文档库 最新最全的文档下载
当前位置:文档库 › 无线通信指导书定稿

无线通信指导书定稿

无线通信指导书定稿
无线通信指导书定稿

无线通信实验指导书

2011.5

理学与信息科学学院

实验一 QPSK 调制及解调实验

一、 实验目的

通过本实验了解QPSK 调制原理及特性、解调原理及载波在相干及非相干时的解调特性。

二、 实验内容

1、观察I 、Q 两路基带信号的特征及与输入NRZ 码的关系。

2、观察IQ 调制解调过程中各信号变化。

3、观察解调载波相干时和非相干时各信号的区别。

三、 基本原理

1、 QPSK 调制原理

QPSK 又叫四相绝对相移调制,它是一种正交相移键控,其产生原理如图1-1所示

sin()

c t ω

图1-1 QPSK 信号的产生

QPSK 利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表两个比特信息,因此,对于输入的二进制数字序列应该先进行分组,将每两个比特编为一组,然后用四种不同的载波相位来表征。我们把组成双比特码元的前一信息比特用a 代表,后一信息比特用b 代表。双比特码元中两个信息比特ab 通常是按格雷码排列的,它与载波相位的关系如表1-1所示,矢量关系如图1-2所示。图1-2(a )表示A 方式时QPSK 信号矢量图,图1-2

(b )表示B 方式时QPSK 信号的矢量图。

由于正弦和余弦的互补特性,对于载波相位的四种取值,在A 方式中:45°、135°、225°、315°,则数据k I 、k Q 通过处理后输出的成形波形幅度有两种取值±2/2;B 方式中:0°、90°、180°、270°,则数据k I 、k Q 通过处理后输出的成形波形幅度有三种取值±1、0。

表1-1 双比特码元与载波相位关系

(0,1)

(1,1)

(0,0)

参考相位

参考相位

(a)

(b)

图1-2 QPSK 信号的矢量图

下面以A 方式的QPSK 为例说明QPSK 信号相位的合成方法。

串/并变换器将输入的二进制序列依次分为两个并行数据,然后通过基带成形得到的双极性序列(从D/A 转换器输出,幅度为±2/2)。设两个双极性序列中的二进制数字分别为a 和b ,每一对ab 称为一个双比特码元。双极性的a 和b 脉冲通过两个平衡调制器分别对同

相载波及正交载波进行二相调制,得到图1-3中虚线矢量,将两路输出叠加,即得到QPSK 调制信号,其相位编码关系如表1-2所示。

图1-3 矢量图

表1-2 QPSK 信号相位编码逻辑关系

用调相法产生QPSK 调制原理框图如图1-4所示。

a(1)b(1)

b(0)

a(0)

图1-4 QPSK调制器原理框图

01010011011100

图1-5 二进制码经串并变换后码型

由图1-4可以看到,QPSK的调制器可以看作是由两个BPSK调制器构成,输入的串行二进制信息序列经过串行变换,变成两路速率减半的序列,电平发生器分别产生双极性的二电

ω和sin tω进行调制,相加后即可得到QPSK信号。经平信号I(t)和Q(t),然后对cos t

过串并变换后形成的两个支路如图1-5所示,一路为单数码元,另外一路为偶数码元,这两个支路互为正交,一个称为同相支路,即I支路;另外一路称为正交支路,即Q支路。

2、QPSK解调原理

由于QPSK可以看作是两个正交2PSK信号的合成,故它可以采用与2PSK信号类似的解调方法进行解调,即由两个2PSK信号相干解调器构成,其原理框图如图1-6所示。

图1-6 QPSK解调原理框图

四、实验原理

1、实验模块简介

本实验需用到基带成形模块、IQ调制解调模块、码元再生模块及PSK载波恢复模块。

(1)基带成形模块:

本模块主要功能:产生PN31伪随机序列作为信源;将基带信号进行串并转换;按调制要求进行基带成形,形成两路正交基带信号。

(2)IQ调制解调模块:

本模块主要功能:产生调制及解调用的正交载波;完成射频正交调制及小功率线性放大;

完成射频信号正交解调。

(3)码元再生模块:

本模块主要功能:从解调出的IQ基带信号中恢复位同步,并进行抽样判决,然后并串转换后输出。

(4)PSK载波恢复模块:

本模块主要功能:与IQ调制解调模块上的解调电路连接起来组成一个完整的科斯塔斯环恢复PSK已调信号的载波,同时可用作一个独立的载波源。本实验只使用其载波源。

2、实验系统原理框图

基带成形模块产生的PN码(由PN31端输出)输入到串并转换电路中(由NRZ IN 端输入),进行串并转换后输出,成为IQ两路基带信号,IQ基带信号送入IQ调制解调模块中的IQ调制电路分别进行PSK调制,然后相加形成QPSK调制信号,经放大后输出。QPSK已调信号载波为10.7MHz,是由21.4MHz本振源经正交分频产生。

QPSK已调信号送入IQ调制解调模块中的IQ解调电路分别进行PSK相干解调,相

干载波由调制端的本振源经正交分频产生。解调输出的IQ两路模拟基带信号送入码元再生模块进行抽样判决,转换为数字信元后再进行并串转换后输出。抽样判决前IQ信号需经整形变为二值信号,并且需恢复位同步信号。位同步信号恢复由码元再生模块中的数字锁相环完成。

IQ解调电路的载波也可由PSK载波恢复模块上的本振源提供,此时解调变为非相干解调,从解调输出的模拟基带信号可以看出信号失真很大,无法进行码元再生。

五、实验步骤

1、关闭实验箱总电源,按如下要求连接好连线:

1.1 在实验箱上正确安装基带成形模块(以下简称基带模块)、IQ调制解调模块(以下简称IQ模块)、码元再生模块(以下简称再生模块)和PSK载波恢复模块。

1.2 用台阶插座线完成如下连接:

1.3 用同轴视频线完成如下连接

2、打开实验箱总电源,再分别打开上述各实验模块电源。

3、按基带成形模块上“选择”键,选择QPSK模式(QPSK指示灯亮)。

4、用示波器观察基带模块上“I-OUT”及“Q-OUT”测试点,并分别与“NRZ IN”测试点

的信号进行对比,观察串并转换情况。注意由于串并转换的延迟作用,“I-OUT”、

“Q-OUT”测试点的数据相对“NRZ IN”测试点延迟1.5个码元周期

5、示波器探头接IQ调制“输出”端(观测点TH4),观察QPSK已调信号峰峰值,调电

位器“W1”使峰峰值为1.2V左右。

6、示波器探头接IQ解调“I-OUT”及“Q-OUT”端,观察波形,调电位器“W1”使I、

Q两路信号尽量接近两电平。(调“W1”可微调信号相位,使解调时正交载波的相位与已调信号尽量接近,以减少解调失真)

7、示波器探头分别接IQ解调“I-OUT”端及基带“I-OUT”端,注意观察两者是否一致,

若一致表示解调正确,若不一致可能是载波相位不对,可将按IQ模块复位键复位或重新开关该模块电源复位。

8、示波器探头分别接IQ解调“Q-OUT”端及基带“Q-OUT”端,注意观察两者是否一

致,若一致表示解调正确,若不一致可能是载波相位不对,可将按IQ模块复位键复位或重新开关该模块电源复位。

9、按再生模块上“选择”键,选择QPSK模式(QPSK指示灯亮)。

10、示波器探头分别接再生模块上“NRZ”端和基带模块上“NRZ”端,观察两路码元是

否一致(注意解调出的NRZ码比输入的NRZ码延迟3个码元周期),若一致表示解调正确,若不一致可回到步骤6重新实验。

11、断开IQ模块上载波“输出”端与该模块上载波“输入”视频线,将IQ模块上载波“输

入”端与QPSK载波恢复模块上“VCO-OUT”端连接起来,此时系统是非相干解调。

12、从步骤7开始再次观察各信号,注意比较与前面相干解调时的不同之处。

六、思考题

1、为什么相干解调时基带信号是两电平的,而非相干解调时是多电平的?

2、在实验中,QPSK载波恢复模块起什么作用?

3、实验中,如果I、Q支路接反,即I接到Q,Q接到I,会有正确结果码?为什么?

