文档库 最新最全的文档下载
当前位置:文档库 › (数控加工)数控机床主轴驱动系统故障维修例精编

(数控加工)数控机床主轴驱动系统故障维修例精编

(数控加工)数控机床主轴驱动系统故障维修例精编
(数控加工)数控机床主轴驱动系统故障维修例精编

(数控加工)数控机床主轴驱动系统故障维修例

数控机床主轴驱动系统故障维修50例

第七章第四课主轴驱动系统故障维修50例[1]

2009-05-1505:55

例301.机床剧烈抖动、驱动器显示AL-04报警

故障现象:壹台配套FANUC6系统的立式加工中心,在加工过程中,机床出现剧烈抖动、交流主轴驱动器显示AL-04报警。

分析和处理过程:FANUC交流主轴驱动系统AL-04报警的含义为“交流输入电路中的P1、F2、F3熔断器熔断”,故障可能的原因有:

1)交流电源输出阻抗过高。

2)逆变晶体管模块不良。

3)整流二极管(或晶闸管)模块不良。

4)浪涌吸收器或电容器不良。

针对上述故障原因,逐壹进行检查。检查交流输入电源,在交流主轴驱动器的输入电源,测得R、S相输入电压为220V,但T相的交流输入电压仅为120V,表明驱动器的三相输入电源存在问题。

进壹步检查主轴变压器的三相输出,发现变压器输入、输出,机床电源输入均同样存在不平衡,从而说明故障原因不在机床本身。

检查车间开关柜上的三相熔断器,发现有壹相阻抗为数百欧姆。将其拆开检查,发现该熔断器接线螺钉松动,从而造成三相输入电源不平衡;重新连接后,机床恢复正常。

例302.驱动器出现报警“A”的故障维修

故障现象:壹台配套FANUC0T的数控车床,开机后,系统处在“急停”状态,显示“NOTREADY”,操作面板上的主轴报警指示灯亮。

分析和处理过程:根据故障现象,检查机床交流主轴驱动器,发现驱动器显示为“A”。

根据驱动器的报警显示,由本章前述可知,驱动器报警的含义是“驱动器软件出错”,这壹报警在驱动器受到外部偶然干扰时较容易出现,解决的方法通常是对驱动器进行初始化处理。在本机床按如下步骤进行了参数的初始化操作:

1)切断驱动器电源,将设定端S1置TEST。

2)接通驱动器电源。

3)同时按住MODE、UP、DOWN、DATASET4个键

4)当显示器由全暗变为“FFFFF”后,松开全部键,且保持1s之上。

5)同时按住MODE、UP键,使参数显示FC-22。

6)按住DATASET键1s之上,显示器显示“GOOD”,标准参数写入完成。

7)切断驱动器电源,将S1(SH)重新置“DRIVE”。

通过之上操作,驱动器恢复正常,报警消失,机床恢复正常工作。

例303.驱动器出现过电流报警的故障维修

故障现象:壹台配套FANUC11M系统的卧式加工中心,在加工时主轴运行突然停止,驱动器显示过电流报警。

分析和处理过程:经查交流主轴驱动器主回路,发现再生制动回路、主回路的熔断器均熔断,经更换后机床恢复正常。但机床正常运行数天后,再次出现同样故障。

由于故障重复出现,证明该机床主轴系统存在问题,根据报警现象,分析可能存在的主要原因有:

1)主轴驱动器控制板不良。

2)电动机连续过载。

3)电动机绕组存在局部短路。

在之上几点中,根据现场实际加工情况,电动机过载的原因能够排除。考虑到换上元器件后,驱动器能够正常工作数天,故主轴驱动器控制板不良的可能性亦较小。因此,故障原因可能性最大的是电动机绕组存在局部短路。

维修时仔细测量电动机绕组的各相电阻,发现U相对地绝缘电阻较小,证明该相存在局部对地短路。

拆开电动机检查发现,电动机内部绕组和引出线的连接处绝缘套已经老化;经重新连接后,对地电阻恢复正常。

再次更换元器件后,机床恢复正常,故障不再出现。

例304.主轴驱动器AL-12报警的维修

故障现象:壹台配套FANUC11M系统的卧式加工中心,在加工过程中,主轴运行突然停止,驱动器显示12号报警。

分析和处理过程:交流主轴驱动器出现12号报警的含义是“直流母线过电流”,由本章前述可知,故障可能的原因如下:

1)电动机输出端或电动机绕组局部短路。

2)逆变功率晶体管不良。

3)驱动器控制板故障。

根据之上原因,维修时进行了仔细检查。确认电动机输出端、电动机饶组无局部短路。然后断开驱动器(机床)电源,检查了逆变晶体管组件。通过打开驱动器,拆下电动机电枢线,用万用表检查逆变晶体管组件的集电极(C1、C2)和发射极(E1、E2)、基极(B1、B2)之间,以及基极(B1、B2)和发射极(El、E2)之间的电阻值,和正常值(表7-25所示)比较,检查发现C1-E1之间短路,即晶体管组件己损坏。为确定故障原因,又对驱动器控制板上的晶体管驱动回路进行了进壹步的检查。检查方法如下:

1)取下直流母线熔断器F7,合上交流电源,输入旋转指令。

2)按表7-26、表7-27的引脚,通过驱动器的连接插座CN6、CN7,测定8个晶体管(型号为ETl91)的基极B和发射极E间的控制电压,且根据CN6、CN7插脚和各晶体管管脚的对应关系逐壹检查(以发射极为参考,测量B-E正常值壹般在2V左右)。检查发现1C~lB之间电压为0V,证明C~B极击穿,同时发现二极管D27也被击穿。

在更换上述部件后,再次起动主轴驱动器,显示报警成为AL-19。根据本章前述,驱动器AL-19报警为U相电流检测电路过流报警。

为了进壹步检查AL-19报警的原因,维修时对控制回路的电源进行了检查。

检查驱动器电源测试端子,交流输入电源正常;直流输出+24V、+15V、+5V均正常,但-15V电压为“0”。进壹步检查电源回路,发现集成稳压器(型号:7915)损坏。更换7915后,-15V输出电压正常,主轴AL-19报警消除,机床恢复

正常。

例305.主轴驱动器AL-01报警的维修

故障现象:壹台配套FANUC21系统的立式加工中心,在加工过程中,主轴运行突然停止,系统显示ALM2001、ALM409报警,交流主轴驱动器显示AL-01报警。

分析和处理过程:该机床配套的系统为FANUC21系统,CRT上显示的报警含义如下:

ALM2001:SPDLSERVOAL(主轴驱动器报警)。

ALM409:SERVOALARM(SERIACERR)(伺服驱动器报警)。

主轴驱动器AL-01:主轴电动机过热报警。

上述报警能够通过复位键清除,清除后系统能够起动,主轴无报警,但在正常执行各轴的手动参考点返回动作后,当Z 轴向下移动时,又发生上述报警。

由于实际机床发生报警时,只是Z轴向下移动,主轴电动机且没有旋转,同时也不发热。考虑到主轴电动机是伴随着Z 轴壹起上下移动,据此能够大致判定故障是由于Z轴移动,引起主轴电动机电缆弯曲,产生接触不良所致。

打开主轴电动机接线盒检查,发现接线盒内插头上的主轴电动机热敏电阻接线松动;重新连接后,故障排除,机床恢复正常。

例306.主轴高速出现异常振动的故障维修

故障现象:某配套FANUC0TA2系统的数控车床,当主轴在高速(3000r/min之上)旋转时,机床出现异常振动。

分析和处理过程:数控机床的振动和机械系统的设计、安装、调整以及机械系统的固有频率、主轴驱动系统的固有频率等因素有关,其原因通常比较复杂。

但在本机床上,由于故障前交流主轴驱动系统工作正常,能够在高速下旋转;且主轴在超过3000r/min时,在任意转速下振动均存在,能够排除机械共振的原因。

检查机床机械传动系统的安装和连接,未发现异常,且在脱开主轴电动机和机床主轴的连接后,从控制面板上观察主轴转速、转矩显示,发现其值有较大的变化,因此初步判定故障在主轴驱动系统的电气部分。

经仔细检查机床的主轴驱动系统连接,最终发现该机床的主轴驱动器的接地线连接不良,将接地线重新连接后,机床恢复正常。

例307.主轴声音沉闷且出现过电流报警的故障维修

故障现象:壹台配套FIDIAl2系统、FANUCl5型直流主轴驱动的数控仿型铣床,主轴在起动后,运转过程中声音沉闷;当主轴制动时,CRT显示“FEEDHOLD”,主轴驱动装置的“过电流”报警指示灯亮。

分析和处理过程:为了判别主轴过电流报警产生的原因,维修时首先脱开了主轴电动机和主轴间的联接,检查机械传动系统,未发现异常,因此排除了机械上的原因。

接着又测量、检查了电动机的绕组、对地电阻及电动机的连接情况,在对换向器及电刷进行检查时,发现部分电刷已到达使用极限,换向器表面有严重的烧熔痕迹。

针对之上问题,维修时首先更换了同型号的电刷;且拆开电动机,对换向器的表面进行了修磨处理,完成了对电动机的维修。

重新安装电动机后再进行试车,当时故障消失;但在第二天开机时,又再次出现上述故障,且且在机床通电约30min

之后,故障就自动消失。

根据之上现象,由于排除了机械传动系统、主轴电动机、连接方面的原因,故而能够判定故障原因在主轴驱动器上。

对照主轴伺服驱动系统的原理图,重点针对电流反馈环节的有关线路,进行了分析检查;对电路板中有可能虚焊的部位进行了重新焊接,对全部接插件进行了表面处理,但故障现象仍然不变。

由于维修现场无驱动器备件,不可能进行驱动器的电路板互换处理,为了确定故障的大致部位,针对机床通电约30min 后,故障能够自动消失这壹特点,维修时采用局部升温的方法。通过吹风机在距电路板8~10cm处,对电路板的每壹部分进行了局部升温,结果发现当对触发线路升温后,主轴运转能够马上恢复正常。由此分析,初步判定故障部位在驱动器的触发线路上。

