数 1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数式、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时,

函数的单调性及图象特点. 3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比较,分出大于1还是小于1;然后在各类中两两相比较. 4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 5.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图选式、图象变换以及用图象解题.函数图象形象地显示了函数的性质.在解方程或不等式时,特别是非常规的方程或不等式,画出图象,利用数形结合能快速解决问题. 6.方程的解与函数的零点:方程f(x)=0有实数解?函数y=f(x)有零点?函数y=f(x)的图象与x轴有交点. 7.零点判断法:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解. 注意:由f(a)f(b)<0可判定在(a,b)内至少有一个变号零点c,除此之外,还可能有其他的变号零点或不变号零点.若f(a)f(b)>0,则f(x)在(a,b)内可能有零点,也可能无零点. 8.二分法只能求出其中某一个零点的近似值,另外应注意初始区间的选择. 9.用函数建立数学模型解决实际问题的基本过程如下: 一、指数、对数函数的典型问题及求解策略 指数函数、对数函数的性质主要是指函数的定义域、值域、单调性等,其中单调性是高考考查的重点,并且经常以复合函数的形式考查,求解此类问题时,要以已学函数的单

指数函数对数函数幂函数增长速度的比较教学设计

【教学设计中学数学】 区县雁塔区 学校西安市航天中学 姓名贾红云 联系方式 邮编710100 《指数函数、幂函数、对数函数增长的比较》教学设计 一、设计理念 《普通高中数学课程标准》明确指出:“学生的数学学习活动,不应该只限于接受、记忆、模仿和练习,高中数学课程还应该倡导自主探索、动手实践、合作交流、阅读自学等信息数学的方式;课程内容的呈现,应注意反映数学发展的规律以及学生的认知规律,体现从具体到抽象,特殊到一般的原则;教学应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉等”。本节课是北师大版高中数学必修Ⅰ第三章第6节内容,本节专门研究指数函数、幂函数、对数函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节课的学习,可以引导学生积极地开展观察、思考和探究活动,利用几何画板这种信息技术工具,可以让学生从动态的角度直观观察指数函数、幂函数、对数函数增长情况的差异,使学生有机会接触一些过去难以接触到的数学知识和数学思想,并为学生提供了学数学、用数学的机会,体现了发展数学应用意识、提高实践能力的新课程理念。 二、教学目标 1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性; 2.能借助信息技术,利用函数图像和表格,对几种常见增长类型的函数增长的情况进行比较,体会它们增长的差异; 3.体验指数函数、幂函数、对数函数与现实世界的密切联系及其在刻画实际问题中的作用,体会数学的价值. 三、教学重难点

教学重点:认识指数函数、幂函数、对数函数增长的差异,体会直线上升、指数爆炸、对数增长的含 义。 教学难点:比较指数函数、幂函数、对数函数增长的差异 四、教学准备 ⒈提醒学生带计算器; ⒉制作教学用幻灯片; ⒊安装软件:几何画板 ,准备多媒体演示设备 五、教学过程 ㈠基本环节 ⒈创设情景,引起悬念 杰米和韦伯的故事 一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你 10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?” 合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;第四天,杰米支出8分钱,收入10万元…..到了第二十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多点。杰米想:要是合同定两个月、三个月多好! 你愿意自己是杰米还是韦伯? 【设计意图】创设情景,构造问题悬念,激发兴趣,明确学习目标 ⒉复习旧知,提出问题 图1-1 图1-2 图1-3 ⑴ 如图1-1,当a 时,指数函数x y a =是单调 函数,并且对于0x >,当底数a 越大时,其 函数值的增长就越 ; ⑵ 如图1-2当a 时,对数函数log a y x =是单调 函数,并且对1x >时,当底数a 越 时 其函数值的增长就越快; ⑶ 如图1-3当0x >,0n >时,幂函数n y x =是增函数,并且对于1x >,当n 越 时,其函数值

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

高中数学知识点大全

高中数学常用公式及常用结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}m i n ()m i n (),()f x f p f q =,若