实验二时分复用通信系统实验

一、实验目的

1.掌握时分复用的概念。

2.了解时分复用与解复用系统的构成及工作原理。

3.了解时分复用这种复用方式的优点与缺点。

4.了解时分复用在整个通信系统中的作用。

二、实验内容

1.对两路模拟信号进行PCM编码,然后进行复用,观察复用后的信号并与复用前的编码信号比较。

2.将复用后的信号进行解复用,然后进行PCM解码,观察解复用后的两路解码信号与原两路模拟信号是否相同。

三、实验器材

1.信号源模块

2.时分复用模块

3.模拟信号数字化模块

4.20M双踪示波器一台

5.连接线若干

四、实验原理

在实际的通信系统中,为了提高通信系统的利用率,往往用多路通信的方式来传输信号。所谓多路通信,就是把多个不同信源所发出的信号组合成一个群信号,并经由同一信道进行传输,在收端再将它分离并被相应接收。时分复用(TDM,即Time-Division Multiplexing)就是一种常用的多路通信方式。时分复用是建立在抽样定理基础上的,因为抽样定理使连续(模拟)的基带信号由可能被在时间上离散出现的抽样脉冲所代替。这样,当抽样脉冲占据较短时间时,在抽样脉冲之间就留出了时间空隙。利用这些空隙便可以传输其他信号的抽样值,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽样值占用的时间越短,能够传输的路数也就越多。图2-1表示的是两个基带信号在时间上交替出现。显然这种时间复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别得到恢复。这就是时分复用的概念。此外,时分复用通信系统有两个突出的优点,一是多路信号的汇合与分路都是数字电路,简单、可靠;二是时分复用通信系统对非线性失真的要求比较低。

然而,时分复用系统对信道中时钟相位抖动及接收端与发送端的时钟同步问题提出了较高的要求。所谓同步是指接收端能正确地从数据流中识别各路序号。为此,必须在每帧内加上标志信号(即帧同步信号)。它可以是一组特定的码组,也可以是特定宽度的脉冲。在实际通信系统中还必须传递信令以建立通信连接,如传送电话通信中的占线、摘机与挂机信号

以及振铃信号等信令。上述所有信号都是时间分割,按某种固定方式排列起来,称为帧结构。采用时分复用的数字通信系统,在国际上已逐步建立其标准。原则上是把一定路数电话语音复合成一个标准数据流(称为基群),然后再把基群数据流采用同步或准同步数字复接技术,汇合成更高速地数据信号,复接后的序列中按传输速率不同,分别成为一次群、二次群、三次群、四次群等等。

图2-1 两个信号的时分复用

在本实验中,第一路模拟信号送入时分复用模块,第二路模拟信号送入模拟信号数字化模块,分别在这两个模块中进行PCM编码,得到两路PCM码(PCMA和PCMB),再和时分复用模块产生的帧同步码进行时分复用,得到包含四路数据(第四路为空数据)、一帧为32位的时分复用信号,其复用部分的原理框图如图2-2。

图2-2 时分复用原理框图

由图2-2可见,时分复用是通过时钟信号对移位寄存器构成的并/串转换电路的输出信号轮流进行选通而实现的,时分复用输出信号的位同步信号的频率为BS 的四倍,帧同步信号的频率为位同步信号的三十二分之一。时分复用输出信号每一帧由32位组成,其帧结构如图2-3所示。拨码开关SW701可设置帧同步码的码型。

图2-3 时分复用输出信号帧结构

复用信号通过解复用电路还原出两路PCM 编码信号,分别送入时分复用模块和模拟信号

8位全零

8位

8位

8位全零

8位

8位

帧同步码

帧同步码

数字化模块进行PCM 译码输出,得到的两路信号分别与输入信号相同。图2-4是解复用部分的原理框图。时分复用与解复用的所有功能都是在U701(EPM7128SLC84-15)中完成的。

J1-FS/J2-FS

J-FS

图2-4 解复用原理框图

在解复用电路中,先通过帧同步信号和位同步信号把四路数据分开,然后通过移位寄存器构成的并/串转换电路输出串行的数据。时分复用和解复用的电路都比较简单,请同学们参照我们提供的原理框图自己分析电路详细的工作过程。

五、实验步骤

1. 将信号源模块、时分复用模块、模拟信号数字化模块小心地固定在主机箱中,确保电源

接触良好。

2. 插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的开关POWER1、

POWER2,对应的发光二极管LED001、LED002、D701、D702、LED300、 LED301发光,按一下信号源模块的复位键,三个模块均开始工作。

3. 时分复用模块的Sin-IN 连接信号源的模拟输出正弦信号,模拟信号数字化模块的S-IN

同上或另接外部输入音频信号。

4. 用连接线把模拟信号数字化模块和时分复用模块对应的连接孔连起来。

FRAMEB-OUT —— FRAMEB-IN CLKB-OUT —— CLKB-IN 2048K-OUT —— 2048K-IN PCMB-IN —— PCMB-OUT

5. 用示波器分别观察“PCMA ”和“PCMB-IN ”,看两路模拟信号PCM 编码是否正确。 6. 设置“SW701”为巴克码01110010(或任意码型),即帧同步信号,用示波器分别观

察“F-DATA”、“F-BS”、“F-FS”信号。“F-DATA”是“SW701”、“PCMA”、“PCMB”、“全零”的复用信号,“F-BS”的频率为“CLKB-OUT”频率的四倍,“F-FS”与“FRAMEB-OUT”相同。

7.从“J-DATA”输入“F-DATA”信号,从“J-BS”输入“F-BS”信号,从“F-FS”输入“F-FS”信号。用示波器分别观察“J1-DA TA”、“J1-BS”、“J1-FS”与“J2-DATA”、“J2-BS”、“J2-FS”信号;“J1-BS”与“J2-BS”信号完全一样,且周期为“F-BS”信号的四倍,其中“J1-FS”与“J2-FS”信号完全一样,且与“F-FS”信号一样。

8.用连接线连接

J1-DA TA ——PCM1-IN

J1-BS ——CLK1-IN

JI-FS ——FRAME1-IN

把模拟信号数字化模块和时分复用模块对应的连接孔连起来

J2-DATA ——PCM2-IN

J2-BS ——CLK2-IN

J2-FS ——FRAME2-IN

9.用示波器观察“Sin-OUT”与模拟信号数字化模块的“OUT”。

六、输入、输出点参考说明

1.输入点参考说明

Sin-IN:第一路模拟信号输入点。

PCMA:第一路数据信号输入点。

PCMB-IN:第二路数据信号输入点。

J-DATA:时分复用信号输入点(对此信号进行解复用)。

J-BS:解复用位同步信号输入点。

J-FS:解复用帧同步信号输入点。

PCM1-IN:解复用第一路PCM数据信号输入点。

CLK1-IN:解复用第一路PCM数据位同步信号输入点。

FRAME1-IN:解复用第一路PCM数据帧同步信号输入点。

2.输出点参考说明

2048K-OUT:时分复用信号时钟输出点。

FRAMEB-OUT:时分复用信号位同步信号输出点。

CLKB-OUT:时分复用信号帧同步信号输出点。

F-DATA:解复用后第一路数字信号输出点。

F-BS:解复用后第一路数字信号位同步信号输出点。

F-FS:解复用后第一路数字信号帧同步信号输出点。

J1-DATA:解复用后第一路PCM信号输出点。

J1-BS:解复用后第一路PCM信号位同步信号输出点。

J1-FS:解复用后第一路PCM信号帧同步信号输出点。

J2-DATA:解复用后第二路PCM信号输出点。

J2-BS:解复用后第二路PCM信号位同步信号输出点。

J2-FS:解复用后第二路PCM信号帧同步信号输出点。

Sin-OUT:解复用后第一路PCM译码输出点。

七、实验思考题

1.认真阅读教材中的相关内容,回答时分复用的概念。

2.分析本实验中时分复用信号的产生原理,再自行设计一个时分复用信号产生电路,画出电路图并分析电路工作原理。

八、实验报告要求

1.分析实验电路的工作原理,叙述其工作过程。

2.根据实验测试记录,在坐标纸上画出各测量点的波形图。

3.对实验思考题加以分析,并画出原理图与工作波形图。

实验三语音信号的编码与解码实验

(自适应差分脉冲编码调制与解调实验)