通过示波器观察触发部分线路的输出波形,发现其中的壹片集成电路在常温下无触发脉冲产生,引起整流回路U相的4只晶闸管(正组和反组各2只)的触发脉冲消失:更换此芯片后故障排除。

维修完成后,进壹步分析故障原因,在主轴驱动器工作时,三相全控桥整流主回路,有壹相无触发脉冲,导致直流母线整流电压波形脉动变大,谐波分量提高,产生电动机换向困难,电动机运行声音沉闷。

当主轴制动时,由于驱动器采用的是回馈制动,控制线路首先要关断正组的触发脉冲,且触发反组的晶闸管,使其逆变。逆变时同样由于缺壹相触发脉冲,使能量不能及时回馈电网,因此电动机产生过流,驱动器产生过流报警,保护电路动作。

例308~例311.主轴只有漂移转速的故障维修

例308.故障现象:壹台配套FANUC7系统的数控铣床,主轴在自动或手动操作方式下,转速达不到指令转速,仅有1~2r/min,正、反转情况相同,系统无任何报警。

分析和处理过程:由于本机床具有主轴换档功能,为了验证机械传动系统动作,维修时在MDI方式下进行了高、低换档动作试验,发现机床动作正常,说明机械传动系统的变速机构工作正常,排除了档位啮合产生的原因。

检查主轴驱动器的电缆连接以及主轴驱动器上的状态指示灯,都处于正常工作状态,能够初步判定主轴驱动器工作正常。

进壹步测量主轴驱动器的指令电压输入VCMD,发当下任何S指令下,VCMD总是为“0”,即驱动器无转速指令输入。

检查CNC控制柜,发现位置控制板上的主轴模拟输出的插头XN松动;重新安装后,机床恢复正常。

例309.故障现象:壹台配套FANUCll系统的进口卧式加工中心,S指令无效,主轴转速仅为1~2r/min,无任何报警。

分析和处理过程:测量主轴驱动器的速度指令PcMD信号,发当下O-4500r/min的任何S指令下,VCMD总是为0,进壹步测量CNC的S模拟输出,其值亦为“0”,表明CNC的主轴速度控制指令未输出。

由于CNC无报警显示,故主轴速度控制指令未输出可能的原因是主轴未满足转速输出的条件。对照系统的接口信号,通过对PLC程序梯形图的分析发现:PLC程序中主轴高/低速换档的标志位、机床的高/低落速档检测开关输入信号均为“0”,这和实际情况不符。

通过手动控制电磁阀,使机床换到低速档后,机床的低速档检测开关输入信号正确,PLC中主轴低速换档的标志位随之变为正确的状态,满足了主轴条件。在此条件下再次启动主轴,机床恢复正常。

为了进壹步判断机床故障的原因,通过MDI方式,执行M42(换高速档指令)后,发现M42指令不能完成。检查高速

档电磁阀已经得电,但高速档到位信号为“0”,由此判定故障原因在机床的机械或液压部分。

检查主轴箱内部,发现机床的换档机构的拨叉松动,在低速档时,由于拨叉向下动作,能够通过自重落下,因此机床能够正常工作;换高速档时,拨叉向上运动,拔出后不能插入齿轮。经重新安装后,机床恢复正常。

例310.故障现象:壹台配套FANUC0M的二手数控铣床,采用FANUCS系列主轴驱动器,开机后,不论输入S**M03或S**M04指令,主轴仅仅出现低速旋转,实际转速无法达到指令值。

分析和处理过程:在数控机床上,主轴转速的控制,壹般是数控系统根据不同的S代码,输出不同的主轴转速模拟量值,通过主轴驱动器实现主轴变速的。

在本机床上,检查主轴驱动器无报警,且主轴出现低速旋转,能够基本确认主轴驱动器无故障。

根据故障现象,为了确定故障部位,利用万用表测量系统的主轴模拟量输出,发当下不同的S**指令下,其值改变,由此确认数控系统工作正常。

分析主轴驱动器的控制特点,主轴的旋转除需要模拟量输入外,作为最基本的输入信号仍需要给定旋转方向。

在确认主轴驱动器模拟量输入正确的前提下,进壹步检查主轴转向信号,发现其输入模拟量的极性和主轴的转向输入信号不壹致;交换模拟量极性后重新开机,故障排除,主轴能够正常旋转。

例311.故障现象:壹台配套FANUC0T的二手数控车床,采用FANUCS系列主轴驱动器,开机后,不论输入S**M03或S**M04指令,主轴仅仅出现低速旋转,转速无法达到指令值。

分析和处理过程:由于主轴驱动器无报警显示,故故障分析过程同上例。在本机床上,经测量主轴模拟量输入、主轴转向信号输入正确,因此排除了系统不良、主轴输入模拟量的极性和主轴的转向输入信号不壹致的可能性。

考虑到本机床为二手机床,机床的主轴出厂设定参数已经遗失,在主轴调试前已经进行了参数的初始化处理,因此主轴驱动器参数设定不当的可能性较大。

对照主轴驱动器的实际连接,检查主轴参数,发现该主轴中驱动器在未使用外部“主轴倍率”调整电位器的情况下,主轴驱动器参数上却设定了外部“主轴倍率”生效,因此主轴转速倍率被固定在“0”,引起了上述故障。

修改参数后,主轴工作恢复正常,故障排除。

例312.主轴不能旋转的故障维修

故障现象:壹台配套FANUC6M系统的卧式加工中心,手动、自动方式下,主轴均不旋转,驱动器、CNC无报警显示。

分析和处理过程:用MDI方式,执行S100M03指令,系统“循环起动”指示灯亮,检查NC诊断参数,发现系统已经正常输出S代码和SF信号,说明NC工作正常。

检查PLC程序,对照主轴起动条件以及内部信号的状态,主轴起动的条件已满足。进壹步检查主轴驱动器的信号输入,亦已经满足正常工作的条件。因此能够确认故障在主轴驱动器本身。

根据主轴驱动器的测量、检测端的信号状态,逐壹对照检查信号的电压和波形,最后发现驱动器D/A转换器有数字信号输入,但其输出电压为“0”。

将D/A转换器集成电路芯片(芯片型号:DAC80-0B1)拔下后检查,发现有壹插脚已经断裂:修复后,机床恢复正常。

例313.主轴引起的程序段无法继续执行的故障维修

故障现象:壹台配套FANUC6系统的卧式加工中心,在进行自动加工时,程序执行到M03S****程序段后,主轴能起动,转速正确,但无法继续执行下壹程序段,系统、驱动器无任何报警。

分析和处理过程:现场检查,该机床在MDI方式下,手动输入M03或M04指令,主轴能够正常旋转,但修改S指令值,新的S指令无法生效;而用M05指令停止主轴或按复位键清除后,可执行任何转速的指令。

检查机床诊断参数DGN700.0=1,表明机床正在执行M、S、T功能;进壹步检查PLC程序梯形图,发现主轴正转信号SFR或主轴反转信号SRV能够为“1”,即:M指令已经正常输出,但S功能完成信号SFIN(诊断号为DGN208.3)为0,导致了机床处于等待状态。

继续检查梯形图,发现该机床SFIN=1的条件是:S功能选通信号SF(诊断号为DGN66.2)为“1”、主轴速度到达信号SAR(诊断号为DGN35.7)为“1”、主轴变速完成信号SPE(诊断号为DGN208.1)为“1”。而实际状态是SF=1,SAR=0,SPE=0,故SFIN=0。从系统手册可知SF、SPE、SFlN为CNC到PLC的内部信号,SAR和外部条件有关。

检查SAR信号输入发现,故障时驱动器“主轴速度到达”信号输出为高电平,但数控系统I/O板上对应的SAR信号却为低电平。

检查信号连接发现电缆中存在断线,重新连接后,机床恢复正常。

例314.机床无法完成“换档”的故障维修

故障现象:某配套FANUC0TA2系统的数控车床,在机床执行主轴传动级交换指令M41/42时,主轴壹直处于抖动状态,无法完成“换档”动作。

分析和处理过程:根据故障现象,很容易判定故障是由于主轴传动级交换指令M41/42无法执行完成引起的。

检查电磁阀信号和液压缸动作,发现换档动作实际已经完成,但滑移齿轮换档到位信号仍然为“0”,原因是检测用无触点开关不良。

通过更换无触点开关后,机床恢复正常。

例315.螺纹加工出现“乱牙”的故障维修

故障现象:某配套大森R2J50L系统的数控车床,在G32车螺纹时,出现起始段螺纹“乱牙”的故障。

分析和处理过程:数控车床加工螺纹,其实质是主轴的角位移和Z轴进给之间进行的插补,“乱牙”是由于主轴和Z 轴进给不能实现同步引起的。

由于该机床使用的是变频器作为主轴调速装置,主轴速度为开环控制,在不同的负载下,主轴的起动时间不同,且起动时的主轴速度不稳,转速亦有相应的变化,导致了主轴和Z轴进给不能实现同步。

解决之上故障的方法有如下俩种:

1)通过在主轴旋转指令(M03)后、螺纹加工指令(G32)前增加G04延时指令,保证在主轴速度稳定后,再开始螺纹加工。

2)更改螺纹加工程序的起始点,使其离开工件壹段距离,保证在主轴速度稳定后,再真正接触工件,开始螺纹的加工。

通过采用之上方法的任何壹种都能够解决该例故障,实现正常的螺纹加工。

例316.表面出现周期性振纹的故障维修

故障现象:某配套FANUCOT-A2系统的数控车床,在加工过程中,发当下端面加工时,表面出现周期性波纹。

分析和处理过程:数控车床端面加工时,表面出现振纹的原因很多,在机械方面如:刀具、丝杠、主轴等部件的安装不良、机床的精度不足等等都可能产生之上问题。

但该机床为周期性出现,且有壹定规律,根据通常的情况,应和主轴的位置检测系统有关,但仔细检查机床主轴各部分,却未发现任何不良。

仔细观察振纹和X轴的丝杠螺距相对应,因此维修时再次针对X轴进行了检查。

检查该机床的机械传动装置,其结构是伺服电动机和滚珠丝杠间通过同步齿形带进行联接,位置反馈编码器采用的是分离型布置。

检查发现X轴的分离式编码器安装位置和丝杠不同心,存在偏心,即:编码器轴心线和丝杠中心不在同壹直线上,从而造成了X轴移动过程中的编码器的旋转不均匀,反映到加工中,则是出现周期性波纹。

