文档库 最新最全的文档下载
当前位置:文档库 › 两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题
两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题两个计数原理内容

1、分类计数原理:

完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.

2、分步计数原理:

完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.

例题分析

例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种?

分析:1、完成的这件事是什么?

2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤)

3、它们属于分类还是分步?(是否独立完成)

4、运用哪个计数原理?

5、进行计算.

解:属于分步:第一步配一个荤菜有3种选择

第二步配一个素菜有5种选择

第三步配一个汤有2种选择

共有N=3×5×2=30(种)

例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。

(1)从书架上任取一本书,有多少种不同的取法?

(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?

(1)分析:1、完成的这件事是什么? 2、如何完成这件事?

3、它们属于分类还是分步?(是否独立完成)

4、运用哪个计数原理?

5、进行计算。

解:属于分类:第一类从上层取一本书有5种选择

第二类从下层取一本书有4种选择

共有N=5+4=9(种)

(2)分析:1、完成的这件事是什么?

2、如何完成这件事?

3、它们属于分类还是分步?(是否独立完成)

4、运用哪个计数原理?

5、进行计算.

解:属于分步:第一步从上层取一本书有5种选择

第二步从下层取一本书有4种选择

共有N=5×4=20(种)

例3、有1、2、3、4、5五个数字.

(1)可以组成多少个不同的三位数?

(2)可以组成多少个无重复数字的三位数?

(3)可以组成多少个无重复数字的偶数的三位数?

(1)分析: 1、完成的这件事是什么?

2、如何完成这件事?(配百位数、配十位数、配个位数)

3、它们属于分类还是分步?(是否独立完成)

4、运用哪个计数原理?

5、进行计算.

略解:N=5×5×5=125(个)

【例题解析】

1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?

2、有一个班级共有46名学生,其中男生有21名.

(1)现要选派一名学生代表班级参加学校的学代会,有多少种不同的选派方法? (2)若要选派男、女各一名学生代表班级参加学校的学代会,有多少种不同的选派方法?

3、有0、1、2、3、

4、5六个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数?

排列与组合

1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....

2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示

3.排列数公式:(1)(2)(1)m n

A n n n n m =---+L (,,m n N m n *

∈≤) 4.阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.

5.排列数的另一个计算公式:m n A =

!

()!

n n m -

6.组合概念:从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合

7.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n

个不同元素中取出m 个元素的组合数...

.用符号m

n C 表示. 8.组合数公式:(1)(2)(1)

!

m m

n n

m m A n n n n m C A m ---+==L 或)!(!!m n m n C m n

-=,,(n m N m n ≤∈*且9.组合数的性质1:m n n m n C C -=.规定:10=n

C ; 10.组合数的性质2:m n C 1+=m n C +1-m n C n 0+C n 1+…+C n n =2n

题型讲解

例1 分别求出符合下列要求的不同排法的种数

(1)6名学生排3排,前排1人,中排2人,后排3人; (2)6名学生排成一排,甲不在排头也不在排尾;

(3)从6名运动员中选出4人参加4×100米接力赛,甲不跑第一棒,乙不跑第四棒; (4)6人排成一排,甲、乙必须相邻; (5)6人排成一排,甲、乙不相邻;

(6)6人排成一排,限定甲要排在乙的左边,乙要排在丙的左边(甲、乙、丙可以不相邻)

解:(1)分排坐法与直排坐法一一对应,故排法种数为7206

6=A

(2)甲不能排头尾,让受特殊限制的甲先选位置,有14A 种选法,然后其他5人选,有5

5A 种选法,

故排法种数为4805

514=A A

(3)有两棒受限制,以第一棒的人选来分类:

①乙跑第一棒,其余棒次则不受限制,排法数为3

5A ;

②乙不跑第一棒,则跑第一棒的人有14A 种选法,第四棒除了乙和第一棒选定的人外,也有1

4

A 种选法,其余两棒次不受限制,故有2

21414A A A 种排法,

由分类计数原理,共有2522

4141435=+A A A A 种排法

(4)将甲乙“捆绑”成“一个元”与其他4人一起作全排列共有2405

522=A A 种排法

(5)甲乙不相邻,第一步除甲乙外的其余4人先排好;第二步,甲、乙选择已排好的4人的左、右

及之间的空挡插位,共有2544A A (或用6人的排列数减去问题(2)后排列数为4802406

6=-A )

(6)三人的顺序定,实质是从6个位置中选出三个位置,然后排按规定的顺序放置这三人,其余3

人在3个位置上全排列,故有排法1203

336=A C 种

点评:排队问题是一类典型的排列问题,常见的附加条件是定位与限位、相邻与不相邻

例2 假设在100件产品中有3件是次品,从中任意抽取5件,求下列抽取方法各多少种? (1)没有次品;(2)恰有两件是次品;(3)至少有两件是次品

解:(1)没有次品的抽法就是从97件正品中抽取5件的抽法,共有644460245

97=C 种

(2)恰有2件是次品的抽法就是从97件正品中抽取3件,并从3件次品中抽2件的抽法,共

有4423202

3397=C C 种

(3)至少有2件次品的抽法,按次品件数来分有二类:

第一类,从97件正品中抽取3件,并从3件次品中抽取2件,有3

2

973C C 种

第二类从97件正品中抽取2件,并将3件次品全部抽取,有23

973C C 种

按分类计数原理有4469763

329723397=+C C C C 种

点评:此题是只选“元”而不排“序”的典型的组合问题,附加的条件是从不同种类的元素中抽取,应当注意:如果第(3)题采用先从3件次品抽取2件(以保证至少有2件是次品),再从余

下的98件产品中任意抽取3件的抽法,那么所得结果是4662883

9823=C C 种,其结论是错误的,错

在“重复”:假设3件次品是A 、B 、C ,第一步先抽A 、B 第二步再抽C 和其余2件正品,与第一步先抽A 、C (或B 、C ),第二步再抽B (或A )和其余2件正品是同一种抽法,但在算式3

9823C C 中算作3种不同抽法

例3 求证:①m n m n m n A mA A =+---111 ;②1

2112++-+=++m n m n m n m n C C C C

证明:①利用排列数公式

左()()()()1!

1!1!!n m n n m n m -?-=

+

--- ()()()()1!1!!

n m n m n n m --+?-=

=-()==-m n A m n n !!右

另一种证法:(利用排列的定义理解)从n 个元素中取m 个元素排列可以分成两类:

①第一类不含某特殊元素a 的排列有m

n A 1-

第二类含元素a 的排列则先从()1-n 个元素中取出()1-m 个元素排列有1

1--m n A 种,然后将a 插入,

共有m 个空档,故有11--?m n A m 种,因此m

n m n m n A A m A =?+---111

②利用组合数公式 左()()()()()!

!

2!11!1!1!m n m n m n m n m n m n -++--+--+=

()()()()()()()[]

11211!

1!1!

+-+++++--?+-+m n m m m m n m n m n m n =

()()()()()()()==+-++=+++-+=

++1

2!

1!1!212!1!1!m n C m n m n n n m n m n 右

另法:利用公式111---+=m n m n m n C C C 推得 左()()

==+=+++=+++++-+1

211111m n n n m n m n m n m n m n C C C C C C C 右

点评:证明排列、组合恒等式通常利用排列数、组合数公式及组合数基本性质

例4 已知f 是集合{}d c b a A ,,,=到集合{}2,1,0=B 的映射 (1)不同的映射f 有多少个?

(2)若要求()()()()4=+++d f c f b f a f 则不同的映射f 有多少个? 分析:(1)确定一个映射f ,需要确定d c b a ,,,的像

(2)d c b a ,,,的象元之和为4,则加数可能出现多种情况,即4有多种分析方案,各方案独立且并列需要分类计算

解:(1)A 中每个元都可选0,1,2三者之一为像,由分步计数原理,共有4

33333=???个不同映射

(2)根据d c b a ,,,对应的像为2的个数来分类,可分为三类:

第一类:没有元素的像为2,其和又为4,必然其像均为1,这样的映射只有一个;

第二类:一个元素的像是2,其余三个元素的像必为0,1,1,这样的映射有121

314=P C 个;

第三类:二个元素的像是2,另两个元素的像必为0,这样的映射有624

=C 个

由分类计数原理共有1+12+6=19(个)

点评:问题(1)可套用投信模型:n 封不同的信投入m 个不同的信箱,有n

m 种方法;问题(2)的关键结合映射概念恰当确定分类标准,做到不重、不漏

例5 四面体的顶点和各棱的中点共10个点

(1)设一个顶点为A ,从其他9点中取3个点,使它们和点A 在同一平面上,不同的取法有多少种?

(2)在这10点中取4个不共面的点,不同的取法有多少种?

解:(1)如图,含顶点A 的四面体的三个面上,除点A 外都有5个点,从中取出3点必与点A

共面,共有3

53C 种取法

含顶点A 的棱有三条,每条棱上有3个点,它们与所对棱的中点共面,共有3种取法

根据分类计数原理和点A 共面三点取法共有33333

5=+C 种

(2)取出的4点不共面比取出的4点共面的情形要复杂,故采用间接法:先不加限制任取4点(4

10C 种取法)减去4点共面的取法

取出的4点共面有三类:

第一类:从四面体的同一个面上的6点取出4点共面,有4

64C 种取法 第二类:每条棱上的3个点与所对棱的中点共面,有6种取法 第三类:从6条棱的中点取4个点共面,有3种取法

根据分类计数原理4点共面取法共有693644

6=++C

故取4个点不共面的不同取法有()

1413644

6410=++-C C (种)

点评:由点构成直线、平面、几何体等图形是一类典型的组合问题,附加的条件是点共线与不

共线,点共面与不共面,线共面与不共面等

小结 :