一、实验目的

1.加深对自适应差分脉冲编码调制工作原理的理解。

2.了解大规模集成电路MC145540的电路组成及工作原理。

3.了解编写的程序对MC145540的控制与输出处理过程。

二、实验内容

1.观察各测量点波形并画出图形,注意时间对应关系。

2.在有可能的情况下,编写程序并在此电路板上进行调试。

三、实验器材

1.信号源模块

2.模拟信号数字化模块

3.20M双踪示波器一台

4.频率计(可选)一台

5.音频信号发生器(可选)一台

6.立体声单放机(可选)一台

7.立体声耳机一副

8.连接线若干

四、实验原理

(一)ADPCM简介

由前面PCM和M

?的性能通常?实验我们已经知道,在不考虑信道误码率的情况下,M

比PCM的差。这主要是因为PCM和M

?系统不管误差信号如何变化,传输的增量σ是固定

d k的变化量化成M个电平之一,然后再进行编码,不变的。如果使增量的数值随误差信号()

这样,系统的性能就会得到改善。在这样的系统中,由于对传输的增量还要经过脉冲编码调

DPCM。下面先介绍DPCM的基本制,因而称它为增量脉冲编码调制或差分脉冲编码调制()

原理。

()

d k

图3-1 DPCM 系统原理框图

图3-1给出了DPC M 系统原理框图。图中输入抽样值信号为()S k ,接收端输出重建信号为()r S k ,()d k 是输入信号与预测信号()e S k 的差值,()q d k 是经量化后的差值,()I k 是()q d k 信号经编码后输出的数字码。

编码器中的预测器与解码器的预测器完全相同,因此,在信道传输无误码的情况下,解码器输出的重建信号()r S k 与编码器的()r S k 完全相同。DPC M 的总量化误差()e k 定义为输入信号()S k 与解码器输出的重建信号()r S k 之差,即有

[]()()()()()()()()()r e e q q e k S k S k S k d k S k d k d k d k ??=-=+-+=-??

由上式可知,在这种DPC M 系统中,总量化误差只和差值信号的量化误差有关。

自适应差分脉码调制(ADPCM )是语音压缩编码中复杂度较低的一种方法,它能在32kb/s 数码率上达到符合64kb/s 数码率的语音质量要求,也就是符合长途电话的质量要求。ADPCM 是在差分脉冲调制DPCM 基础上逐步发展起来的,ADPCM 的主要改进是量化器与预测器均采用自适应方式,即量化器与预测器的参数能根据输入信号的统计特性自适应于最佳或接近最佳参数状态。

ADPCM 编解码系统的原理方框图如图3-2所示。下面着重介绍四个部分。

(a ) 编码器

(b ) 解码器

图3-2 ADPCM 编解码系统原理图

1. 输入输出单元

输入输出信号为标准的A 律或μ律64kb/s ADPCM 主要应用于扩充现有PCM 信道传输容量,即把两个30路PCM 信号合并成一个2048kb/s 的60路ADPCM 信号,这是ITU-T G.761建议的国际标准。因此,采用标准的64kb/s PCM 作为ADPCM 系统的输入接口是合理的。由于标准64kb/s PCM 是经过对数压缩后的数字信号,它不能直接进行一般算术运算,所以,在进入ADPCM 编码前,必须把A 律PCM 码变换成自然二进制码,即线性PCM 码。这一变换可以通过两者之间内在的对应关系来实现。在接收端,则需要进行一次反变换,把ADPCM 码解码得到用线性PCM 码表示的重建信号()r S k ,变换成A 律或μ律对数PCM 信号输出。

2. 同步编码调整单元

同步编码调整单元的功能主要是为了防止在同步级联的情况下(也就是全数字转接ADPCM-PCM-ADPCM-PCM-ADPCM )可能发生的量化噪声的积累问题。同步编码调整的原理简述如下:在重建PCM 信号()p S k 输出到信道前,让()p S k 再进行一次ADPCM 编码,然后把这个码与输入ADPCM 原始码进行比较。若比较后两者不相同,就对()p S k PCM 码增加或减少一个PCM 量化电平;如相同,则不作调整。其具体过程如下:

① 建PCM 信号()p S k 变换成线性PCM 重建信号()r S k ';

② 计算差值信号()()()x r e d k S k S k '=-;

③ 根据定标因子()y k ,将()x d k 再编成ADPCM 码字()IM k ;

④ 把()IM k 与输入的ADPCM 原始码()I k 进行比较: 若()()k I k IM =,则()()d p S k S k =;

若()()IM k I k <,则增加一个量化电平; 若()()IM k I k >,则减小一个量化电平。 3. 自适应量化

图3-3 双模式

()y k 产生原理

ITU-T G.721建议采用L =16的双模式非均匀自适应量化器。由于差值信号()d k 接近于高斯分布,所以采用输入为高斯分布的最佳非均匀量化器。最佳非均匀自适应量化器对于不同输入统计特性应有不同的自适应调制因子[()]M I k 。ITU-T 要求32kb/s ADPCM 对语音与语音频带内数据信号都应具有最佳性能,故采用动态锁定DLQ 或双模式自适应量化器。量化器

的定标因子()y

k 由快速因子()u y k 与慢速因子()l y k 组合而成,即 []()()(1)1()(1)l u l l y

k a k y k a k y k =-+-- 式中,()l a k 为自适应速度控制参数。对于语音信号,()l a k 趋于1;对于Modem 数据信号,()

l a k 趋于0,()l a k 是通过比较差值信号的短时平均值与长时平均值的差异来确定的。双模式非均匀自适应量化器的定标因子()y k 产生的原理框图如图3-3所示。

4. 自适应预测器

ITU-T G.721建议采用零极点后向序贯自适应预测器。它有6个零点(M=6)与2个极点(N=2),并采用次优化的梯度符号法来自适应修正预测系数。由于2>N 的多阶极点预测器的稳定条件较难确定,因此,在有误码存在时,可能出现不稳定现象。实验证明,8阶零点预测器能取得相当高的预测增益p G 。因而,采用6阶零点与2阶极点预测器的组合,可以取得良好的预测增益p G 。具体细节请参考其它相关资料。

(二)电路原理

本实验模块中实现自适应差分脉码调制ADPCM 采用的是大规模集成电路专用芯片MC145540。MC145540的量化器与预测器均为自适应方式。当以高于奈奎斯特速率对话音或视频信号抽样时,在前后样值间可以看到有明显的相关性,将这些相关样值按通常PCM 系统的方式加以编码时会使得编码信号含有多余信息。如果在编码前将这种多余信息去掉,则可得到效率较高的编码信号。为此,可先利用信号()s nT X 的相关性对未来样值进行预测,预测器通常为抽头延时滤波器(即FIR 滤波器)。线性预测器的预测值为:

∑-=-=1

)()(n i s s i s iT nT x a nT X

其中i a 为预测系数,在DPCM 中为常数,在ADPCM 中为自适应变量。N 为预测阶数。可以根据预测误差能量最小的准则求出预测系数i a 。这样,PCM 编码器就只是对差值信号()()()s s s nT X nT X nT e -=进行量化和编码,以达到DPCM 或ADPCM 编码的目的。

模拟信号从“S-IN ”点输入,经电容E609(10μF )、电阻R627(10K Ω)后到运放的反相输入TI -端,运放的输出端一方面送至增益调整电路和滤波器电路,另一方面,经过TG 端至反馈电阻R628(10K Ω)到运放的反相输入TI -端,运放的输出端一方面送至增益调整电路和滤波器电路 ,另一方面经过TG 端至反馈电阻R628后到TI -端构成负反馈,放大倍数=R628/R627=10K Ω/10K Ω=1,故为1:1,没有放大作用。滤波器的输出信号一方面送至侧音增益调整电路,另一方面送至模/数转换电路,变成数字信号,进入PCM 编码电路,输出PCM 信号,再经过ADPCM 编码电路,输出到发送串行移位寄存器电路中,最后ADPCM 数据从第20引脚(DT 端)输出。ADPCM 数据信号从第25引脚(DR 端)进入,串行输入至接收串行移位寄存器电路中,经过ADPCM 译码器进行译码,输出PCM 数据码,再经过接收数字增益调整电路后从第5引脚(RO 端)输出模拟信号。特别强调的是,该芯片的工作是由外部CPU 对其内部16个字节的RAM 进行编程,由程序进行控制。 (三) MC145540介绍