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

中职数学指数函数与对数函数试卷

精品资料 欢迎下载 第四章《指数函数与对数函数》测试卷 一、填空题 1. ( ) A 、118 4 23? B 、314 4 23? C 、213 4 23? D 、8 4 23? 2. =??4 36482( ) A 、4 B 、8152 C 、2 72 D 、8 3. 函数()f x = ( ) A.(1,3) B. [-∞,3] C. [3,+∞] D. R 4. 3log 81= ( ) A 、2 B 、4 C 、2- D 、-4 5. 指数函数的图象经过点)27,2 3(,则其解析式是 ( ) A 、x y 3= B 、x y )3 1(= C 、x y 9= D 、x y )9 1(= 6. 下列函数在区间(0,+∞)上是减函数的是 ( ) A 、12y x = B 、3 1x y = C 、2y x -= D 、2 y x = 7. 将25628 =写成对数式 ( ) A 、2256log 8= B 、28log 256= C 、8256log 2= D 、2562log 8= 8. 将ln a = b (a >0) 写成指数式 ( ) A 、10 b = a B 、e b = a C 、 a b = e D 、 e a = b 9. 求值2 2ln log 16lg 0.1e +-等于( ) A 、5 B 、6 C 、7 D 、8 10. 如果32log (log )1x =,那么x =( ) A 、8 B 、9 C 、2 D 、3 11. 函数x x f lg 21)(-= 的定义域为( ) A 、(,10) -∞ -(10,)+∞ B 、(-10,10) C 、(0,100) D 、(-100,100) 12. 3 0.7、3log 0.7、0.7 3 的大小关系是( ) A 、30.730.73log 0.7 << B 、30.730.7log 0.73<< C 、 30.7 3log 0.70.73<< D 、 0.73 3log 0.730.7<< 二、填空题: 1.用不等号连接: (1)5log 2 6l o g 2 ,(2)若n m 33>,则m n ;(3)35.0 36.0 2. 若43x =, 3 4 log 4=y ,则x y += ; 3. 方程x x 28 )3 1 (3 2--=的解集为______________; 4. 若x x f 2)2(=,则=)8(f ; 三、解答题 1.. 解下列不等式: (1)0)3(log 3<-x (2)14 3log

高中数学知识点总结大全

高中数学知识点总结 1. 首先对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 要注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 4. 请问你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 ()(∵,∴ ·∵,∴ ·,,)335 30 555 5015392522 ∈--

若为真,当且仅当、均为真p q p q ∧ 若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假?p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()() 例:函数的定义域是 y x x x = --432 lg ()()() (答:,,,)022334 10. 如何求复合函数的定义域? [] 如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0 义域是_____________。 [] (答:,)a a - 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? ( ) 如:,求f x e x f x x +=+1(). 令,则t x t = +≥10 ∴x t =-2 1 ∴f t e t t ()=+--2 1 21 ()∴f x e x x x ()=+-≥-2 1 210

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

最新最全高一数学重要知识点汇总(精华)

高一数学重要知识点汇总

————————————————————————————————————————————————————————————————作者:日期: 2

必修 数学知识总结 必修一 一、集合 一、集合有关概念 1. 2. 集合的含义 集合的中元素的三个特性: (1) 元素的确定性如:世界上最高的山 (2) 元素的互异性如:由 HAPPY 的字母组成的集合 {H,A,P,Y} (3) 元素的无序性 : 如:{a,b,c} 和{a,c,b} 是表示同一个集合 3. 集合的表示: { } 如: { 我校的篮球队员 } ,{ 太平洋 , 大西洋 , 印度洋 , 北冰洋 } (1) 用拉丁字母表示集合: A={我校的篮球队员 },B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集) 记作: N 正整数集 N* 或 N+ 整数集 Z 有理数集 Q 实数集 R 1)列举法: {a,b,c } 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内 表示集合的方法。 {x R| x-3>2} ,{x| x-3>2} 3)语言描述法:例: { 不是直角三角形的三角形 } 4)Venn 图: 4、集合的分类: (1) 有限集 (2) 无限集 (3) 空集 含有有限个元素的集合 含有无限个元素的集合 不含任何元素的集合 2 例:{x|x =-5} 二、集合间的基本关系 1. “包含”关系—子集 注意: A B 有两种可能( 1) A 是 B 的一部分,;(2)A 与 B 是同一集合。 集合 A 不包含于集反之 : B, 或集合 B 不包含集合 A, 记作 AB 或 BA 2.“相等”关系: A=B (5 ≥ 5,且 5≤5,则 5=5) 2 实例: 设 A={x|x -1=0} B={-1,1} 等” “元素相同则两集合相 即:① 任何一个集合是它本身的子集。 A A ②真子集 : 如果 A B, 且 A B 那就说集合 A 是集合 B 的真子 集, 记作 A B( 或 B ③如果 A B, B A) C , 那么 A C ④ 如果 A B 同时 B A 那么 A=B Φ 3. 不含任何元素的集合叫做空集,记为 规定 : 集。 空集是任何集合的子集, 空集是任何非空集合的真子 n n-1 有 n 个元素的集合,含有 2 个子集, 2 个真子集 二、函数 1、函数定义域、值域求法综合 2. 、函数奇偶性与单调性问题的解题策略