重新安装、调整编码器后,机床恢复正常。

例317.不执行螺纹加工的故障维修

故障现象:某配套FANUC0-TD系统的数控车床,在自动加工时,发现机床不执行螺纹加工程序。

分析和处理过程:数控车床加工螺纹,其实质是主轴的转角和Z轴进给之间进行的插补。主轴的角度位移是通过主轴编码器进行测量的。

在本机床上,由于主轴能正常旋转和变速,分析故障原因主要有以下几种:

1)主轴编码器和主轴驱动器之间的连接不良。

2)主轴编码器故障。

3)主轴驱动器和数控之间的位置反馈信号电缆连接不良。

经查主轴编码器和主轴驱动器的连接正常,故能够排除第1项;且通过CRT的显示,能够正常显示主轴转速,因此说明主轴编码器的A、*A、B、*B信号正常;再利用示波器检查Z、*Z信号,能够确认编码器零脉冲输出信号正确。

根据检查,能够确定主轴位置检测系统工作正常。根据数控系统的说明书,进壹步分析螺纹加工功能和信号的要求,能够知道螺纹加工时,系统进行的是主轴每转进给动作,因此它和主轴的速度到达信号有关。

在FANUC0-TD系统上,主轴的每转进给动作和参数PRM24.2的设定有关,当该位设定为“0”时,Z轴进给时不检测“主轴速度到达”信号;设定为“1”时,Z轴进给时需要检测“主轴速度到达”信号。

在本机床上,检查发现该位设定为“1”,因此只有“主轴速度到达”信号为“1”时,才能实现进给。

通过系统的诊断功能,检查发现当实际主轴转速显示值和系统的指令值壹致时,“主轴速度到达”信号仍然为“0”。

进壹步检查发现,该信号连接线断开;重新连接后,螺纹加工动作恢复正常。

例318.主轴慢转、“定向准停”不能完成的故障维修

故障现象:壹台采用FANUC10T系统的数据车床,在加工过程中,主轴不能按指令要求进行正常的“定向准停”,主轴驱动器“定向准停”控制板上的ERROR(错误)指示灯亮,主轴壹直保持慢速转动,定位不能完成。

分析和处理过程:由于主轴在正常旋转时动作正常,故障只是在进行主轴“定向准停”时发生,由此能够初步判定主轴驱动器工作正常,故障的原因通常和主轴“定向准停”检测磁性传感器、主轴位置编码器等部件,以及机械传动系统的安装联接等因素有关。

根据机床和系统的维修说明书,对照故障的诊断流程,检查了PLC梯形图中各信号的状态,发当下主轴360o范围旋转时,主轴“定向准停”检测磁性传感器信号始终为“0”,因此,故障原因可能和此信号有关。

检查该磁性传感器,用螺钉旋具作为“发信挡铁”进行试验,发现信号动作正常,但在实际发信挡铁靠近时,检测磁性传感器信号始终为“0”。

重新进行检测磁性传感器的检测距离调整后,机床恢复正常,

例319.“定向准停”控制板熔断器熔断的故障维修

故障现象:壹台配套FANUC6M系统的卧式加工中心,在正常加工时,经常出现主轴驱动器上的熔断器S3.2A熔断现象。

分析和处理过程:该机床使用的是FANUC模拟式交流主轴驱动系统,且具有主轴“定向准停”(定位)选择功能,主轴驱动器上的熔断器S3.2A为主轴“定向准停”选择功能板的外部5V保护熔断器。

考虑到机床上主轴“定向准停”检测磁性传感器随机床主轴箱频繁上下运动,是最容易引起故障的部位,若连接不良较容易引起磁性传感器的5V短路,且引起集成电路损坏,导致S3.2熔断器的熔断。

维修时经过认真检查,逐壹测量5V回路,最终发现主轴驱动器中的壹片SN74148N集成电路已经损坏。

在对磁性传感进行重新连接,测量无短路后,更换SN74148N集成电路,故障排除。

例320.主轴定位速度偏差过大的故障维修

故障现象:壹台配套FANUCllM系统的卧式加工中心,当执行M06换刀指令时,在主轴定向过程中,主轴驱动器发生AL-02报警。

分析和处理过程:主轴驱动器AL-02报警的含义是“速度偏差过大”。

为了判定故障原因,在MDI方式下,单独执行M19主轴定向准停指令,发现驱动器也存在同样故障。

据操作者介绍,此机床在不同的Y轴位置,故障发生的情况有所不同;通常在Y轴的最低点,故障不容易发生。

为了验证,维修时把主轴箱下降到了最低点,在MDI方式下,执行M19定向准停指令,发现确实主轴工作正常。

根据之上现象分析,能够初步判定故障可能的原因是驱动器和电动机之间的信号电缆连接不良的可能性较大。

维修时拆下电动机编码器的连接器检查,发现接头松动,内部有部分线连接不良。经重新焊接后,主轴恢复正常。

例321.主轴不能进行变速的故障维修

故障现象:壹台配套FANUC6系统的立式加工中心,主轴在低速时(低于120r/min)时,S指令无效,主轴固定以120r/min转速运转。

分析和处理过程:由于主轴在低速时固定以120r/min转速运转,可能的原因是主轴驱动器有120r/min的转速模拟量输入,或是主轴驱动器控制电路存在不良。

为了判定故障原因,检查CNC内部S代码信号状态,发现它和S指令值壹壹对应;但测量主轴驱动器的数摸转换输出(测量端CH2),发现即使是在S为0时,D/A转换器虽然无数字输入信号,但其输出仍然有0.5V左右的电压。

由于本机床的最高转速为2250r/min,对照表7-28能够见出,当D/A转换器输出0.5V左右时,电动机转速应在120r/min左右,因此能够判定故障原因是D/A转换器(型号:DAC80)损坏引起的。

例322.变频器出现过压报警的维修

故障现象:某配套FANUC0-TD系统的数控车床,主轴电动机驱动采用三菱X公司的E540变频器,在加工过程中,变频器出现过压报警。

分析和处理过程:仔细观察机床故障产生的过程,发现故障总是在主轴起动、制动时发生,因此,能够初步确定故障的产生和变频器的加/减速时间设定有关。当加/减速时间设定不当时,如主电动机起/制动频繁或时间设定太短,变频器的加

/减速无法在规定的时间内完成,则通常容易产生过电压报警。

修改变频器参数,适当增加加/减速时间后,故障消除。

例323.直流主轴驱动器V79报警的维修

故障现象:某配套SIEMENS3T系统的数控车床,配套SIEMENS6RA26**系列直流主轴驱动器,开机后显示主轴报警。

分析和处理过程:检查SIEMENS6RA26**系列直流主轴驱动器,发现驱动器的V79报警灯亮。SIEMENS6RA26**系列直流主轴驱动器的故障指示灯V79安装于A3板上,报警的含义和SIEMENS6RA26**系列直流伺服驱动器相同,属于电源故障,其可能的原因有:

1)电源相序接反。

2)电源缺相,相位不正确。

3)电源电压低于额定值的80%。

测量驱动器输入电压正常,相序正确,但主驱动仍有报警,因此可能的原因是电源板存在故障。

根据SIEMENS6RA26**系列直流主轴驱动器原理图,逐级测量各板的电源回路,发现触发板的同步电源中有壹相低于正常电压。

检查确认故障原因为印制电路板存在虚焊,导致了同步电源的电压降低,引起了V79电源报警。重新焊接后电压恢复正常,报警消失,机床恢复正常。

例324.6SC650无显示故障维修

故障现象:某采用SIEMENS810M的立式加工中心,配套6SC6502主轴驱动器,在机床运行过程时,出现主轴驱动器无显示故障。

分析和处理过程:根据6SC6502维修说明,显示器上所有数码管均不亮,可能的故障原因如下:

1)主电路进线断路器跳闸。

2)主回路进线电源至少有俩相之上缺相。

3)驱动器至少有俩个之上的输入熔断器熔断。

4)电源模块A0中的电源熔断器熔断。

5)显示模块H1和控制器模块N1之间连接故障。

6)辅助控制电压中的5V电源故障。

7)控制模块N1故障。

根据之上故障可能的原因,逐壹检查,且通过更换备用板,确认驱动器全部模块均正常;驱动器电源输入正确。测量驱动器辅助控制电压DCl70正常,但DC30V、DC5V为“0”。

由于整个驱动器中的全部模块均已经互换进行确认,因此故障原因只可能是驱动器机架不良。直接更换机架再次进行试验,故障排除,主轴工作正常。

为了确认故障部位,在拆下机架后进行认真检查,发现该机架上的总线板30脚(DC30V总线)绝缘不良,对地电阻只有20kΩ,从而引起了辅助电源的保护线路动作,使驱动器出现之上故障。

例325~例326.6SC650驱动器显示888888的故障维修

例325.故障现象:某采用SIEMENS810M的立式加工中心,配套6SC6502主轴驱动器,在调试时,出现主轴驱动器显示888888,主轴不能正常工作。

分析和处理过程:6SC650系列主轴驱动器的所有数码均显示888888,其常见的故障原因有:

1)控制器模块N1故障。

2)控制器模块N1上的EPROM安装不良或软件出错。

3)输入/输出模块中的“复位”信号为“1”。

考虑到驱动器是第壹次使用,在出厂前已经经过出厂检验,故控制器模块N1不良的可能性较小;检查EPROM安装正确;驱动器亦未加入“复位”信号,因此排除了之上可能的原因。