1. ADPCM 专用芯片MC145540介绍 ① C145540ADPCM 芯片特征

a .单一供电方式:2.7V ~5.25V

b .低功耗:5V 时,150mW ,功耗下降0.3mW ;3V 时,65 mW ,功耗下降0.2mW

c .低噪声:有差分模拟电路

d .μ律/A 律压扩PCM 编译码/滤波器电路

e .三种速率选择(32、24、16kbit/s)、四种算法ADPCM CODEC 完全满足G721、723、726和G714的PCM 性能。 f.用可编程双音频发生器。

g.编程控制,发送增益调整,接收增益调整与侧音增益调整。

h.可直接与话筒接口的低噪声、高增益的三端输入运算放大器电路。 i.可直接与扬声器接口的推挽300Ω负载阻抗。 j.提供振铃接口的推挽300Ω的驱动电路。

k.降功耗供电方式,3V 电源送入数字信号处理电路;5V 电源送入模拟信号处理电路。 l .收端具有噪声突发检测算法。

m .有串行控制口和监控内存,可实现微计算机控制。 ② 管脚功能简介

第1引脚(TG —Transmit Gain ):发送增量控制。由第2引脚(TI -)和第3引脚(TI +)输入的音频模拟信号经输入运放后从该端输出。该端实质上是发送滤波器的输入端。

这是设定运算放大器增益的输出和输入到发送带通滤波器。此运算放大器能驱动2K Ω负载到V AC 引脚。当TI -和TI +连到V DD 时,TG 运算放大器掉电,TG 引脚变成高阻抗,输入到发送放大器。此引脚上的所有信号以V AC 引脚为基准。当器件是在模拟掉电方式下时,此引

无线通信技术应用及发展

龙源期刊网 https://www.wendangku.net/doc/2512580793.html, 无线通信技术应用及发展 作者:郭永刚路彬 来源:《电子技术与软件工程》2018年第19期 摘要 无线通信技术作为推动我国经济不断向前发展的重要力量,不仅促使我国生产力水平不断得到提升,而且还有效改善了人民的日常生活质量,并在电力系统之中得到了广泛的应用与发展,特别是在电力通信方面起着关键的作用,为我国电网建设提供了全面的技术保障。安全有效的电力系统可以在各个方面合理地分配电能,遇到电力系统事故可以予以及时的解决。电力通信系统作为电力系统的重要组成成分,能够促使电网调度工作达到自动化以及现代化的目的,并且从根本上保证电网的安全性以及经济性。 【关键词】无线通信技术应用发展 随着我国经济发展水平的不断提升,科学技术的不断进步,促使现代通信技术变得更加科学化以及数字化。由于当前信息知识更新速度较快,而且经济发展速度呈现高度上升趋势,使得人们在信息获取方面提出了更高的要求。为有效解决无线通信技术在使用过程中出现的问题与矛盾,必须要全面秉持创新理念,综合运用与之相关的技术手段来予以解决,从而在最大程度上满足人们在信息获取方面所提出的各项需求,并为其不断提供多方面的信息资源,为科学规划工作的顺利开展奠定良好基础,推动无线通信技术蓬勃发展。 1 无线通信技术的发展 1.1 无线通信技术的联合化与集成化 全面结合我国当前资金状况、技术水平以及市场需求等相关方面的内容,将会采用融合方式来对目前的无线网络开展异构网络的联合工作,从而促使通信网络的形成,并成为无线通信技术发展内容之一。现阶段,我国网络融合形式包括:接入网、核心网融合以及业务融合等,对于选择不同的网络来实现接入工作时,需要先对其开展协同工作,从而促使无线网络的使用者达到无线漫游的目的。在构建未来通信终端时,需要为其添加配置能力,并不断提升该项能力,便于计算机与通信技术进行全面的融合,而且在该种技术下通信终端便不会接收到用户的干预内容,同时还可以为用户提供丰富多样的网络接入方式,便于其随时展开网络监控工作,及时更新升级与之相关的软件。除此之外,由于时代不断进步,人们需求水平不断提升,因此未来无线通信技术的构建要全面符合时代发展特征以及全方位满足用户提出的各项需求,而且无线通信技术要保证能够实现多种功能集成的目的,例如语音、数据以及图像业务的综合、无线传输模块的综合等。 1.2 无线网络通信技术的有效融合

无线通信的发展历程

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短

波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。 第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些

短距离无线通信技术

短距离无线通信技术 1.1短距离无线通信 以信号有效接发/传输距离为标志区分各种无线技术,由于技术不断融合和发展,具体 技术的应用围也会动态变化。 WWAN 无线广域网 WMAN 无线城域网 WLAN 无线局域网 WPAN 无线个域网 无线基站(信源) 发送/接收 蜂窝通讯技术 2G/3G/4G GPRS EDGE LTE …… WiMax Wibro(国) 802.16 WIFI WAPI 802.11 Bluetooth UWB Zigbee …… RFID NFC IrDA 中、长距离无线通信,卫星通信和长波、 短波则能实现超长距离无线通信 短距离无线通信,NFC则被视为非接触超 短距离无线通信 WIFI IrDA Zigbee Bluetooth UWB NFC RFID 通信模式点对点网状单点对多点点对点 通信距离0~100m 0~1m 10m~75m 0~10m 0~10m 0~20cm 0~50m 传输速度54Mbps 1Mbps 10K~250Kbps 1Mbps 53.3~480M 424Kbps 安全性低低中高高极高高 频段 2.4GHz 2.4GHz 868MHZ欧洲 915MHz美国 2.4GHz 3.1~10.6G 13.56MHz 多频段 国际标准802.11b 802.11g 无802.15.4 802.15.1x 无ECMA340 ECMA352 成本高低极低低高低低 1.1.1WLAN WIFI是WLAN的主流技术标准,应用中常把WIFI与WLAN等价,其实这并不严谨,例如,中国对WLAN强制执行自有知识产权的WAPI标准。 WLAN应用的标准协议是802.11,这是一个庞大的协议家族。 802.11是WLAN原始标准,WIFI应用802.11b标准,可向11g、11n升级。有兴趣的可

浅谈无线通信技术的发展趋势

浅谈无线通信技术的发展趋势 【摘要】随着科技的进步,通信技术也在不断的发展,无线通信技术也可以实现更加快速的信息传递,为社会的现代化发展提供更加有力的保障,本文以现代无线通信技术的发展为基本研究对象,对无线通信技术的现状进行分析,并研究了未来的无线通信发展。 【关键词】无线通信技术现状发展前景 现代通信技术正朝着高效和绿色的方向不断发展,非传统的通信技术相比也有很大的进步,随着科学技术的不断改变,人们不断提升着无线通信技术的更新和速度,我国无线通信技术也日益完善和成熟,实现了更加高速的通信事业的发展。 一、无线通信的发展特点 无线通信技术具有两个基本的特点,首先,我国移动通信的使用量不断的增加,人们对无线网络的需求也越来越高,通信技术正在不断的更新和发展,无线通信技术也在不断的提高。近年来,更加科学的无线通信技术不断的投入使用,使我国的无线通信技术不断的向前发展,其次,无线通信不受空间和时间的约束,为无线通信事业的发展提供了更好的条件。无线通信技术另一个特点就是移动通信的公众使

用数量正在急剧上升,同时移动通信无线网络的速度和普及率都在不断的增加,为人们提供了更多的便利,也给运营商带来更多的财富。 二、无线通信技术的发展状况 无线通信技术是当前通信事业发展的,核心,无线通信技术正在不断的进步,在这个过程中,无线通信技术的发展呈现以下特点: 2.1宽带固定无线接入技术快速发展 宽带固定无线接入技术具有其优点,因为他网络速度快,且具有一定的灵活性,因此被人们广泛的使用和推广,也为无线接入技术的发展奠定了基本的基础,但宽带固定无线接入技术也存在一定的缺点,比如其技术到目前为止还不太成熟,也容易受到天气的影响而导致网络不佳的情况。为了更加突出地反映宽带固定无线技术的优点,在使用的过程中应注意扬长避短。 2.2蓝牙技术的不断发展 蓝牙技术的使用主要解决了无线通信技术短距离内的通信问题,另一方面蓝牙技术的使用也可以实现数据信息的短距离传送,通过蓝牙设备进行连接,这是无线通信技术未来发展的重要方向。 2.3 Wimax技术的发展 Wimax技术能够提高无线覆盖率,因此是目前无线通信