⑴m个不同的元素必须相邻,有m

m

P

⑵m个不同元素互不相邻,分别“插入”到n个“间隙”中的m个位置有 m

n

P 种不同的“插

入”方法

⑶m个相同的元素互不相邻,分别“插入”到n个“间隙”中的m个位置,有m

n C

种不同

⑷若干个不同的元素“等分”为 m个组,要将选取出每一个组的组合数的乘积除以m

m P

【例题解析】

例1 完成下列选择题与填空题

(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有 种。

B.64

(2)四名学生争夺三项冠军,获得冠军的可能的种数是( )

B.64

(3)有四位学生参加三项不同的竞赛,

①每位学生必须参加一项竞赛,则有不同的参赛方法有 ; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有 ;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。

解析 (1)完成一件事是“分步”进行还是“分类”进行,是选用基本原理的关键。将“投四封信”这件事分四步完成,每投一封信作为一步,每步都有投入三个不同信箱的三种方法,因此:

N=3×3×3×3=34

=81,故答案选A 。

本题也可以这样分类完成,①四封信投入一个信箱中,有C 31

种投法;②四封信投入两个信箱中,有C 32(C 41·A 22+C 42·C 22)种投法;③四封信投入三个信箱,有两封信在同一信箱中,有C 42·A 33

种投法、,故共有C 31+C 32(C 41·A 22+C 42C 22)+C 42·A 33

=81(种)。故选A 。

(2)因学生可同时夺得n 项冠军,故学生可重复排列,将4名学生看作4个“店”,3项冠军看作“客”,每个“客”都可住进4家“店”中的任意一家,即每个“客”有4种住宿法。由分步计数原理得:N=4×4×4=64。

故答案选B 。

(3)①学生可以选择项目,而竞赛项目对学生无条件限制,所以类似(1)可得N=34

=81(种); ②竞赛项目可以挑学生,而学生无选择项目的机会,每一项可以挑4种不同学生,

共有N=43

=64(种);

③等价于从4个学生中挑选3个学生去参加三个项目的竞赛,每人参加一项,

故共有C 43·A 33

=24(种)。

注: 本题有许多形式,一般地都可以看作下列命题:

设集合A={a 1,a 2,…,a n },集合B={b 1,b 2,…,b m },则f :A →B 的不同映射是m n

,f :B →A 的不同映射是n m

若n ≤m ,则f :A →B 的单值映射是:A m n

例2 同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有( )

种 种 种 种

解法一 由于共四人(用1,2,3,4代表甲、乙、丙、丁四人),这个数目不大,化为填数问

题之后,可用穷举法进行具体的填写:

再按照题目要求检验,最终易知有9种分配方法。

解法二记四人为甲、乙、丙、丁,则甲送出的卡片可以且只可以由其他三人之一收到,故有3种分配方式;以乙收到为例,其他人收到卡片的情况可分为两类:

第一类:甲收到乙送出的卡片,这时丙、丁只有互送卡片1种分配方式;

第二类:甲收到的不是乙送出的卡片,这时,甲收到卡片的方式有2种(分别是丙和丁送出的)。对每一种情况,丙、丁收到卡片的方式只有一种。

因此,根据乘法原理,不同的分配方式数为3×(1+2)=9。

解法三给四个人编号:1,2,3,4,每个号码代表1个人,人与号码之间的关系为一对一的关系;每个人送出的贺年卡赋给与其编号相同的数字作为代表,这样,贺年卡的分配问题可抽象为如下“数学问题”:将数字1,2,3,4,填入标号为1,2,3,4的4个方格里,每格填写一个数字,且每个方格的编号与所填数字都不同的填法共有多少种(也可以说成:用数字1,2,3,4组成没有重复数字的4位数,而且每位数字都不等于位数的4位数共有多少个)?

这时,可用乘法原理求解答案:

首先,在第1号方格里填写数字,可填上2、3、4中的任一个数,有3种填法;

其次,当第1号方格填写的数字为i(2≤i≤4)时,则填写第i种方格的数字,有3种填法;

最后,将剩下的两个数填写到空着的两个空格里,只有1种填法(因为剩下的两个数中,至少有1个与空着的格子的序号相同)。

因此,根据乘法原理,得不同填法:3×3×1=9

注:本题是“乱坐问题”,也称“错排问题”,当元素较大时,必须用容斥原理求解,但元素较小时,应用分步计数原理和分类计数原理便可以求解,或可以穷举。

例3宿舍楼走廊上有有编号的照明灯一排8盏,为节约用电又不影响照明,要求同时熄掉其中3盏,但不能同时熄掉相邻的灯,问熄灯的方法有多少种?