根据驱动器工作原理,打开驱动器仔细检查,发现驱动器内部30V控制电压仅为20V,直流母线DCl70V预充电电压为130V,由此判定故障是由于驱动器辅助控制电压不正常引起的。检查驱动器内部直流整流模块V14的连接,发现三相整流桥的ACl20V进线中有壹相连线脱落。重新连接后,故障排除,主轴能够正常工作。

例326.故障现象:某采用SIEMENS810M的立式加工中心,配套6SC6502主轴驱动器,在机床运行过程时,出现主轴驱动器显示888888报警。

分析和处理过程:故障现象和上例相同,故障的分析和处理过程同上;经检查在本例中引起故障的原因,是驱动器内部辅助控制电源变压器的进线熔断器F4熔断引起的,更换熔断器后故障排除,机床恢复正常。

例327.6SC650出现F41报警的维修

故障现象:壹台配套SIEMENS6SC6508交流主轴驱动系统的卧式加工中心,主轴制动时,驱动器出现F41报警。

分析和处理过程:SIEMENS6SC6508交流主轴驱动系统F41报警的含义为“中间电路过电压”。

由于机床在加工时工作正常,对照“6SC650系列交流主轴驱动系统的故障诊断和维修”(参见本章第7.3.1节)的有关内容,分析在本机床上引起报警可能的原因如下:

1)驱动器整流模块A0不良。

2)逆变晶体管模块A1不良。

3)直流母线斩波管V5、V1不良。

为了进壹步判定故障原因,通过驱动器复位消除报警后,重新起动主轴,主轴电动机加速、旋转动作均正常。但在试验几次后,驱动器又出现F42(中间电路过电流)报警,驱动器内部有异常声。

打开驱动器检查,发现逆变晶体管模块A1板上有壹组控制电路烧坏,对应的直流母线斩波管V1的BE极间电阻明显大于V5,而且且联在模块俩端的大功率电阻R100(3.9Ω/50W)烧断、电容C100、C101(22PF/1000V)击穿,中间电路熔断器F7(125A、660V)熔断。

根据6SC6508主轴驱动系统的原理,驱动器主回路采用交流→直流→交流的变流形式,直流母线电压为600V,制动采用回馈制动的形式,在制动时能够将能量回馈电网。斩波管V1和V5的作用是在制动时,控制直流母线的电流方向,实现能量的回馈。

因此,如果V1和V5无法在制动时按照要求导通,制动能量就无法回馈电网,必然引起直流母线电容组上的电压超过允许的最大值,从而出现F41报警。同时,直流高压将使电容C100、C101击穿,导致中间电路短路,熔断器F7动作,限

流电阻R100损坏。

根据之上分析,维修时在更换了斩波管V1,电容C100、C101,电阻R100,熔断器F7及驱动板A1后,调速器恢复正常。为了防止故障的再次发生,在维修完成后,将驱动器的起动和制动时间(参数P16、P17)作了适当的延长,以减少对元器件的冲击;经之上处理后故障不再发生。

例328.6SC650出现F42报警的维修

故障现象:某采用SIEMENS810M的立式加工中心,配套6SC6502主轴驱动器,在机床到达用户的第壹次调试时,出现主轴驱动器F42报警。

分析和处理过程:6SC6502主轴驱动器出现F42报警的含义是“直流母线过电流报警”,报警可能的原因有:

1)驱动器过载。

2)A0故障(仅6SC6502和6503)

3)互感器U11有故障。

4)斩波管V1、V5故障。

5)晶体管故障。

6)直流母线中有短路。

7)功率晶体管(V1~V8)不良。

8)U1模块故障。

9)参数设定不正确(P176过大)。

10)N1模块故障。

由于机床为第壹次开机,不可能产生驱动器过载,且机床出厂前工作正常,因此能够基本排除模块、元器件不良的可能性,即:A0故障、U1模块故障、N1模块故障、互感器U11有故障、斩波管(V1、V5)故障、功率晶体管(V1~V8)不良的可能性较小。检查驱动器参数设定正确。

根据SIEMENS6SC6502的结构特点和以往的维修经验,当驱动器发生F42报警时,故障壹般在斩波管V1、V5后的电路中发生短路。

根据之上分析,打开驱动器,重点检查斩波管V1、V5后的电路,最终发现该驱动器内部的变压器T1在运输过程中铆钉脱落,引起了直流母线短路,驱动器产生报警。重新固定变压器T1,且进行仔细的检查后,驱动器故障排除。

例329.6SC650有异常响声且出现F42报警的维修

故障现象:某采用SIEMENS810M的立式加工中心,配套6SC6502主轴驱动器,在开机时,发现主轴驱动器有异常响声,驱动器显示F42报警。

分析和处理过程:6SC6502主轴驱动器出现F42报警的含义是“直流母线过电流”,报警可能的原因参见上例,由于故障时操作者听到驱动器有异常声,打开驱动器检查,发现驱动器内部斩波管V1、V5以及直流母线的RC保护回路中的电容器C100、C500、C3均已炸裂,且有部分断裂处碰壳,引起了直流母线的过电流。更换RC保护回路,机床恢复正常工作。

例330.6SC650出现F15报警的维修

故障现象:某采用SIEMENS810M的立式加工中心,配套6SC6502主轴驱动器,在调试时,出现主轴驱动器F15报

警。

分析和处理过程:6SC650系列主轴驱动器出现F15报警的含义是“驱动器过热报警”,可能的原因有:

1)驱动器过载(电动机和驱动器匹配不正确)。

2)环境温度太高。

3)热敏电阻故障。

4)风扇故障。

5)断路器Q1或Q2跳闸。

由于本故障在开机时即出现,能够排除驱动器过载、环境温度太高等原因;检查断路器Q1或Q2位置正确,风扇已经正常旋转,因此故障原因和热敏电阻本身或其连接有关。

拆开驱动器检查,发现A01板和转换板间的电缆插接不良;重新插接后,故障排除,主轴工作正常。

例331.810M系统主轴不能旋转的故障维修

故障现象:某采用SIEMENS810M的立式加工中心,配套6SC6502主轴驱动器,在开机调试时,发现主轴不能正常旋转,系统无报警。

分析和处理过程:测量系统主轴模拟量输出,发现此值为“0”,因此能够确定故障是由数控系统无模拟量输出引起的。

由于系统为刚出厂的原装系统,因此系统内部不良的可能性较小,出现之上故障最大的可能原因是系统的参数设定不当引起的。

仔细检查系统的机床参数设定,发现全部MD参数设定均正确无误;检查系统的SD(设定)参数发现,在SETTINGDATA 页面下的G96转速限制值为“0”,将该值更改为机床的最大转速6000r/min后,机床主轴模拟量输出正常,主轴能够正常旋转。

例332.6SC650状态“04”时间过长的故障维修

故障现象:某采用SIEMENS810M的立式加工中心,配套6SC6502主轴驱动器,每次开机时,主轴驱动器在显示状态“04”后,需要等待10min左右时间,主轴驱动器才能恢复正常工作。

分析和处理过程:6SC6502主轴驱动器显示状态“04”表明驱动器未准备好,可能的原因是控制端63未加入“使能”信号或驱动器预充电未完成。

检查驱动器的输入信号,发现端子63信号正常,因此可能的原因是驱动器预充电未完成。检查驱动器参数设定,发现该驱动器的P15参数被设定为“1”,使得驱动器每次通电都必须进行预充电动作。

为了取消之上动作,根据6SC650系列主轴驱动器的特点,进行了如下处理:

1)拔下A0模块的插头X13、X14。

2)开机,将P97设定为00H;且进行如下的参数设定:

P95:输入驱动器代号

P96:输入电动机代号

P98:输入脉冲编码器每转脉冲数(通常为1024)

3)将P97设定为0001H,进行参数写入传送。

4)设定下列参数,进行预充电准备:

P51设定为:0004H

P75设定为:0001H

P52设定为:0001H

5)当P52恢复0000H后,关机。

6)连接AO模块的插头X13、X14。

7)开机,且使驱动器显示状态参数P6,监视直流母线电压。

8)当直流母线电压显示值P6上升到520~540V时,进行如下参数设定:

P51设定为:0004H

P75设定为:0000H

P52设定为:0001H

9)当P52自动恢复到0000H后,切断驱动器电源,固定直流母线电压为520~540V。经过之上处理后,机床恢复正常工作。

课主轴驱动系统故障维修例[

第七章第四课主轴驱动系统故障维修50 例[1] 2009-05-15 05:55 例301.机床剧烈抖动、驱动器显示AL-04 报警 故障现象:一台配套FANUC 6系统地立式加工中心, 在加工过程中, 机床出现剧烈抖动、交流主轴驱动器显示AL-04 报警. 分析与处理过程:FANU(交流主轴驱动系统AL-04报警地含义为“交流输入电路中地P1、F2、F3熔断器熔断”,故障可能地原因有: 1>交流电源输出阻抗过高. 2>逆变晶体管模块不良. 3>整流二极管(或晶闸管>模块不良. 4>浪涌吸收器或电容器不良. 针对上述故障原因, 逐一进行检查. 检查交流输入电源, 在交流主轴驱动器地输入电源,测得R、S相输入电压为220V,但T相地交流输入电压仅为120V,表明驱动器地三相输入电源存在问题. 进一步检查主轴变压器地三相输出, 发现变压器输入、输出, 机床电源输入均同样存在不平衡, 从而说明故障原因不在机床本身. 检查车间开关柜上地三相熔断器,发现有一相阻抗为数百欧姆.将其拆开检查,发现该熔断器接线螺钉松动, 从而造成三相输入电源不平衡;重新连接后, 机床恢复正常. 例302?驱动器出现报警“ A”地故障维修 故障现象:一台配套FANUC 0■地数控车床,开机后,系统处在“急停”状态,显示“ NOTREADY,操作面板上地主轴报警指示灯亮. 分析与处理过程:根据故障现象, 检查机床交流主轴驱动器, 发现驱动器显示为“ A” . 根据驱动器地报警显示, 由本章前述可知, 驱动器报警地含义是“驱动器软件出错” , 这一报警在驱动器受到外部偶然干扰时较容易出现, 解决地方法通常是对驱动器进行初始化处理. 在本机床按如下步骤进行了参数地初始化操作: 1>切断驱动器电源, 将设定端S1 置TEST. 2>接通驱动器电源. 3>同时按住MOD E UP DOWNDATASET个键4>当显示器由全暗变为“ FFFFF后,松