短距离无线通信技术 论文

广州大学 无线网络与移动计算课程作业 学院:计算机科学与教育软件学院 班别:软件工程125班 姓名:陈炜坤 学号:1206100099

短距离无线通信技术综述 摘要:随着通信技术和网络的飞速发展,无线通信技术开始在人们的生活中扮演着越来越重要的角色,其中作为无线通信技术的重要分支——短距离无线通信技术由于在技术,成本以及实用性上的巨大优势,越来越受到人们的重视。本文主要介绍短距离无线通信领域中的几种关键技术,包括蓝牙,802.11(Wi-Fi),紫蜂技术和UWB技术,并简要介绍了它们的发展状况和应用领域。 关键字:短距离无线通信,蓝牙,Wi-Fi,红外数据传输,紫蜂技术,超宽带技术 一 .引言 随着Internet,多媒体和无线通信技术的飞速发展,无线通信技术具有巨大的发展潜能和商业价值。作为无线通信技术的重要分支,短距离无线通信技术更是凭借自己独有的特性受到人们的关注。 短距离无线通信包含如下特征:首先,它的通信距离很短,一般在百米范围之内,只适合小区域使用。由于距离较短,传输过程中遇到障碍物的几率较小,所以可以用较小的发射功率发射信号,功耗低;其次,对等通信是短距离无线通信的重要特性,它不需要中转设备,可以在发送端和接受端直接进行数据的传输,方便快捷;最后,成本低廉,节省了布线资源。 二 .短距离无线通信技术的分类和应用 简单的说,一个典型的短距离无线通信系统主要由两部分组成,即无线发射机和无线接收机。目前应用广泛的无线通信技术包括蓝牙(Bluetooth),802.11(Wi-Fi),红外数据传输(IrDA),紫蜂(Zigbee)超宽带技术(UWB)等。 1. 蓝牙(bluetooth) 蓝牙是由爱立信公司于1994年首先提出的一种工作在2.4GHz频段的短距离无线通信技术规范,它的有效范围在10m以内。在此范围内,运用蓝牙技术可以实现多台设备的无线互联并以1Mb/s的速度进行信息传输。它主要分为主设备和从设备,其中主设备是在组网连接中主动发送连接请求的设备,而从设备是被连接的设备,几个蓝牙设备连接成一个微微网,微微网是蓝牙最基本的网络形式,多个微微网在时间和空间的复用组成了更加复杂的网络拓扑结构,成为散射网[1]。 蓝牙具有低成本高速率的特点,目前主要应用在数据输入,外围设备连接以及无线局域网中,在日常生活中,蓝牙产品涵盖PC,移动电话,汽车电子,家用电器和工业设备等领域,应用十分广泛。

常用无线网络通信技术解析

常用无线网络通信技术解析 发表时间:2017-10-19T10:33:32.157Z 来源:《基层建设》2017年第17期作者:陶庆东 [导读] 摘要:随着我国信息技术不断发展,促进了无线网络通信技术的不断进步,出现了GPS检测、挖掘机器人设计等相关技术,在实际应用过程中,发挥了至关重要的作用,因此本文主要探讨了常用无线网络通信技术,旨在为相关工作者提供借鉴。 广东省电信工程有限公司广东东莞 523000 摘要:随着我国信息技术不断发展,促进了无线网络通信技术的不断进步,出现了GPS检测、挖掘机器人设计等相关技术,在实际应用过程中,发挥了至关重要的作用,因此本文主要探讨了常用无线网络通信技术,旨在为相关工作者提供借鉴。 关键词:无线网络;通信技术;分析 无线网络随着局域网的发展而不断发展,无线网络不需要进行布线,就可以实现信息传输,为人们的通信提供了较大的便利。无线网络不仅具有质量高的优点,同时还可以降低通信成本,所以在许多的领域中,都可以应用无线网络通信,以此提高各领域的工作效率,充分发挥无限网络的的应用优势。目前我国无线网络通信技术有很多种,与人们的生活也息息相关,所以应常用网线网络技术的深入的分析,以此不断提高无线网络通信技术水平。 1 无线广域网 无线广域网不仅可以实现与私人网络进行无线连接,同时还可以与遥远的观众进行无限连接。在无限广域网中,常使用的通信技术,主要有以下几种,GPS、GSM、以及3G,下面就针对这三种技术进行探讨。 1.1 GPS GPS是一项重要的定位技术,其主要基础为子午仪卫星导航系统,它可以在海陆空进行三维导航,同时还具有较强的定位能力,美国在1994年全面建成。GPS系统主要由GPS卫星星座、地面监控系统以及GPS信号接收机三部分组成,GPS系统的卫星共有24颗,它们在轨道平面上均匀分布,其主要负责两方面工作,其一是对卫星进行监控,其二计算卫星星历;对于GPS用户设备主要由两部分组成,一部分为GPS信号接收机硬件,另一部分为GPS信号接收机处理软件。GPS在工作过程中,通常利用GPS信号接收机,对GPS卫星信号进行接收,并对信号进行相应的处理,进行确定相关的信息,包括用户位置以及速度等等,以此实现GPS定位以及导航的目的。GPS系统具有一定的特点,包括操作简便、高效率以及多功能等,最初,在军事领域中应用GPS,随着GPS系统的不断发展,GPS应用范围越来越广,在民用领域中应用力度逐渐加大,特别是在工程测量中,可以实现全天候的准确监测,大大提高了工程测量的精度,促进工程测量的行业的不断发展。 1.2 GSM GSM是全球移动通信系统的简称,是蜂窝系统之一。GSM发展的较为迅速,在欧洲和亚洲,已经将GSM作为标准,目前在世界上许多的国家,都建立的GSM系统,这主要是因为GSM系统具有一定的优势,如稳定性强、通话质量高、以及网络容量等等,这主要是因为GSM系统在工作中,可以实现多组通话在同一射频进行,GSM系统一般主要有包括三个频段,即1800MHZ、900MHz以及1900MHz。 1.3 GPRS GPRS是指通用分组无线业务,它是一种新的分组传输技术,在应用过程中,GPRS具有较多的优点,包括广域的无线IP连接、接口传输速率块等等。在GPRS系统运行过程中,通过分组交换技术,一方面可以实现多个无线信号共一个移动用户使用,另一方面可以实现一个无线信道共多个移动用户使用。信道资源会在移动用户进行无数据传输过程中让出来,这样可以实现无线频带资源利用率的提升。 2 无线局域网 无线局域网主要指的网络传输主要通过无线媒介,包括无线电波以及红外线等。对于无线局域网通信技术覆盖范围,一般情况下,在半径100m左右,目前IEEE制订的无线局域网标准,主要采用的是IEEE802.11系列标准,对于网络的物理层,作出的主要规定,同时还规定了媒质访问控制层。该系列的标准有很多种,包括IEEE802.11、IEEE802.11a、IEEE802.11b等等,对此进行简单的介绍。 2.1 IEEE802.11 对于无线局域网络,最早的网络规定为IEEE802.11,2.4GHZ的ISM工作频段是其工作的主要频段,物理层主要采用技术主要有两项,即红外线技术、跳频扩频技术等等,主要能够解决两项问题,一种为办公室局域网问题,另一种为校园网络用户终端无线接入问题。IEEE802.11数据传输速率可以达到2Mbps,随着我国网络技术的发展,IEEE802.11也得到了研究和发展,陆续推出了IEEE802.11b和IEEE802.11a,其中陆续推出了IEEE802.11b的数据传输速率可以达到11Mbps,IEEE802.11a的数据传输速率可以达到54Mbps,以此满足不断发展的高带宽带网络应用的需要、 2.2 IEEE802.11b 在现实生活使用中,我们可以将IEEE802.11b称作为Wi-Fi,2.4GHz频带是IEEE802.11b工作主要的频带之一,物理层主要由支持两个速率,即5.5Mbps和11Mbps,IEEE802.11b传输速率会受许多因素的影响,包括环境干扰和传输距离等,传输速率可以进行相应的切换。直接序列扩频DSSS技术是IEEE802.11b主要采用的技术。对于IEEE802.11b,可以将其工作模式可以分为两种,一种为点对点模式,另一种为基本模式,其中点对点模式是指两个无线网卡计算机之间的相互通信;基本模式还包括两种通信方式,一种为无线网络的扩充的时的通信方式,另一种指的是有线网络并存时的通信方式。 2.3IEEE802.11a 在美国,IEEE802.11a主要有三个频段范围,即5.15-5.25GHz、5.725-5.825GHz,物理层和传输层的速率可以达到54Mbps和 25Mbps,正交频分复用的独特扩频技术是IEEE802.11a主要采用的技术,通过该技术,可以实现传输范围的扩大,同时对于数据加密,可以达到152位的WEP。 3 无线个域网 在网络架构的底层,设置无线个域网WPAN,一般点对点的短距离连接使用无线个域网。对于无线个域网,使用的通信技术包括红外、蓝牙以及UWB等等,对此下面进行详细的介绍和分析。 3.1 蓝牙 蓝牙作为一种短距离无线通信技术,主要应用小范围的无线连接。蓝牙技术的传输速率为1Mbps,有效的通信范围在10m-100m范围,2.4GHz频段是蓝牙运行的频段,传输速率可以通过GFSK调制技术来实现,同时通过FHSS扩频技术还可以将信道分成若个的时隙,