解法一我们将8盏灯依次编号为1,2,3,4,5,6,7,8。

在所熄的三盏灯中,若第一盏熄1号灯,第二盏熄3号灯,则第3盏可以熄5,6,7,8号灯中的任意一盏,共有4种熄法。

若第一盏熄1号灯,第2盏熄4号灯,则第3盏可以熄6,7,8号灯中的任意一盏。

依次类推,得若1号灯熄了,则共有4+3+2+1=10种熄法。

若1号灯不熄,第一盏熄的是2号灯,第二盏熄的是4号灯,则第三盏可以熄6,7,8号灯中的任意一盏,共有3种熄法。

依次类推得,若第一盏灯熄的是2号灯,则共有3+2+1=6种熄法。

同理,若第一盏熄的是3号灯,则共有2+1=3种熄法。

同理,若第一盏熄的是4号灯,则有1种熄法。

综上所述共有:10+6+3+1=20种熄法。

解法二我们可以假定8盏灯还未安装,其中5盏灯是亮着的,3盏灯不亮。这样原问题就等价于:将5盏亮着的灯与3盏不亮的灯排成一排,使3盏不亮的灯不相邻(灯是相同的)。5盏亮着的灯之间产生6个间隔(包括两边),从中插入3个作为熄灭的灯——就是我们经常解决的“相邻不相邻”问题,采用“插入法”,得其答案为C63=20种。

注解法一是穷举法,将所有可能的情况依次逐一排出。这种方法思路清晰,但有时较繁。方法二从另外一个角度审题,认清其数学本质,抽象成数学模型,解题时有一种豁然开朗的感觉。

例4已知直线ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。

解设倾斜角为θ,由θ为锐角,得tanθ=-

b

a

>0,即a、b异号。

(1)若c=0,a、b各有3种取法,排除2个重复(3x-3y=0,2x-2y=0,x-y=0),故有3×3-2=7(条)。

(2)若c≠0,a有3种取法,b有3种取法,而同时c还有4种取法,且其中任两条直线均不相同,故这样的直线有3×3×4=36条,从而符合要求的直线共有7+36=43条。

注:本题是1999年全国高中数学联赛中的一填空题,据抽样分析正确率只有。错误原因没有对c=0与c≠0正确分类;没有考虑c=0中出现重复的直线。

例5 平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。

求:(1)这些直线所交成的点的个数(除原10点外)。

(2)这些直线交成多少个三角形。

解法一(1)由题设这10点所确定的直线是C102=45条。

这45条直线除原10点外无三条直线交于同一点,由任意两条直线交一个点,共有C452个交点。而在原来10点上有9条直线共点于此。所以,在原来点上有10C92点被重复计数。

所以这些直线交成新的点是:C452-10C92=630。

(2)这些直线所交成的三角形个数可如下求:因为每个三角形对应着三个顶点,这三个点来自上述630个点或原来的10个点。所以三角形的个数相当于从这640个点中任取三个点的组合,即C6403=43 486080(个)。

解法二(1)如图对给定的10点中任取4个点,四点连成6条直线,这6条直线交3个新的点。故原题对应于在10个点中任取4点的不同取法的3倍,即这些直线新交成的点的个数是:3C104=630。

(2)同解法一。

注 用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。

例6 (1)如果(x+x

1)2n

展开式中,第四项与第六项的系数相等。求n ,并求展开式中的常数项;

(2)求(x -421x

)8

展开式中的所有的有理项。

解 (1)由C 2n 3

=C 2n 5

,可得3+5=2n ∴ n=4。

设第k+1项为常数项

则 T k+1=C 8k ·x 8-k ·x -k =C 8k ·x 8-2k

∴8-2k=0,即k=4

∴常数项为T 5=C 84

=70。

(2)设第k+1项有理项,则 4

316841

2

88

1·)2

1(·)2

1(··k

k k k

k k k x C x x C T --

-+-

=-=

因为0≤k ≤8,要使

4

316k

-∈Z ,只有使k 分别取0,4,8 所以所求的有理项应为: T 1=x 4

,T 5=

8

35

x,T 9=2561x -2

注 (1)二项式展开中,要注意“系数”与“二项式系数”的区别;

(2)在二项展开式中求得k 后,对应的项应该是k+1项。

例7 (1)求4×6n +5n+1

被20除后的余数;

(2)7n +C n 17n-1+C n 2·7n-2+…+C n n-1

×7除以9,得余数是多少?