数控机床主轴箱设计

数控机床主轴箱设计

毕业设计(论文)任务书

摘要 主轴箱为数控机床的主要传动系统,它包括电动机、传动系统和主轴部件,它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。 本设计采用北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。通过给定的技术参数来初步设定部分轴、齿轮等单元的结构尺寸,对传动系统进行理论力学分析,精确计算选定尺寸及材料,由电机转速传动至进给系统的参数反馈,校核所选定主轴和转动轴尺寸的合理性完成整体结构设计,最后对齿轮进行了验算以及V型带的、离合器的选择与计算。 通过本次设计,使数控机床结构更加紧凑,性能更加优越,生产加工更加精密,有利于改善数控机床的性能,使得产品的加工更加高效。 关键词:数控机床;主轴箱;交流调速电动机;BESK-8

Abstract For the spindle box of NC machine tool main transmission system which comprises a motor, the transmission system and the spindle, it with ordinary lathe spindle box is relatively simple, only two or three stage gear transmission system, it is mainly used to expand the range of stepless speed regulation of motor, to meet a certain constant power, and speed problems. This design uses the Beijing CNC equipment factory of type BESK-8 AC spindle motor, maximum speed is 4500r / min. Through the given technical parameter to set an initial portion of the shaft, gear unit size, the transmission system of theoretical mechanics analysis, accurate calculation of the selected size and material, the motor speed drive to the feed system parameters feedback, check the selected spindle and rotary shaft size is reasonable to complete the overall structure design, assembly drawing and parts graph.

(完整版)数控车床主轴设计

绪论 随着市场上产品更新换代的加快和对零件精度提出更高的要求,传统机床已不能满足要求。数控机床由于众多的优点已成为现代机床发展的主流方向。它的发展代表了一个国家设计、制造的水平,在国内外都受到高度重视。 现代数控机床是信息集成和系统自动化的基础设备,它集高效率、高精度、高柔性于一身,具有加工精度高、生产效率高、自动化程度高、对加工对象的适应强等优点。实现加工机床及生产过程的数控化,已经成为当今制造业的发展方向。可以说,机械制造竞争的实质就是数控技术的竞争。 本课题的目的和意义在于通过设计中运用所学的基础课、技术基础课和专业课的理论知识,生产实习和实验等实践知识,达到巩固、加深和扩大所学知识的目的。通过设计分析比较机床的某些典型机构,进行选择和改进,学习构造设计,进行设计、计算和编写技术文件,达到学习设计步骤和方法的目的。通过设计学习查阅有关设计手册、设计标准和资料,达到积累设计知识和提高设计能力的目的。通过设计获得设计工作的基本技能的训练,提高分析和解决工程技术问题的能力,并为进行一般机械的设计创造一定的条件。

一、设计题目及参数 1.1 题目 本设计的题目是数控车床的主轴组件的设计。它主要由主轴箱,主轴,电动机,主轴脉冲发生器等组成。我主要设计的是主轴部分。 主轴是加工中心的关键部位,其结构优劣对加工中心的性能有很大的影响,因此,在设计的过程中要多加注意。主轴前后的受力不同,故要选用不同的轴承。 1.2参数 床身回转空间400mm 尾架顶尖与主轴端面距离1000mm 主轴卡盘外径Φ200mm 最大加工直径Φ600mm 棒料作业能力50~63mm 主轴前轴承内和110~130mm 最大扭矩480N·m 二、主轴的要求及结构 2.1主轴的要求 2.1.1旋转精度 主轴的旋转精度是指装配后,在无载荷,低转速的条件下,主轴前端工件或刀具部位的径向跳动和轴向跳动。 主轴组件的旋转精度主要取决于各主要件,如主轴、轴承、箱体孔的的制造,装配和调整精度。还决定于主轴转速,支撑的设计和性能,润滑剂及主轴组件的平衡。 通用(包括数控)机床的旋转精度已有标准规定可循。 2.1.2 静刚度 主轴组件的静刚度(简称刚度)反映组件抵抗静态外载荷变形的能力。影响主轴组件弯曲刚度的因素很多,如主轴的尺寸和形状,滚动轴承的型号,数量,配置形式和预紧,前后支撑的距离和主轴前端的悬伸量,传动件的布置方式,主轴组件的制造和装配质量等。 各类机床主轴组件的刚度目前尚无统一的标准。 2.1.3抗振性 主轴组件工作时产生震动会降低工件的表面质量和刀具耐用度,缩短主轴轴承寿命,还会产生噪声影响环境。 振动表现为强迫振动和自激振动两种形式。

数控机床用主轴伺服系统

数控机床用主轴伺服系统 数控机床的主轴系统和进给系统有很大的差别。根据机床主传动的工作特点,早期的机床主轴传动全部采用三相异步电动机加上多级变速箱的结构。随着技术的不断发展,机床结构有了很大的改进,从而对主轴系统提出了新的要求,而且因用途而异。在数控机床中,数控车床占42%,数控钻镗铣床占33%,数控磨床、冲床占23%,其他只占2%。为了满足量大面广的前两类数控机床的需要,对主轴传动提出了下述要求:主传动电动机应有2.2~250kW的功率范围;要有大的无级调速范围,如能在1:100~1000范围内进行恒转矩调速和1:10的恒功率调速;要求主传动有四象限的驱动能力;为了满足螺纹车削,要求主轴能与进给实行同步控制;在加工中心上为了自动换刀,要求主轴能进行高精度定向停位控制,甚至要求主轴具有角度分度控制功能等等。 主轴传动和进给传动一样,经历了从普通三相异步电动机传动到直流主轴传动,而随着微处理器技术和大功率晶体管技术的进展,现在又进入了交流主轴伺服系统的时代,目前已很少见到在数控机床上有使用直流主轴伺服系统了。但是国内生产的交流主轴伺服系统的产品尚很少见,大多采用进口产品。 交流伺服电动机有永磁式同步电动机和笼型异步电动机两种结 构形式,而且绝大多数采用永磁式同步电动机的结构形式。而交流主轴电动机的情况则不同,交流主轴电动机均采用异步电动机的结构形式,这是因为,一方面受永磁体的限制,当电动机容量做得很大时,

电动机成本会很高,对数控机床来讲无法接受采用;另一方面,数控机床的主轴传动系统不必像进给伺服系统那样要求如此高的性能,采用成本低的异步电动机进行矢量闭环控制,完全可满足数控机床主轴的要求。但对交流主轴电动机性能要求又与普通异步电动机不同,要求交流主轴电动机的输出特性曲线(输出功率与转速关系)是在基本速度以下时为恒转矩区域,而在基本速度以上时为恒功率区域。 交流主轴控制单元与进给系统一样,也有模拟式和数字式两种,现在所见到的国外交流主轴控制单元大多都是数字式的。 它们的工作过程简述如下:由数控系统来的速度指令(如10V时相当于6000r/min或4500r/min)在比较器中与检测器的信号相与之后,经比例积分回路3将速度误差信号放大作为转矩指令电压输出,再经绝对值回路4使转矩指令电压永远为正。然后经函数发生器6(它的作用是当电动机低速时提高转矩指令电压),送到V/F变换器7,变成误差脉冲(如10V相当于200kHz)。该误差脉冲送到微处理器8并与四倍回路17送来的速度反馈脉冲进行运算。在此同时,交预先写在微处理器部件中的ROM中的信息读出,分别送出振幅和相位信号,送到DA强励磁9和DA振幅器10。DA强励磁回路用于控制增加定子电流的振幅,而DA振幅器用于产生与转矩指令相对应的电动机定子电流的振幅。它们的输出值经乘法器11之后形成定子电流的振幅,送给U相和V相的电流指令回路12。另一方面,从微处理器输出的U、V两相的相位(即sinθ和sin(θ-120°))也被送到U相和V相的电流指令回路12,它实际上也是一个乘法器,通过它形成

(数控加工)数控机床主轴驱动系统故障维修例精编

(数控加工)数控机床主轴驱动系统故障维修例

数控机床主轴驱动系统故障维修50例 第七章第四课主轴驱动系统故障维修50例[1] 2009-05-1505:55 例301.机床剧烈抖动、驱动器显示AL-04报警 故障现象:壹台配套FANUC6系统的立式加工中心,在加工过程中,机床出现剧烈抖动、交流主轴驱动器显示AL-04报警。 分析和处理过程:FANUC交流主轴驱动系统AL-04报警的含义为“交流输入电路中的P1、F2、F3熔断器熔断”,故障可能的原因有: 1)交流电源输出阻抗过高。 2)逆变晶体管模块不良。 3)整流二极管(或晶闸管)模块不良。 4)浪涌吸收器或电容器不良。 针对上述故障原因,逐壹进行检查。检查交流输入电源,在交流主轴驱动器的输入电源,测得R、S相输入电压为220V,但T相的交流输入电压仅为120V,表明驱动器的三相输入电源存在问题。 进壹步检查主轴变压器的三相输出,发现变压器输入、输出,机床电源输入均同样存在不平衡,从而说明故障原因不在机床本身。 检查车间开关柜上的三相熔断器,发现有壹相阻抗为数百欧姆。将其拆开检查,发现该熔断器接线螺钉松动,从而造成三相输入电源不平衡;重新连接后,机床恢复正常。 例302.驱动器出现报警“A”的故障维修 故障现象:壹台配套FANUC0T的数控车床,开机后,系统处在“急停”状态,显示“NOTREADY”,操作面板上的主轴报警指示灯亮。 分析和处理过程:根据故障现象,检查机床交流主轴驱动器,发现驱动器显示为“A”。 根据驱动器的报警显示,由本章前述可知,驱动器报警的含义是“驱动器软件出错”,这壹报警在驱动器受到外部偶然干扰时较容易出现,解决的方法通常是对驱动器进行初始化处理。在本机床按如下步骤进行了参数的初始化操作: 1)切断驱动器电源,将设定端S1置TEST。 2)接通驱动器电源。 3)同时按住MODE、UP、DOWN、DATASET4个键 4)当显示器由全暗变为“FFFFF”后,松开全部键,且保持1s之上。 5)同时按住MODE、UP键,使参数显示FC-22。 6)按住DATASET键1s之上,显示器显示“GOOD”,标准参数写入完成。 7)切断驱动器电源,将S1(SH)重新置“DRIVE”。 通过之上操作,驱动器恢复正常,报警消失,机床恢复正常工作。