几种短距离无线通信技术对比

几种短距离无线通信技术对 比 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

短距离无线通信技术比较 近年来,各种无线通信技术迅猛发展,极大的提供了人们的工作效率和生活质量。然而,在日常生活中,我们仍然被各种电缆所束缚,能否在近距离范围内实现各种设备之间的无线通信? 纵观目前发展较成熟的几大无线通信技术主要有ZigBee;蓝牙(Bluetooth),红外(IrDA)和无线局域网802.11(Wi-Fi)。 同时还有一些具有发展潜力的近距离无线技术标准,它们分别是:超宽频(UltraWideBand)、短距离通信(NFC)、WiMedia、GPS、DECT、无线139和专用无线系统等。它们都有各自立足的特点,或基于传输速度、距离、耗电量的特殊要求; 或着眼于距离的扩充性;或符合某些单一应用的特殊要求;或建立竞争技术的差异优化等。但没有一种技术完美到可以满足所有的要求。 蓝牙技术 蓝牙技术诞生于1994年,Ericsson当时决定开发一种低功耗、低成本的无线接口,以建立手机及其附件间的通信。能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHz ISM频段,提供1Mbps的传输速率和10m的传输距离。该技术还陆续获得PC行业业界巨头的支持。 1998年,蓝牙技术协议由Ericsson、IBM、Intel、NOKIA、Toshiba等五家公司达成一致。蓝牙协议的标准版本为802.15.1,由蓝牙小组(SIG)负责开发。802.15.1的最初标准基于1.1实现,后者以构建到现行很多蓝牙设备中。新版802.15.1a基于等同于蓝牙1.2标准,具备一定的Qos特性,并完整保持后项兼容性。 但蓝牙技术遭遇最大的障碍在于传输范围受限,一般有效的范围在10米左右,抗干扰能力不强、信息安全问题等问题也是制约其进一步发展和大规模应用的主要因素。因此业内专家认为蓝牙的市场前景取决于蓝牙能否有效地解决上述制约难题。 IrDA技术 IrDA是一种利用红外线进行点对点通信的技术,是第一个实现无线个人局域网(PAN)的技术。目前它的软硬件技术都很成熟,在小型移动设备,如:PDA、手机上广泛使用。起初,采用IrDA标准的无线设备仅能在1m范围内以115.2kb/s速率传输数据,很快发展到4Mb/s以及16Mb/s的速率。

物联网中的几种短距离无线传输技术

短距离无线通信场指的是 100m 以内的通信,主要技术包括 Wifi、紫蜂(Zigbee)、蓝牙技术(Bluetooth)、超宽带技术(Ultra-wideband ,UWB)、射频识别技术(Radio Frequency IDentification ,RFID)以及近场通信(Near Field Communication,NFC)等类型。低功耗、微型化是用户对当前无线通信产品尤其是便携产品的强烈要求,作为无线通信技术重要分支的短距离无线通信技术正逐步引起越来越广泛的关注。各国也相应地制定短距离通信技术标准,特别是RFID 和 NFC 在物联网、移动支付和手机识别方面的应用标准,例如主要的RFID 相关规范有欧美的 EPC 规范、日本的 UID(Ubiquitous ID)规范和 ISO 18000 系列标准。中国政府也高度重视短距离通信的发展,制定了一系列的政策来扶持短距离通信产业。例如科技部、工信部联合 14 部委制订的《中国 RFID 发展策略白皮书》等。此外,包括诺基亚、英特尔、IBM、东芝、华为、中兴和联想等众多企业也积极参与到短距离无线通信中各技术的研究中。 1、Wi-Fi技术 Wi-Fi(Wireless Fidelity,无线高保真)是一种无线通信协议(),Wi-Fi的传输速率最高可达11Mb/s,虽然在数据安全性方面比蓝牙技术要差一些,但在无线电波的覆盖范围方面却略胜一筹,可达100 m左右。 Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约11Mb/s的速率接入互联网。实际上,如果有多个用户同时通过一个点接入,带宽将被多个用户分享,Wi-Fi的连接速度会降低到只有几百kb/s,另外,Wi-Fi的信号一般不受墙壁阻隔的影响,但在建筑物内的有效传输距离要小于户外。 最初的规范是在1997年提出的,称为,主要目的是提供WLAN接入,也是目前WLAN的主要技术标准,它的工作频率是,与无绳电话、蓝牙等许多不需频率使用许可证的无线设备共享同一频段。随着Wi-Fi协议新版本如和的先后推出,Wi-Fi的应用将越来越广泛。速度更快的使用与相同的正交频分多路复用调制技术,它也工作在频段,速率达54Mb/s。根据最新的发展趋势判断,将有可能被大多数无线网络产品制造商选择作为产品标准。微软推出的桌面操作系统Windows XP和嵌入式操作系统Windows CE,都包含了对Wi-Fi的支持。 2、UWB技术 超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。 UWB可在非常宽的带宽上传输信号,美国FCC对UWB的规定为:在~频段中占用500MHz以上的带宽。由于UWB可以利用低功耗、低复杂度发射/接收机实现高速数据传输,在近年来得到了迅速发展。它在非常宽的频谱范围内采用低功率

浅析我国无线通信技术的发展历程与趋势(1).

浅析我国无线通信技术的发展历程与趋 势 (1) 由于无线通信网络存在的带宽需求和移动网络带宽不足的矛盾,用户地域分布和对应用需求不平衡的矛盾以及不同技术优势和不足共存的矛盾,因此,决定了发展无线通信网络需综合运用各种技术手段,从全局和长远的眼光出发,采取一体化的思路规划和建设网络。发挥不同技术的个性,综合布局,解决不同区域、不同用户群对带宽及业务的不同需求,达成无线通信网络的整体优势和综合能力。对此,我国政府管理部门也应该积极为运营商配备充足的频谱资源,为其综合规划提供有力的支撑和保障。本文从市场分析的角度阐述了无线通信技术的发展现状,并展望了我国无线通信技术的未来发展趋势。 关键词:无线通信技术发展现状趋势 0 引言 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段: 第一阶段为20年代初至50年代初,主用于舰船及军有,采用短波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。 第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 无线通信领域的未来发展趋势 首先,无线通信领域各种技术的互补性日趋鲜明。这主表现在