(3)根据下列要求的精确度,求的近似值。①精确到;②精确到。

解 (1)首先考虑4·6n +5n+1

被4整除的余数。 ∵5n+1=(4+1)n+1=4n+1+C n+114n +C n+124n-1+…+C n+1n

·4+1 ∴其被4整除的余数为1

∴被20整除的余数可以为1,5,9,13,17

然后考虑4·6n+1+5n+1

被5整除的余数。

∵4·6n =4·(5+1)n =4(5n +C n 1·5n-1+C n 2·5n-2+…+C n n-1

·5+1) ∴被5整除的余数为4

∴其被20整除的余数可以为4,9,14,19。 综上所述,被20整除后的余数为9。

(2) 7n +C n 1·7n-1+C n 2·7n-2+…+C n n-1

·7

=(7+1)n -1=8n -1=(9-1)n

-1

=9n -C n 1·9n-1+C n 2·9n-2+…+(-1)n-1C n n-1·9+(-1)n C n n

-1 (i)当n 为奇数时

原式=9n -C n 1·9n-1+C n 2·9n-2+…+(-1)n-1C n n-1

·9-2 ∴除以9所得余数为7。 (ii)当n 为偶数时

原式=9n -C n 1·9n-1+C n 2·9n-2+…+(-1)n-1C n n-1

·9 ∴除以9所得余数为0,即被9整除。

(3)5≈(1+)5

=1+c 51·+C 52·+C 53·++C 55

·

∵C 52×=,C 53×=8×10-5

∴①当精确到时,只要展开式的前三项和,1++=,近似值为。 ②当精确到时,只要取展开式的前四项和,1+++=,近似值为。

注 (1)用二项式定理来处理余数问题或整除问题时,通常把底数适当地拆成两项之和或之差再按二项式定理展开推得所求结论。

(2)用二项式定理来求近似值,可以根据不同精确度来确定应该取到展开式的第几项。 例8 证明下列不等式:

(1)2n n b a +≥(2

b a +)n

,(a 、b ∈{x|x 是正实数},n ∈N );

(2)已知a 、b 为正数,且

a 1+b

1=1,则对于n ∈N 有(a+b )n -a n -b n ≥22n -2n+1

。 证明 (1)令a=x+δ, b=x-δ 则x=

2

b

a + a n

+b n

=(x+δ)n

+(x-δ)n

=x n +C n 1x n-1δ+…+C n n δn +x n -C n 1x n-1δ+…(-1)n C n n δn

=2(x n +C n 2x n-2δ2+C n 4x n-4δ4

+…)

≥2x n

即2n n b a +≥(2

b a +)n

(2)(a+b)n

=a n

+C n 1a n-1

b+…+C n n b n

(a+b)n =b n +C n 1b n-1a+…+C n n a n

上述两式相加得:

2(a+b)n =(a n +b n )+C n 1(a n-1b+b n-1a)+…+C n k (a n-k b k +b n-k a k )+…+C n n (a n +b n

) (*) ∵

a 1+b

1

=1,且a 、b 为正数

∴ab=a+b ≥2ab ∴ab ≥4

又∵ a n-k b k

+b n-k a k

≥2n n b a ?=2(ab )n

(k=1,2,…,n-1)

∴2(a+b) n

≥2a n

+2b n

+C n 1

2(ab )n

+C n 2

2(ab )n

+…+C n n-1

2(ab )n

∴(a+b)n -a n -b n

≥(C n 1

+C n 2

+…+C n n-1

)·(ab )n

≥(2n -2)·2n

=22n -2n+1

注 利用二项式定理的展开式,可以证明一些与自然数有关的不等式问题。题(1)中的换元法称之为均值换元(对称换元)。这样消去δ奇数次项,从而使每一项均大于或等于零。题(2)中,由由称位置二项式系数相等,将展开式倒过来写再与原来的展开式相加,这样充分利用对称性来解题的方法是利用二项式展开式解题的常用方法。

例9 已知(1-ax)n

展开式的第p,p+1,p+2三项的二项式系数构成等差数列,第n+1-p 与第n+2-p

项的系数之和为0,而(1-ax )n+1

展开式的第p+1与p+2项的二项式系数之比为1∶2。

(1)求(1-ax )n+1

展开式的中间项;

(2)求(1-ax )n

的展开式中系数最大的项。 解 由题设得:

???????==-+-+=+++-+-+--+-③ ②①

1

11111120)()

(2p n p

n p n p

n n p n p n n p n p n p n C C a C a C C C C 由①得,2C n p

=

p n p -+1C n p +1

+-p p n C n p

两边约去C n p ,可得: 2=

p n p -+1+1

+-p p n

由③得,2C n+1p

=

1

1+-+p p n C n+1p

约去C n+1p

可得,n=3p+1

解方程组??

?

??

+==+-+-+13211p n p p n p n p

得:n=7,p=2.

将p=2,n=7代入②得: C 57(-a)5+C 76·(-a)6

=0 解之得:a=0或3。

若a=0 ,则(1-0·x )8的中间项T 5=0,(1-0·x )7

展开式中系数最大的项是T 1=1。

若a=3,则(1-3x )8的中间项T 5=C 84·(-3x )4=5670x 4,(1-3x )7

的展开式中,奇数项系数为正, 令

()

2

277)3(·3-·---k k k

k C C ≥1

解之得:k ≤6。

故(1-3x )7

展开式中系数最大的项为

T 7=C 76·(-3)6·x 6=5103x 6

注 一般地,求(a+bx )n

展开式中系数绝对值最大的项的方法是: 设第k+1项为系数绝对值最大的项,则由

?????≥≥-+---+--+-1

11111···k k n k n k k n k n k k n k n k k n k n

b a

C b a C b a C b a C 求出k 的取值范围,从而确定第几项最大。

例10 求证下列各式

(1)C n k +C n k-1=C n+1k

;