主轴驱动系统和主轴电机发展趋势

主轴驱动系统和主轴电机发展趋势 050810133 李阳阳数控机床主轴驱动系统作为机床的最核心的关键部件之一,其输出性能对数控机床的整体水平是至关重要的。主轴驱动远不同于一般工业驱动,它不但要求较高的速度精度,动态刚度,而且要求连续输出的高转矩能力和非常宽的恒功率运行范围。目前,各主要机床生产厂家和研究单位纷纷把目光投向交流主轴驱动系统。随着功率电子,计算机技术,控制理论,新材料和电机设计的进一步发展和完善,矢量控制交流电机主轴驱动系统的性能已经达到甚至超过了直流主轴驱动系统。交流主轴驱动系统正在逐步取代直流系统。 1交流主轴驱动系统发展趋势 交流主轴驱动系统的逆变器一般基于矢量控制原理,采用正弦波宽调制方式,功率器件采用ICBT。根据电机类型可分为感应电机主轴驱动系统,永磁同步电机主轴驱动系统,开头磁阻电机主轴驱动系统。 1.1 感应电机交流主轴驱动系统 感应电机交流主轴驱动系统是当前商用主轴驱动系统的主流,其功率范围为从零点几个千瓦到几百千瓦,广泛应用于各种数控机床上。 感应主轴电机基速以上的放展运动范围可以通过弱磁控制实现。其恒功率运动范围可达1:5.如果采用最新的绕组切换技术,其恒功率运动范围可达1:14.甚至更宽。目前,感应主轴电机最高转速可达100000r/min以上。尽管感应主轴电机结构相对简单,但其变频控制器价格却较高。而采用了磁场定向控制技术的变频器能提供连续的转矩/速度调节能力,较高的精度,运行可行性和较低的运行费用,因而在一定程度上抵消了整个系统的初始高价格。 感应式主轴电机的控制无一例外地采用磁场定向技术。该技术又分为间接磁场定向和直接磁场定向两种实现方式,其中间接转子磁场定向控制技术由于较容易实现而被广为应用。它能提供较高的控制品质,但这种技术过分依赖于电机的参数,当参数变化时,控制性能将严重下降,遗憾的是,在电机运行过程中,转子时间常数可以在400%的范围以内变化,因此现代主轴控制器均采用辨识,估算和自整定技术对参数变化在线补偿。这项技术另一个难题是随着电机速度要求越来越高,在恒功率弱磁运行时,当转子磁场发生变化,而滑查增益无法动态补偿时,将引起磁通和转矩的振荡。近年来,随着自适应观测器和微处理器性能的提高,直接磁场定向控制技术在主轴驱动中有取代间接磁场定向之势。 1.2 永磁交流主轴驱动系统 永磁交流主轴电机分为正弦波驱动主轴电机和方波驱动直流主轴电机。此类主轴电机以转子无功耗,高效率和高功率/转矩密度著称。其低速运行时可获得更大的功率和转矩,因此在同步攻丝时的伺服锁定运行和快速定向方面有较大的优势。一般永磁主轴电机功率在10千瓦以下,速度低于8000r/min。但目前转速在20000-30000r/min之间,功率超过10千瓦的主轴电机已经在制造。永磁主轴电机在转子上不存在发热元件,显著提高了电机效率,同时高效铁硼材料的应用,使得永磁主轴电机在所有形式的交流主轴电机中具有最高的效率和最小的体积。PMSM和BDCM电机均可运行于高速范围。但调磁范围受到一定的限制,使得速度不能很高。在控制策略方面,PMSM电机的定子绕组经特殊绕制后将产生正弦反电势,当绕组通入正弦电流后,便可以获得恒定的转矩。但是磁场定

数控机床主轴箱设计

第一章概述 1.1设计目的 (2) 1.2主轴箱的概述 (2) 第2章主传动的设计 (2) 2.1驱动源的选择 (2) 2.2转速图的拟定 (2) 2.3传动轴的估算 (4) 2.4齿轮模数的估算 (3) 2.5V带的选择 (4) 第3章主轴箱展开图的设计 (7) 3.1各零件结构尺寸的设计 (7) 3.1.1 设计内容和步骤 (7) 3.1.2有关零件结构和尺寸的设计 (7) 3.1.3各轴结构的设计 (9) 3.1.4主轴组件的刚度和刚度损失的计算 (10) 3.1.5轴承的校核 (13) 3.2装配图的设计的概述 (13) 总结 (19) 参考文献 (20)

第一章概述 1-1设计目的 数控机床的课程设计,是在数控机床设计课程之后进行的实践性教学环节。其目的在于通过数控机床伺服进给系统的结构设计,使我们在拟定进给传动及变速等的结构方案过程中得到设计构思、方案分析、结构工艺性、CAD制图、设计计算、编写技术文件、查阅技术资料等方面的综合训练,建立正确的设计思想,掌握基本的设计方法,培养我们初步的结构设计和计算能力。 1-2 主轴箱的概述 主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。 第二章2主传动设计 2-1驱动源的选择 机床上常用的无级变速机构是直流或交流调速电动机,直流电动机从额定转速nd向上至最高转速nmax是调节磁场电流的方法来调速的,属于恒功率,从额定转速nd向下至最低转速nmin时调节电枢电压的方法来调速的属于恒转矩;交流调速电动机是靠调节供电频率的方法调速。由于交流调速电动机的体积小,转动惯量小,动态响应快,没有电刷,能达到的最高转速比同功率的直流调速电动机高,磨损和故障也少,所以在中小功率领域,交流调速电动机占有较大的优势,鉴于此,本设计选用交流调速电动机。 根据主轴要求的最高转速4000r/min,最大切削功率5kw,选择北京数控设备厂的BESK-8型交流主轴电动机,最高转速是4500r/min。 2-2 转速图的拟定 根据交流主轴电动机的最高转速和基本转速可以求得交流主轴电动机的恒功率转速范围Rdp=nmax/nd=3 而主轴要求的恒功率转速范围Rnp=3,远大于交流主轴电动机所能提供的恒功率

数控机床主轴驱动系统故障维修 50 例

数控机床主轴驱动系统故障维修50 例 第七章第四课主轴驱动系统故障维修50 例[1] 2009-05-15 05:55 例301.机床剧烈抖动、驱动器显示AL-04报警 故障现象:一台配套FANUC 6系统的立式加工中心, 在加工过程中,机床出现剧烈抖动、交流主轴驱动器显示AL-04报警。 分析与处理过程:FANUC交流主轴驱动系统AL-04报警的含义为“交流输入电路中的P1、F2、F3熔断器熔断”,故障可能的原因有: 1)交流电源输出阻抗过高。 2)逆变晶体管模块不良。 3)整流二极管(或晶闸管)模块不良。 4)浪涌吸收器或电容器不良。 针对上述故障原因,逐一进行检查。检查交流输入电源,在交流主轴驱动器的输入电源,测得R、S相输入电压为220V,但T相的交流输入电压仅为120V,表明驱动器的三相输入电源存在问题。 进一步检查主轴变压器的三相输出,发现变压器输入、输出,机床电源输入均同样存在不平衡,从而说明故障原因不在机床本身。 检查车间开关柜上的三相熔断器,发现有一相阻抗为数百欧姆。将其拆开检查,发现该熔断器接线螺钉松动,从而造

成三相输入电源不平衡;重新连接后,机床恢复正常。 例302.驱动器出现报警“A”的故障维修 故障现象:一台配套FANUC 0T的数控车床,开机后,系统处在“急停”状态,显示“NOTREADY”,操作面板上的主轴报警指示灯亮。 分析与处理过程:根据故障现象,检查机床交流主轴驱动器,发现驱动器显示为“A”。 根据驱动器的报警显示,由本章前述可知,驱动器报警的含义是“驱动器软件出错”,这一报警在驱动器受到外部偶然干扰时较容易出现,解决的方法通常是对驱动器进行初始化处理。在本机床按如下步骤进行了参数的初始化操作: 1)切断驱动器电源,将设定端S1置TEST。 2)接通驱动器电源。 3)同时按住MODE、UP、DOWN、DATASET4个键 4)当显示器由全暗变为“FFFFF”后,松开全部键, 并保持1s以上。 5)同时按住MODE、UP键,使参数显示FC-22。 6)按住DATASET键1s以上,显示器显示“GOOD”,标准参数写入完成。 7)切断驱动器电源,将S1(SH)重新置“DRIVE” 。 通过以上操作,驱动器恢复正常,报警消失,机床恢复正常工作。 例303.驱动器出现过电流报警的故障维修 故障现象:一台配套FANUC 11M系统的卧式加工中心,在加工时主轴运行突然停止,驱动器显示过电流报警。 分析与处理过程:经查交流主轴驱动器主回路,发现再生制动回路、主回路的熔断器均熔断,经更换后机床恢复正常。但机床正常运行数天后,再次出现同样故障。 由于故障重复出现,证明该机床主轴系统存在问题,根据报警现象,分析可能存在的主要原因有: 1)主轴驱动器控制板不良。 2)电动机连续过载。 3)电动机绕组存在局部短路。 在以上几点中,根据现场实际加工情况,电动机过载的原因可以排除。考虑到换上元器件后,驱动器可以正常工作数天,故主轴驱动器控制板不良的可能性亦较小。因此,故障原因可能性最大的是电动机绕组存在局部短路。 维修时仔细测量电动机绕组的各相电阻,发现U相对地绝缘电阻较小,证明该相存在局部对地短路。 拆开电动机检查发现,电动机内部绕组与引出线的连接处绝缘套已经老化;经重新连接后,对地电阻恢复正常。 再次更换元器件后,机床恢复正常,故障不再出现。 例304.主轴驱动器AL-12报警的维修 故障现象:一台配套FANUC 11M系统的卧式加工中心, 在加工过程中,主轴运行突然停止,驱动器显示12号报警。 分析与处理过程:交流主轴驱动器出现12号报警的含义是“直流母线过电流”,由本章前述可知,故障可能的原因如下:

数控车床主轴系统

模块一对主轴驱动系统的认识 任务一掌握主轴驱动系统各种故障排查方法。 1.主轴驱动系统概述 主轴驱动系统也叫主传动系统,是在系统中完成主运动的动力装置部分。主轴驱动系统通过该传动机构转变成主轴上安装的刀具或工件的切削力矩和切削速度,配合进给运动,加工出理想的零件。它是零件加工的成型运动之一,它的精度对零件的加工精度有较大的影响。 引言 主轴驱动系统控制数控车床的旋转运动,为车床主轴提供驱动功率以及所需的切削力。目前在数控车床中,主轴驱动常使用交流电动机,直流电动机已被逐渐淘汰,由于受永磁体的限制,交流同步电动机功率做得很大时,电动机成本太高。因此目前在数控机床的主轴驱动中,均采用笼型异步电动机。为了获取良好的主轴特性,设计中采用矢量变频控制的交流主轴电动机,矢量部分分无速度传感器和有速度传感器的两种方式,后者具有更高的速度控制精度,在数控车床中无速度传感器的矢量变频器已经符合控制要求,因此,本设计中采用无速度的矢量变频器。 知识目标: 1、了解主轴驱动系统的控制原理。 2、了解各种故障的产生原因。 能力目标: 1、能够对主轴驱动系统启动故障进行排除和处理。 2、熟练掌握变频器的使用方法。 一、相关知识 1、数控机床对主轴驱动系统的要求 机床的主轴驱动和进给驱动有较大的差别。机床主轴的工作运动通常是旋转运动,不像进给驱动需要丝杠或其它直线运动装置作往复运动。数控机床通常通过主轴的回转与进给轴的进给实现刀具与工件的快速的相对切削运动。在20纪60-70年代,数控机床的主轴一般采用三相感应电动机配上多级齿轮变速箱实现有级变速的驱动方式。随着刀具技术、生产技术、加工工艺以及生产效率的不断发展,上述传统的主轴驱动已不能满足生产的需要。现代数控机床对主轴传动提出了更高的要求: 1)调速范围宽并实现无极调速 为保证加工时选用合适的切削用量,以获得最佳的生产率、加工精度和表面质量。特别对于具有自动换刀功能的数控加工中心,为适应各种刀具、工序和各种材料的加工要求,对主轴的调速范围要求更高,要求主轴能在较宽的转速范围内根据数控系统的指令自动实现无级调速,并减少中间传动环节,简化主轴箱。

数控机床主轴总体设计

目录 1. 绪论 (2) 2. 数控机床主轴总体设计 (3) 2.1数控机床的加工原理 (3) 2.2机床主传动系统设计 (3) 2.2.1机床主传动功率 (3) 2.2.2 主传动的调速围 (4) 2.2.3主传动系统设计要求 (4) 2.2.4 主传动系统电机选择 (6) 2.2.5 主传动分级变速设计 (6) 3. 主轴设计 (8) 3.1 主轴材料的选择及热处理 (8) 3.2 主轴尺寸确定 (8) 3.2.1 主轴前后颈及孔尺寸确定 (8) 3.2.2 主轴部件支承结构选择 (8) 3.3主轴组件设计 (9) 3.3.1主轴组件的性能要求 (9) 3.3.2 主轴轴承的选择……………………………………………………… 10 3.3.3 主轴轴承的预紧及润滑……………………………………………… 11 3.3.4 主轴上齿轮参数确定及键的选择…………………………………… 12 3.3.5 主轴部件结构图……………………………………………………… 13 4. 主轴验算 (14) 4.1 确定弯曲变形的验算条件 (14) 4.1.1刚度标准 (14) 4.1.2主轴的载荷 (15) 4.2三支承主轴刚度验算………………………………………………………

17 5. 设计总结 (19) 6. 参考文献 (20) 1 绪论 在现代制造技术中,数控机床已经用它所显示的效益和巨大潜力,引起世界各国科技界和工业界的普遍重视。发展现代数控机床是当前机械制造业技术改造,技术更新的必由之路,是未来工厂自动化的基础。 数控机床主轴及其部件作为数控机床主要部件的一部分,在数控机床中占据着重要的地位,主轴系统的精度将直接影响到数控加工产品的精度,因此在数控机床设计中当十分注意主轴及其部件的设计。 此次课程设计,主要针对数控车床主传动系统和主轴组件设计,学习和了解数控机床主轴设计的基本思路,理解数控车床主传动系统的传动原理,以及主轴组件选用和数控主轴结构的构成。并熟悉数控机床主轴设计相关计算,了解数控机床设计中的一些验算公式,并对关键部件进行强度或者刚度验算。 通过此次课程设计,应当达到熟悉数控机床主轴系统设计的基本思路,熟练掌握主轴系统设计流程,绘制主轴系统结构装配图和部分零件图,了解设计过程中的必要计算及一些经验公式的运用,初步具备数控机床主轴设计能力。

立式加工中心总体、主轴部件及立柱设计

加工中心总体、主轴部件及立柱设计 摘要 加工中心是一种具有刀库并能自动更换刀具对工件进行多工序加工的数控机床。它是适应省力、省时和节能的时代要求而迅速发展起来的高科技产品,综合了数控铣床、数控镗床、数控钻床多功能的加工设备。 基于加工中心的迅速发展,本次毕业设计的任务是设计加工中心总体、主轴部件及立柱。加工中心的总体设计主要是通过设计各部件之间的尺寸联系来满足它们之间的位置关系要求。主轴部件是机床的重要部件之一。它是机床的执行件,其功用是支承并带动工件或刀具旋转进行切削,承受切削力和驱动力等载荷,从而完成表面成形运动。主轴部件由主轴及其支承和安装在主轴上的传动件、密封件等组成。加工中心立柱主要是对主轴箱起到支承作用,满足主轴Z向运动。根据对立柱的结构、性能及其经济性的要求,采用井字型的内腔结构。 加工中心的设计符合数控机床高速化、高精度化、智能化、系统化与高可靠性等发展趋势。目前,加工中心已成为现代机床发展的主流方向,广泛应用于机械制造中。 关键词:加工中心,主轴,轴承,立柱

DESIGN OF THE OVERALL , SPINDLE ASSEMBLY AND COLUMN OF MACHININING CENTER ABSTRACT Machining center (MC) is a kind of CNC machine with tool magazine. It can perform the multi-processing of workpiece by change cutting tool automatically. It is the high-tech product developed to adapt to the requirements for effort-saving and time-saving, and the multi-function equipment which integrated CNC milling machine with CNC boring and drilling machines. The tasks of graduation design are to design the overall of machine, the spindle assembly and column. The purpose of MC overall design is to establish the dimension relation between components. Spindle assembly is one of the important parts of the machine. It is the executive pieces, and its function is to support and carry the workpiece or rotary cutting tools, and bear the cutting force. The spindle assembly consists of the spindle and its support, the transmission members, seals and other components mounted on it. The function of MC column is to support the headstock to satisfy the movement of Z-axis. Based on the performance requirements of the structure and the economy, Column is of the cross-type structure inside. The design of MC is consistent with the development trend in high-speed, high precision, intelligent, and high reliability of CNC machine tools. Currently, MC stands for the main development direction of modern machine tool, which is widely used in machine manufacturing. KEYWORDS: machining center, spindle, bearing, column

数控机床主传动系统及主轴设计.

新疆工程学院机械工程系毕业设计(论文)任务书 学生姓名专业班级机电一体化09-11(1)班设计(论文)题目数控机床主传动系统及主轴设计 接受任务日期2012年2月29日完成任务日期2012年4月9日指导教师指导教师单位机械工程系 设 计(论文)内容目标 培养学生综合应用所学的基本理论,基础知识和基本技能进行科学研究能力的初步训练;培养和提高学生分析问题,解决问题能力。通过毕业设计,使学生对学过的基础理论和专业知识进行一次全面地系统地回顾和总结。通过对具体题目的分析和设计,使理论与实践结合,巩固和发展所学理论知识,掌握正确的思维方法和基本技能。 设计(论文)要求 1.论文格式要正确。 2.题目要求:设计题目尽可能选择与生产、实验室建设等任务相结合的实际题目,完成一个真实的小型课题或大课题中的一个完整的部分。 3.设计要求学生整个课题由学生独立完成。 4.学生在写论文期间至少要和指导老师见面5次以上并且和指导教师随时联系,以便掌握最新论文的书写情况。 论文指导记录 2012年3月1号早上9:30-12:00在教室和XX老师确定题目。2012年3月6日早上10:00-12:00在教室确定论文大纲与大纲审核。2012年3月13日早上10:00-12:00在教室确定论文格式。 2012年3月20日早上9:30-12:00在教室对论文一次修改。 2012年3月27日早上9:30-12:00在教室对论文二次修改。 2012年4月6日早上9:30-12:30在教室对论文三次修改。 2012年4月9日早上9:30-12:00在教室老师对论文进行总评。 参考资料[1]成大先.机械设计手册-轴承[M].化学工业出版社 2004.1 [2]濮良贵纪名刚.机械设计[M].高等教育出版社 2006.5 [3]李晓沛张琳娜赵凤霞. 简明公差标准应用手册[M].上海科学技术出版社 2005.5 [4]文怀兴夏田.数控机床设计实践指南[M].化学工业出版社 2008.1 [5][日]刚野修一(著). 杨晓辉白彦华(译) .机械公式应用手册[M].科学出版社 2004