常用无线通信技术简介

Computer Knowledge and Technology电脑知识与技术 本栏目责任编辑:冯蕾 第8卷第5期(2012年2月) 常用无线通信技术简介 陈高锋 (杨凌职业技术学院,陕西杨凌712100) 摘要:随着社会的不断进步和发展,通信与交流已经成为人们工作和生活中非常重要的部分,无线通信技术以其成本低、扩展性好、使用方便等优势,近些年而得到了长足的发展和广泛的应用。该文从远距离和近距离两个方面分别介绍了常用的无线通信技术。关键词:无线通信;远距离;短距离 中图分类号:TP393文献标识码:A文章编号:1009-3044(2012)05-1062-03 Introduction to Wireless Communication Technology Used CHEN Gao-feng (Yangling Vocational&Technical College,Yangling712100,China) Abstract:With the continuous progress and development,communication and exchange of work and life has become a very important,wireless communications technology with its low cost,scalable,easy to use and other advantages,and in recent years has been considerable development and a wide range of applications.In this paper,both distance and close-introduced the popular wireless communication tech?nology. Key words:wireless communication;long distance;short distance 无线通信(Wireless communication)是利用电磁波信号在自由空间中传播的特性进行信息交换的一种通信方式,近些年,在信息通信领域中,发展最快、应用最广的就是无线通信技术。无线通信技术自身有很多优点,成本较低,无线通信技术不必建立物理线路,更不用大量的人力去铺设电缆,而且无线通信技术不受工业环境的限制,对抗环境的变化能力较强,故障诊断也较为容易,相对于传统的有线通信的设置与维修,无线网络的维修可以通过远程诊断完成,更加便捷;扩展性强,当网络需要扩展时,无线通信不需要扩展布线;灵活性强,无线网络不受环境、地形等限制,而且在使用环境发生变化时,无线网络只需要做很少的调整,就能适应新环境的要求。 1常用的远距离无线通信技术 目前偏远地区广泛应用的无线通讯技术主要有GPRS/CDMA、数传电台、扩频微波、无线网桥及卫星通信、短波通信技术等。它主要使用在较为偏远或不宜铺设线路的地区,如:煤矿、海上、有污染或环境较为恶劣地区等。 1.1GPRS/CDMA无线通信技术 GPRS(通用无线分组业务)是由中国移动开发运营的一种基于GSM通信系统的无线分组交换技术,是介于第二代和第三代之间的技术,通常称为2.5G。它是利用“包交换”概念发展的一种无线传输方式。包交换就将数据封装成许多独立的包,再将这些包一个一个传送出去,形式上有点类似寄包裹,其优势在于有资料需要传送时才会占用频宽,而且是以资料量计价,有效的提高网络的利用率。GPRS网络同时支持电路型数据和分组交换数据,从而GPRS网络能够方便的和因特网互相连接,相比原来的GSM网络的电路交换数据传送方式,GPRS的分组交换技术具有实时在线、按量计费、高速传输等优点[1]。 CDMA是码分多址的英文缩写(Code Division Multiple Access),是由中国电信运行的一种基于码分技术和多址技术的新的无线通信系统,其原理基于扩频技术。其最早是由于军事上对高质量无线通讯技术的需要而开发设计。CDMA在数据传送过程中,将数据用一个带宽远大于信号带宽的高速伪随机码进行调制,使数据信号的带宽被扩展,然后经载波调制将数据发送出去。接收端使用完全相同的伪随机码,进行相反过程的处理,把宽带信号换成原信息数据的窄带信号从而进行解扩,以实现数据传输。其特点是抗干扰能力强、抗衰落能力强、信号隐蔽性强、抗截获的能力强、可以多用户同时接收发送。 1.2数传电台通信 数传电台是数字式无线数据传输电台的简称。它是采用数字信号处理、数字调制解调、具有前向纠错、均衡软判决等功能的一种无线数据传输电台。数传电台的工作频率大多使用220~240MHz或400~470MHz频段,具有数话兼容、数据传输实时性好、专用数据传输通道、一次投资、没有运行使用费、适用于恶劣环境、稳定性好等优点。数传电台的有效覆盖半径约有几十公里,可以覆盖一个城市或一定的区域[2]。数传电台通常提供标准的RS-232数据接口,可直接与计算机、数据采集器、RTU、PLC、数据终端、GPS接收机、数码相机等连接。传输速率从9600到19200bps,误码低于10-6(-110dBm时),可工作于单工、半双工、时分双工TDD、全 收稿日期:2012-01-15 作者简介:陈高锋(1976-),男,陕西杨凌人,讲师,硕士研究生,主要从事程序设计,嵌入式系统等方面的教学研究工作。 E-mail:info@https://www.wendangku.net/doc/2512580793.html, https://www.wendangku.net/doc/2512580793.html, Tel:+86-551-56909635690964 ISSN1009-3044 Computer Knowledge and Technology电脑知识与技术 Vol.8,No.5,February2012 1062

无线通信技术的分类及发展

无线通信技术的分类及发展 发表时间:2017-09-13T15:05:20.503Z 来源:《防护工程》2017年第10期作者:聂向东冯治寰[导读] 指出了无线通信技术在未来的发展方向,对无线通信技术的发展趋势具有一定的指导意义。 河南耀天工程建设有限公司河南省濮阳市 457000 摘要:近些年无线通信技术与互联网系统,移动媒体终端系统融合越来越紧密,发展势头迅猛。基于其可移动的特点,无线通信技术给用户提供了更加丰富多彩的服务,以前人们想象中的移动办公,实时服务现在都在无线通信技术的支持下成为了现实。对无线通信技术在国内外的发展进行了阐述,将无线通信技术的特点进行了分析,指出了无线通信技术在未来的发展方向,对无线通信技术的发展趋势具有一定的指导意义。 关键词:无线通信;技术;分类;发展引言 现如今我们正处于信息爆炸的时代,网络已经成为人们生产生活所必须的工具,因此作为网络应用基础的通信技术越来越受到人们的重视。目前无线通信技术是人们应用的最为广泛的技术,因为其不受地域和空间的限制,节省了有线网络通信中的很多硬件资源,能进一步的融合整合各类服务,因此对于今后无线通信技术发展趋势的研究具有现实意义。 1 无线通信技术 无线通信技术就是依靠电磁波信号能够随意的在三维空间内的任何方向进行传播,实现信息的传播和交换的一种信号传播方式。随着科技的快速发展,无线通信技术成为了在社会生活中运用最广的一项技术,在社会中承担着不可或缺的角色,尤其是在移动通信领域。无线移动通信领域涉及的包括电磁波、卫星通信以及近场通信等等都是人民生活接触最为频繁的技术。同时,这项技术也能够实现远距离信息传送,从而实现人与人跨越距离的限制进行交流。 2 无线通信技术的分类 在无线通信技术当中,可以分为几种不同的无线通信技术,其中分别是WLAN技术、WiMax技术、3G技术以及卫星通信等这几种类别。在每一种当中都具有不同的特点,在WLAN技术当中,属于一种有线网络,利用特殊的宽带来实现数据信息的传输,在一定范围内的局域网当中,在一定程度上会存在黑客入侵的现象。在WiMax技术当中,推出的时间是相对较晚的,但是在可以最大限度的满足其用户的最大需求,保证在室内或者室外的环境当中都可以获得良好的通信信号,最终实现信息数据的互联互通。在进行此种该技术的应用过程当中,可以实现远距离的有效传输。在3G技术方面,被广泛的应用在了商业网络当中,并且在不断应用的过程当中也得到了充分完善的建设和优化。在卫星通信技术方面,主要是依托于卫星来作为信号数据的接入设备,从而实现良好的宽带信息数据的传输,在经济效益方面是相当良好的,并且在地面基站的建设成本方面也具有相当有利的条件,在带宽的限制基础上,会在经济上带来相当大的制约条件。 3 无线通信技术的发展 3.1 无线通信技术相融合 对传统的无线通信技术进行应用的过程中,不同的领域场所的多种无线通信技术有着非常大的区别。不过,目前,多种无线通信技术之间实现了有效的沟通和交流,彼此取长补短,同时,多种无线通信技术能够适应的方式和趋势也不断一致,多种无线通信技术之间也越来越接近融合,对于今后的无线技术的更加深层次的技术突破有着非常重要的作用和意义。 3.2 蓝牙技术将成为无线通信业发展的契机 蓝牙技术有着非常鲜明的优势和特点!其便捷性是非常突出的。在很大程度上解放了人们的双手。吸引了众多的消费者的注意。并且得到了充分的广泛的应用、在无线通信行业中占据着至关重要的位置。是其重要的组成部分。要使其在越来越激烈的市场竞争中占据一席之地。就需要抓住这个发展机遇。 3.3 无线通信系统不断融合 在此方面。主要包括三项内容:(1)多种无线通信系统中的不同适用标准有着相应的追求,朝着相互融合和取长补短的方向发展。(2)不同的系统之间,进行了相应的磨合,在此过程中多种系统都在不断改进和完善。(3)无线通信系统和互联网之间也实现了相应的融合,对于IP业务的传输的透明化的实现是非常有利的。 3.4 高效频谱接入 无线频谱资源是固有的战略资源,各国都在争用无线频谱信道进行无线通信技术的研究与应用。如何高效的利用无线频谱是无线通信技术领域里亟待解决的问题。认知无线电技术的出现很好的解决了这个问题,认知无线电技术特点是通过不断的训练学习构建应用系统模型,使之能够动态地认知并判断其工作环境,自适应地调整工作频率及其相关操作参数,以便更加高效地占用频谱信道,提高整个信道的利用率。 3.5 网络优化无线通信技术 近年来,我国的科学技术迅猛发展,在此过程中,网络得到了充分的优化,大部分的移动运营商都凭借增量升级。在4G网络市场中占据一席之地,同时,网络的融合和对于目前的无线通信技术的发展是非常重要的,是其重要的发展方向。无线通信技术得到了全面的改革和完善,使得市场竞争越来越激烈,这对于网络的完善是非常有利的。 3.6 通信与保密相融合 无线通信容易暴露出通信双方的信息,现在越来越多的用户要求在通信时采取与之相适应的保密手段。当前大多数保密机或保密卡依靠通信设备提供的通信链路实现保密通信,这种方法会带来较大的额外带宽开销,降低了通信效率,使无线频谱资源白白遭受损失。通过深入分析会发现战术电台中的通信与保密在很大程度上可以相互结合,降低无线信道的开销,在技术体制上,完全可以实现通信同步与保密同步二合一,跳频图案由保密算法导出等,一方面减少了通信频谱的开销,另一方面使得侦察和破译的概率大大降低,充分发挥出通信与保密相结合的优势。 3.7 跳频抗干扰