(2)C n 0C m p +C n 1C m p-1+…+C n p C m 0=C m+n p

证明 (1)对于给定的n+1个元素,从n+1个元素中任意选出k 个元素的不同组合有C n+1k

。另一方面,设a 是n+1个元素中的一个。对于a 我们这样分类。

(i )若a 不选,则在n 个元素中选k 个,有C n k

种不同的选法。

(ii )若a 选,则在n 个元素中再选k-1个,有C n k-1

种不同的选法。

故从n+1个元素中选k 个元素组成一组的不种选法是:C n k +C n k-1

所以,C n k +C n k-1=C n+1k

(2)仿(1)我们也用排列组合的知识来证明。事实上右边C m+n p

,可看作下列命题:

从m 个红球,n 个白球中,任选p 个球的不同选法是C m+n p

种。 另一方面,我们按选红球的个数分类:(i )取p 个红球,0个白球;(ii)取p-1个红球,1个白

球,…,取0个红球,p 个白球,这样的每类选法数为:C n 0C m p ,C n 1C m p-1,…,C n p C m 0

∴由分类计数原理可得:C n 0C m p +C n 1C m p-1+…+C n p C m 0=C m+n p

(2)另证:∵(1+x )n (1+x)m ≡(1+x)m+n

左边展开式中x p 的系数是:C n 0C m p +C n 1C m p-1+…+C n p C m 0

右边展开式中x p 的系数是:C m+n p

由多项式恒等条件可知C n 0C m p +C n 1C m p-1+…+C n p C m 0=C m+n p

注 本题的证明方法称之为算两次,对一个数学模型从不同角度去解,得出两个结果,将这两个结果综合起来,得到我们所需证明的结论。

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列 组合重点知识 高中数学排列组合公式大全_高中数学排列组合重点知识 高中数学排列组合公式大全 1.排列及计算公式 从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标)) Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 高中数学排列组合公式记忆口诀 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。 高中数学排列组合重点知识 1.计数原理知识点 ①乘法原理:N=n1 n2 n3 nM (分步) ②加法原理:N=n1+n2+n3+ +nM (分类) 2. 排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3) (n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m!

基本计数原理和排列组合

附 录 一.两个基本计数原理分类加法计数原理:做一件事情,完成它有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的办法……在第n 类办法中有m n 种不同的方法,那么完成这 件事情共有N=m 1+m 2+…+m n 种不同的方法。 分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一个步骤有m 1种不同的方法,做第二个步骤有m 2种不同的办法……做第n 个步骤有m n 种不同的方法,那么完成这件 事情共有N=m 1×m 2×…×m n 种不同的方法。 两个基本计数原理是解决计数问题最基本的理论根据,它们分别给出了用两种不同方式(分类和分步)完成一件事情的方法总数的计算方法。考虑用哪个计数原理,关键是看完成一件事情是否能独立完成,决定是分类还是分步。如果完成一件事情有n 类办法,每类办法都能独立完成,则用分类加法计数原理;如果完成一件事情,需要分成n 个步骤,各个步骤都是不可缺少的,需要依次完成所有步骤,才能完成这件事情,则用分步乘法计数原理。 二.排列 以下陈述中如无特别说明,n、m 都表示正整数。一般的,从n 个不同的元素中任取m (m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。如果要求排列中诸元素互不相同,则称为选排列;反之,若排列中的元素可以有相同时,则称为可重复排列。可重复排列在生活中比较常见,如电话号码、证件号码、汽车牌照,等等。从n 个不同的元素中任取m(m ≤n)个元素的所有排列的个数,叫做从n 个不同元素中任取m 个元素的排列数。用符号m n A 。为导出m n A 的计算公式,注意到对任一选排列,其第一位(从左到右计)可以放置编号1到n 的n 个元素的任意一个,共有n 种可能的结果;对于第一位的每一种放置结果,第二位可以放置剩下的n-1个元素中的任意一个,共有n-1种可能的结果;...,对于第m-1位的每一种放置结果,第m 位可以放置最后剩下的n-m+1个元素中的任何一个,共有n-m+1种可能结果。因此,根据乘法计数原理,有排列数公式: ) 1()2)(1(+---=m n n n n A m n (1.3)从n 个不同的元素全部取出的一个排列,叫做n 个不同元素的一个全排列,记作n n A ,也记之 为!n 。根据排列数的公式有 .12)1(!????-?=n n n (1.4)

排 列 组 合 公 式 及 排 列 组 合 算 法

排列组合n选m,组合算法——0-1转换算法(巧妙算法)C++实现 知识储备 排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示计算公式: 注意:m中取n个数,按照一定顺序排列出来,排列是有顺序的,就算已经出现过一次的几个数。只要顺序不同,就能得出一个排列的组合,例如1,2,3和1,3,2是两个组合。 组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。 计算公式: 注意:m中取n个数,将他们组合在一起,并且顺序不用管,1,2,3和1,3,2其实是一个组合。只要组合里面数不同即可 组合算法 本算法的思路是开两个数组,一个index[n]数组,其下标0~n-1表示1到n个数,1代表的数被选中,为0则没选中。value[n]数组表示组合