高中数学对数教学设计

篇一:高中数学对数与对数运算教案 《对数与对数运算》 教案 xx大学数学与统计学院 xxx 一、教学目标 1、知识目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的相互转换;理解对数的运算性质,形成知识技能; 2、能力目标:通过实例让学生认识对数的模型,让学生有能力去解决今后有关于对数的问题,同时让学生学会观察和动手,通过做练习,使学生感受到理论与实践的统一,锻炼学生的动手能力; 3、分析目标:通过让学生分组进行探究活动,在探究中分析各种思维的技巧,掌握对数运算的重要性质。 二、教学理念 为了调动学生学习的积极性,使学生化被动为主动,从学习中体会快乐。本节课我引导学生从实例出发,引发学生的思考,从中认识对数的模型,体会对数的必要性。在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。 三、教法学法分析 1、教法分析 新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教法:实例引入法、开放式探究法、启发式引导法。 2、学法分析 “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:观察发现法、小组讨论法、归纳总结法。 四、教材分析 本节讲对数的概念和运算性质主要是为后面学习对数函数做准备。这在解决一些日常生活问题及科研中起着十分重要的作用。同时,通过对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。 五、教学重点与难点 重点:(1)对数的定义; (2)指数式与对数式的相互转化及其条件。难点:(1)对数概念的理解; (2)对数运算性质的理解;(3)换底公式的应用。 六、课时安排:1个课时七、教学过程 (一)创设情境,引入课题 问题:我们能从关系y?13?1.01x中,算出任意一个年头x的人口总数,反之,如果问“哪一年的人口总数可达到18亿,20亿,30亿??”,该如何解决? 抛出问题,让学生思考,这就引出这节课将要学习的问题,即对数与对数运算的问题,以及指数与对数如何相互转换的问题。 (二)讲授新课 1.对数的定义 x 一般地,如果a?n(a?0,且a?1),那么数x叫做以a为底n的对数,记

指数函数对数函数计算题30-1

指数函数对数函数计算题30-1 1、计算:lg 5·lg 8000+06.0lg 6 1lg )2 (lg 23++. 2、解方程:lg 2(x +10)-lg(x +10)3=4. 3、解方程:23log 1log 66-=x . 4、解方程:9-x -2×31-x =27. 5、解方程:x )8 1(=128. 6、解方程:5x+1=12 3-x . 7、计算:10log 5log )5(lg )2(lg 2233+ +·.10 log 18 8、计算:(1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92). 9、求函数121log 8.0--= x x y 的定义域. 10、已知log 1227=a,求log 616.

11、已知f(x)=1322+-x x a ,g(x)=522 -+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x). 12、已知函数f(x)=321121x x ?? ? ??+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0. 13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数. 14、求log 927的值. 15、设3a =4b =36,求a 2+b 1的值. 16、解对数方程:log 2(x -1)+log 2x=1 17、解指数方程:4x +4-x -2x+2-2-x+2+6=0 18、解指数方程:24x+1-17×4x +8=0 19、解指数方程:22)223()223( =-++-x x ±2 20、解指数方程:014332 14111=+?------x x 21、解指数方程:042342222=-?--+-+x x x x

相关文档
相关文档 最新文档