无线通信技术习题集

填空题 1.无线电波在自由空间中的传播速度与光速一样,都是大约 3*108 m/s 。2.无线电波以横向电磁波的形式在空间中传播。 3.全球第三代数字通信(3G)包括的主流技术有 WCDMA 、cdma2000 和 TD-SCDMA 。 4.在QPSK方式下,每个符号用 2 个比特表示,并且比特率是波特率的2倍,这叫做四进制系统。 5.信源编码是为提高数字信号有效性而采取的编码技术,其宗旨是尽可能压缩冗余度。 6.信道编码是通过增加码字,利用冗余来提高抗干扰能力的。亦即是以降低信息传输速率为代价减少错误。 7.PCM是模拟信号数字化的一种具体方法,它包括取样、和量化、编码三个步骤。 8.常用的差错控制方式主要有3种: 前向纠错(FEC)、检错重发(ARQ)和混合纠错(HEC)。 9.模拟调制主要的基本形式有幅度调制(AM)、 频率调制(FM)和相位调制(PM)。 10.通信系统根据通信双方信息传输的方向可以分为 单工通信和双工通信。 11.GSM系统基站子系统由基站收发信机(BTS)和基站控制器(BSC)两大部分组成。 12.微波中继通信是利用微波作为载波并采用中继方式在地面上进行的无线电通信。 13.微波中继通信系统内部干扰主要包括和旁瓣干扰。 14.卫星上的通信分系统又称为转发器,通常分为透明转发器和处理转发器两类。 15.IEEE 802.11定义了3种接入控制机制,分别是分布式协调功能(DCF)中的CSMA/CA协议、RTS/CTS机制和点协调功能(PCF)机制。 16.IEEE 802.11的侦听机制既有实际的物理操作,也有虚拟的逻辑操作,对应于两种载波侦听方式:物理载波侦听方式和虚拟载波侦听方式。 17.IEEE 802.16工作组的主要工作都围绕空中接口展开,空中接口主要由

常见无线通信技术

常见无线通信技术 蓝牙 超宽带技术 ZigBe Wi一F zigBee的产生 ZigBee的优势 zigBee的应用 1.典型的短距离无线数据网络技术 典型的短距离无线系统由一个无线发射器(包括数据源、调制器、RF源、RF功率放大器、天线、电源组成)和一个无线接收器(包括数据接收电路、RF 解调器、译码器、RF低噪声放大器、天线、电源)组成。 随着无线的发展,网络化、标准化、要求逐渐出现在人们的面前。因此各种无线网络技术标准纷纷被制订出来。下面我们来看看目前比较热门的几种无线网络技术标准、 5种短程无线连接技术正在成为业界谈论的焦点,它们分别是ZigBee、无线局域网(Wi-Fi)、蓝牙(Bluetooth)、超宽频(Ultra Wide Band)和近距离无线传输(NFC)。

1.ZigBee ZigBee是一种新兴的短距离、低速率无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术方案。它此前被称作HomeRF Lite或FireFly无线技术,主要用于近距离无线连接。它有自己的无线电标准,在数千个微小的传感器之间相互协调实现通信。这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所以它们的通信效率非常高。最后,这些数据可以进入计算机,用于分析或者被另一种无线技术如WiMax收集。 ZigBee的基础是IEEE 802.15.4,这是IEEE无线个人区域网(PAN,Personal AreaNetwork)工作组的一项标准,被称作IEEE 802.15.4(ZigBee)技术标准。 ZigBee不仅只是 802.15.4 的名字。IEEE仅处理低级MAC层和物理层协议,所以ZigBee联盟对其网络层协议和API进行了标准化。完全协议用于一次可直接连接到一个设备的基本点的4KB或者作为Hub、路由器的协调器的32KB。每个协调器可连接多达255个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。ZigBee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其他节点获得。、

短距离无线通信技术对比_图文解析

2当’熬薰。:烹..孟专栏 无线通信在嵌入式系统中的应用讲座(26) 短距离无线通信技术对比 1鼍述 5幸 ^线m信&^们∞4*十m*《米《mⅢ∞自 色.《脱物Ⅲ连挂r自勺R“自m地随时陆№№接^目培《n信n,m为目代仕台的~#“Ⅻ∞求同时低功耗、礅Ⅻ化是^们对{前z域《信P目£苘≈悝*F*白勺《奉}求.目nm《Wi线M信ⅢⅨ淅引《越来趣』'&∞&意。 ‰《mi&Ⅻ信拄¥的≈mmr#№意ZL R∞ 自信收发Ⅸ^mnt&№渡*#情n "n恃输Ⅲ自R“ 在轻《的范围内戟日u称自《m≈i线№信 多年米.^”J不断探索gmTj々々^m《《乩∞《mm^《m信冉“#Ⅷ戈P“ #十&Ⅲm自JⅡ#B# 自连¨‰Ⅲ目*线#据m惦“8☆5"n刖g##{Zig Bee}z线《*(wl—Fi)、&圩fB1¨【帅m)扫宽*(IJWB)自

mⅢⅢ信(Nm)、t¨《{l覆_盐T口前市日的各#啦用 需求,在各自的《域&挥着目大的作月。各种M估拄m”u匕 ∞日l*m. *#m* 目I**№口#¥Ⅳm TⅫ就tn种im∞短m*^%mfi#术墩 十简单 ∞”Ⅻ。 2主澶无线置信技术 21《# 紫#(ZigBee)H[EEE802154*“【l々代名H m*& mUm≈tB "《《自低功耗∞z线№信#¥。选一g 称米谭十蜜蜂的A字舞mf蜜#(bee)是靠E翔椰。%嗡” (w)№抖功月骑帕‘舞镕”*々Ⅻ”f々4%#M&ⅣⅡ信 息,n#*说蜜《依靠日样∞女&目成r群体中日勺日情目络##“2Ⅲ口自低成¥自m‰t日#低艇※Ⅸ自低数*4¥iⅢ№Ⅷf自自控制a^程#制《HⅢ““^各#&备

≈jiii;2,zo#B∞孰n一"恒A∞怔n#∞ 《m高Z线组月№口&¥ ZigBee标m&,%f倒ⅫH 2 "目: ZigBee白勺|_作镕率有Tm #际№ (I】868MHz传输a半为20kb/s遥月f殴W;(2J915MHzf々输《半^40kl,b镕月f*日16 睫迎同上投稿www.dfin明et.com ZigBee。 Alliance 黑焉 鬟 Ⅲ2“gB”#¥ f3)2 4 G№传辅建率~250kh^十4mⅢ

相关文档
相关文档 最新文档