的数值,作为输出之用。 ? 首先初始化,将index数组前m个元素置1,表示第一个组合为前m 个数,后面的置为0。? 然后从左到右扫描数组元素值的“10”组合,找到第一个“10”组合后将其变为?“01”组合,同时将其左边的所有“1”全部移动到数组的最左端。一起得到下一个组合(是一起得出,是一起得出,是一起得出)重复1、2步骤,当第一个“1”移动到数组的n-m的位置,即m个“1”全部移动到最右端时;即直到无法找到”10”组合,就得到了最后一个组合。 组合的个数为: 例如求5中选3的组合: 1 1 1 0 0 --1,2,3? 1 1 0 1 0 --1,2,4? 1 0 1 1 0 --1,3,4? 0 1 1 1 0 --2,3,4? 1 1 0 0 1 --1,2,5? 1 0 1 0 1 --1,3,5? 0 1 1 0 1 --2,3,5? 1 0 0 1 1 --1,4,5? 0 1 0 1 1 --2,4,5? 0 0 1 1 1 --3,4,5 代码如下:

小学奥数计数练习题:排列与组合

小学奥数计数练习题:排列与组合经典的排列与组合奥数题及答案 问题:小明所在的班级要选出4名中队长,要求每位同学在选票上写上名字,也能够写自己的名字。结果全班的每位同学都在自己的选票上写了4个互不相同的名字。当小明把同学们的选票收集后发现一个有趣的现象:就是任意取出2张选票,一定有且只有一个人的名字同时出现在2张选票上。请问:小明所在的班级共有多少人? 总体逻辑思路:首先,假设题目所说的情况存有。然后,得出班级人数。最后,构造出一个例子,说明确实存有这种情况。 我们先来证明这个班每个人都恰好都被选了4次。 思路简介:我们首先用反证法证明没有人被选了4次以上。因为平均每人被选了4次,既然没有人被选了4次以上,肯定也不存有被选了4次以下的人。所以,能够得到每个人恰好被选了4次。 首先证明没有人被选了4次以上,我们用反证法。 假设有一个人被选了4次以上(因为很容易证明这个班的人数肯定很多于7人,所以我们能够假设有一个人被选了4次以上),我们设这个人为A同学。接下来我们来证明这种情况不存有。 把所有选择A同学的选票集中到一起,有5张或5张以上。方便起见,我们把这些选票编号,记为A1选票,A2选票,A3选票,A4选票,A5选票,…。意思就是选择A同学的第1张选票,选择A同学的第2张选票,…。 这些选票都选择了A同学。因为任意2张选票有且只有1个人相同,所以这些选票上除了A同学外,其他都是不同的人。 我们还能够证明,这些并不是全部的选票,不是太难,就不证明了。

既然这些(所有选A同学的选票)不是全部的选票,我们再拿一张没有选择A同学的选票。方便起见,称之为B选票。 根据任意2张选票有且只有1个人相同,A1选票上必有一个人和B选票上的一个人是相同的,而且这个人不是A同学。 同样道理,第A2、A3、A4、A5、…上也必有一个人和B选票上的一个人是相同的,而且这个人不是A同学。 因为B选票上只有4个不同的人,而A1、A2、…,的数量大于4.所以,A1、A2、A3、…选票中至少有2张选票,除了A同学外还有一个共同的候选人。根据任意2张选票有且只有1个人相同,我们知道这是不能够的。 所以,没有人被选了4次以上。 因为平均每人被选4次,既然没有人被选4次以上,当然也就不可能有人被选4次以下。 所以,每个人恰好被选了4次!

排 列 组 合 公 式 及 排 列 组 合 算 法 ( 2 0 2 0 )

字符串的排列组合算法合集 全排列在笔试面试中很热门,因为它难度适中,既可以考察递归实现,又能进一步考察非递归的实现,便于区分出考生的水平。所以在百度和迅雷的校园招聘以及程序员和软件设计师的考试中都考到了,因此本文对全排列作下总结帮助大家更好的学习和理解。对本文有任何补充之处,欢迎大家指出。 首先来看看题目是如何要求的(百度迅雷校招笔试题)。一、字符串的排列 用C++写一个函数, 如 Foo(const char *str), 打印出 str 的全排列,如 abc 的全排列: abc, acb, bca, dac, cab, cba 一、全排列的递归实现 为方便起见,用123来示例下。123的全排列有123、132、213、231、312、321这六种。首先考虑213和321这二个数是如何得出的。显然这二个都是123中的1与后面两数交换得到的。然后可以将123的第二个数和每三个数交换得到132。同理可以根据213和321来得231和312。因此可以知道——全排列就是从第一个数字起每个数分别与它后面的数字交换。找到这个规律后,递归的代码就很容易写出来了: view plaincopy #includeiostream?using?namespace?std;?#includeassert.h?v oid?Permutation(char*?pStr,?char*?pBegin)?{?assert(pStr?pBe