数控机床的伺服驱动系统

第五章数控机床的伺服驱动系统 §5—1 概述 数控机床伺服驱动系统是指以机床移动部件(如工作台、动力头等,本书仅以工作台为例)的位置和速度作为控制量的自动控制系统,又称拖动系统。在数控机床上,伺服驱动系统接收来自插补装置或插补软件生成的进给脉冲指令,经过一定的信号变换及电压、功率放大,将其转化为机床工作台相对于切削刀具的运动。目前,这主要通过对交、直流伺服电机或步进电机等进给驱动元件的控制来实现。 数控机床的伺服驱动系统作为一种实现切削刀具与工件间运动的进给驱动和执行机构,是数控机床的一个重要组成部分,它在很大程度上决定了数控机床的性能,如数控机床的最高移动速度、跟踪精度、定位精度等一系列重要指标取决于伺服驱动系统性能的优劣。因此,随着数控机床的发展,研究和开发高性能的伺服驱动系统,一直是现代数控机床研究的关键技术之一。 一、伺服驱动系统的性能 对数控机床伺服驱动系统的主要性能要求有下列几点: mm, (1) 进给速度范围要大。不仅要满足低速切削进给的要求,如5min 还要能满足高速进给的要求,如10000mm min。 (2) 位移精度要高。伺服系统的位移精度是指指令脉冲要求机床工作台进给的位移量和该指令脉冲经伺服系统转化为工作台实际位移量之间的符合程度。两者误差愈小,伺服系统的位移精度愈高。目前,高精度的数控机床伺服系统位移精度可 ±m。通常,插补器或计算机的插补软件每发出一个进给脉达到在全程范围内5μ

冲指令,伺服系统将其转化为一个相应的机床工作台位移量,我们称此位移量为机床的脉冲当量。一般机床的脉冲当量为0.01~0.005 mm脉冲,高精度的CNC 机床其脉冲当量可达0.001 mm脉冲。脉冲当量越小,机床的位移精度越高。 (3) 跟随误差要小。即伺服系统的速度响应要快。 (4) 伺服系统的工作稳定性要好。要具有较强的抗干扰能力,保证进给速度均匀、平稳,从而使得能够加工出粗糙度低的零件。 二、数控机床伺服驱动系统的基本组成 数控机床伺服驱动系统的基本组成如图5-1所示。数控机床的伺服驱动系统按有无反馈检测单元分为开环和闭环两种类型(见数控机床伺服驱动系统分类),这两种类型的伺服驱动系统的基本组成不完全相同。但不管是哪种类型,执行元件及其驱动控制单元都必不可少。驱动控制单元的作用是将进给指令转化为驱动执行元件所需要的信号形式,执行元件则将该信号转化为相应的机械位移。 图5-1 数控机床伺服驱动系统的基本组成 开环伺服驱动系统由驱动控制单元、执行元件和机床组成。通常,执行元件选用步进电机。执行元件对系统的特性具有重要影响。 闭环伺服驱动系统由执行元件、驱动控制单元、机床,以及反馈检测单元、比较控制环节组成。反馈检测单元将工作台的实际位置检测后反馈给比较控制环节,比较控制环节将指令信号和反馈信号进行比较,以两者的差值作为伺服系统的跟随误差经驱动控制单元,驱动和控制执行元件带动工作台运动。

床身上最大回转直径400mm的数控车床总体设计及主轴箱的设计

摘要 数控车床又称数字控制(Numbercal control,简称NC)机床。它是基于数字控制的,采用了数控技术,是一个装有程序控制系统的机床。它是由主机,CNC,驱动装置,数控机床的辅助装置,编程机及其他一些附属设备所组成。 本次设计课题是CK6140数控卧室车床,CK是数控车床,61是卧式车床,40是床身上最大工件回转直径为400mm。 此次设计包括机床的总体布局设计,纵向进给设计,其中还包括齿轮模数计算及校核,主轴刚度的校核等。控制系统部分包括步进电机的选用及硬件电路设计和软件系统设计,说明了芯片的扩展,键盘显示接口的设计等等。 车床适用于车削内外圆柱面,圆锥面及其他基准面,车削各种公制、英制、模数和径节螺纹,并能进行钻孔,铰孔和拉油槽等工作。设计主抽箱主要是从主传动系统的运动设计、主运动部件的结构设计和箱体这三方面进行设计。 主传动系统的运动设计有:确定极限转速、确定公比、确定转速级数、确定结构网和结构式、绘制转速图、确定齿轮齿数和拟定传动系统图。 主运动部件的结构设计有:带传动的设计、确定各种计算转速、确定齿轮模数、确定各轴最小直径和设计部分主轴主件。 关键词:数控机床;开放式数控系统;电动机;纵向进给设计

Abstract The numerical control lathe called the numerical control (Numbercal control, is called NC) the engine bed. It is based on the numerical control, has used the numerical control technology, is loaded with the procedure control system the engine bed. It is by the main engine, CNC, the drive, the numerical control engine bed auxiliary unit, the programming machine and other some appurtenances is composed. This design topic is the CK6140 numerical control bedroom lathe, CK is the numerical control lathe, 61 is the horizontal lathe, 40 is on the lathe bed the biggest work piece rotation diameter is 400mm. This design including the engine bed overall layout design, longitudinal enters for the design, also includes the gear modulus computation and the examination, the main axle rigidity examination and so on. The control system partially including step-by-steps the electrical machinery to select and the hardware circuit design and the software system design, explained the chip expansion, keyboard demonstration connection design and so on. Key word:numerical ;control tool;Open-architecture;motor

数控机床的控制系统概述

第七章数控机床的控制系统概述 学习目的: 1.什么是数控技术、数控系统和数控机床,数控系统对机床的控制包括哪几方面? 2.数控机床控制系统组成有哪些,他们的作用各是什么? 3.数控机床的控制方式有几种,各有什么特点? 4.数控机床的接口有几类,他们的接口规范是什么? 第一节数控机床的控制系统 一、数字控制技术简介 1.数字控制技术 数字控制(Numerical Control)技术,简称数控技术,是用数字化信号对机床运动及其加工过程进行自动控制的一种方法。 数控技术不仅用于机床的控制,而且还用于其它设备的控制,产生了诸如数控绘图机、数控测量机等数控设备。 2.数控系统和数控机床 用数字控制技术实现自动控制的系统称为数控系统。数控系统中的控制信息是数字量,其硬件基础是数字逻辑电路。 最初数控系统是由数字逻辑电路构成的,所以也成为硬件数控系统。 现代数控系统采用存储程序的专用计算机或通用计算机来实现部分或全部基本数控功能,所以成为计算机数控系统(Comouter Numerical Control),简称CNC系统。计算机数控系统是在硬件和软件共同作用下完成数控任务的,具有真正的“柔性”。 数控系统对机床的控制包括顺序控制和数字控制两个方面。 顺序控制是指对刀具交换、主轴调速、冷却液开关、工作台的极限位置等一类开关量的控制。 数字控制是指机床进给运动的控制,用于实现对工作台或刀架的位移、速度这一类数字量的控制。 数控系统与机床的有机结合称为数控机床,如数控车床、数控铣床、数控加工中心等。 数控机床是机电一体化的典型产品,是集机床、计算机、电力拖动、自动控制、检测等技术为一体的自动化设备。 二、数控机床控制系统的组成

数控机床主轴结构的改进和优化设计

数控机床主轴结构的改进和优化设计 严鹤飞 (天水星火机床有限责任公司技术中心 甘肃 天水 741024) 摘 要: 掌握机床主轴的关键部件,安装方式,轴承的调制环节以及材料、操作维护等,并且各种原因中又包含着多种影响因素互相交叉,因此必须对每个影响因素作具体分析。而对于优化设计理论的基本思想及其求解方法,将其应用于机床主轴的结构设计,建立了机床主轴结构优化设计的数学模型,并用内点惩罚函数法求解模型,得到了整体最优的结构设计方案,使机床主轴在满足各种约束要求条件下,刚度最好,材料最省。 关键词:机床主轴;轴承;调整;优化设计;数学模型 在数控机床中,主轴是最关键的部件,对机床起着至关重要的作用,主轴结构的设计首先考虑的是其需实现的功能,当然加工及装配的工艺性也是考虑的因素。 1. 数控机床主轴结构改进: 目前机床主轴设计普遍采用的结构如图1所示。图中主轴1支承在轴承4、5、8上,轴承的轴向定位通过主轴上的三个压块紧锁螺母3、7、9来实现。主轴系统的精度取决于主轴及相关零件的加工精度、轴承的精度等级和主轴的装配质量。在图1中主轴双列圆锥滚子轴承4的内锥孔与主轴1:12外锥配合的好坏将直接影响株洲的工作精度,一般要求其配合接触面积大于75%,为了达到这一要求,除了在购买轴承时注意品牌和等级外,通常在设计时对主轴的要求较高,两端的同轴度为0.005mm,对其相关零件,如螺母3、7、9和隔套6的端面对主轴轴线的跳动要求也较高,其跳动值一般要求在0.008mm以内。对一般压块螺母的加工是很难保证这么高的精度的,因而经常出现主轴精度在装配时超差,最终不得不反复调整圆螺母的松紧,而勉强达到要求,但这样的结果往往是轴承偏紧,精度稳定性差,安装位置不精确,游隙不均匀,造成工作时温升较高,噪音大,震动厉害,影响工件的加工质量和轴承的寿命。但对于重型数控机床用圆锥滚子轴承其承载负荷大,运转平稳,精度调整好时,其对机床的精度保持性较好,可对与轻型及高速机床就不十分有力了。 图1 通用机床主轴结构图 1— 主轴;2—法兰盘;3—圆螺母;4—双列圆柱滚子轴承;5—球轴承 6— 调整垫;7—圆螺母;8—双列圆柱滚子轴承;9-螺母

相关文档
相关文档 最新文档