gin);?if(*pBegin?==?'0')?printf("%s",pStr);?else?{?for(char *?pCh?=?pBegin;?*pCh?!=?'0';?pCh++)?{?swap(*pBegin,*pCh);?P ermutation(pStr,?pBegin+1);?swap(*pBegin,*pCh);?}?}?}?int?m ain(void)?{?char?str[]?=?"abc";?Permutation(str,str);?retur n?0;?}? 另外一种写法: view plaincopy --k表示当前选取到第几个数,m表示共有多少个数?void?Permutation(char*?pStr,int?k,int?m)?{?assert(pStr); ?if(k?==?m)?{?static?int?num?=?1;?--局部静态变量,用来统计全排列的个数?printf("第%d个排列t%s",num++,pStr);?}?else?{?for(int?i?=?k;?i?=?m;?i++)?{?swa p(*(pStr+k),*(pStr+i));?Permutation(pStr,?k?+?1?,?m);?swap( *(pStr+k),*(pStr+i));?}?}?}?int?main(void)?{?char?str[]?=?" abc";?Permutation(str?,?0?,?strlen(str)-1);?return?0;?}? 如果字符串中有重复字符的话,上面的那个方法肯定不会符合要求的,因此现在要想办法来去掉重复的数列。二、去掉重复的全排列的递归实现 由于全排列就是从第一个数字起每个数分别与它后面的数字交换。我们先尝试加个这样的判断——如果一个数与后面的数字相同那么这二个数就不交换了。如122,第一个数与后面交换得212、221。然后122中第二数就不用与第三个数交换了,但对212,它第二个数

排列组合与计数原理

排列组合与计数原理 【复习目标】1.能熟练的判断利用加法原理和乘法原理。简单的排列组合组合数公式。 【复习重难点】加法原理和乘法原理公式的计算及应用。 1.高三(1),(2),(3)班分别有学生52,48,50人。 (1)从中选1人当学生代表的不同方法有____________种; (2)从每班选1人组成演讲队的不同方法有____________种; (3)从这150名学生中选4人参加学代会的不同方法有____________种; (4)从这150名学生中选4人参加数理化三个课外活动小组,共有不同方法有__________种。 2.假设在200件产品中有三件次品,现在从中任意抽取5件,期中至少有2件次品的抽法有__________种。 3.若,64 3n n C A 则n=___________。 例1.在1到20这20个整数中,任取两个数相加,使其和大于20,共有________种取法。 变式训练:从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为_______。 例2.从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有______________种. 例3.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有_______ . 变式训练:要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有_______ 种不同的排法.

两个计数原理与排列组合知识点与例题

两个计数原理与排列组合知识点及例题 两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个)

排列组合公式排列组合计算公式----高中数学!

排列组合公式/排列组合计算公式 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每

名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式

两个计数原理、排列与组合

全国卷五年考情图解高考命题规律把握 1.考查形式 高考在本章一般命制1道 小题或者1道解答题,分 值占5~17分. 2.考查内容 计数原理常与古典概型综 合考查;对二项式定理的 考查主要是利用通项公式 求特定项;对正态分布的 考查,可能单独考查也可 能在解答题中出现;以实 际问题为背景,考查分布 列、期望等是高考的热点 题型. 3.备考策略 从2019年高考试题可以 看出,概率统计试题的阅 读量和信息量都有所加 强,考查角度趋向于应用 概率统计知识对实际问题 作出决策. 第一节两个计数原理、排列与组合 [最新考纲] 1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.3.理解排列的概念

及排列数公式,并能利用公式解决一些简单的实际问题.4.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题. 1.两个计数原理 分类加法计数原理 分步乘法计数原理 条件 完成一件事有两类不同方案,在 第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法 完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法 结论 完成这件事共有N =m +n 种不同的方法 完成这件事共有N =mn 种不同的方法 排列的定义 从n 个不同元素中取出 m (m ≤n )个元素 按照一定的顺序排成一列 组合的定义 合成一组 排列数 组合数 定义 从n 个不同元素中取出 m (m ≤n )个元素的所有不同排 列的个数 从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数 公式 A m n =n (n -1)(n -2)…(n -m + 1)= n ! (n -m )! C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m ! 性质 A n n =n !,0!=1 C m n =C n -m n ,C m n +C m -1n =C m n +1 一、思考辨析(正确的打“√”,错误的打“×”) (1)所有元素完全相同的两个排列为相同排列. ( ) (2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.

计数原理-排列组合

排列组合 知识点 一、排列 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定顺序排成一列,叫做从n 个不同元素中 取出m 个元素的一个排列;排列数用符号m n A 表示 对排列定义的理解: 定义中包括两个基本内容:①取出元素②按照一定顺序。因此,排列要完成的“一件事情”是“取出m 个元素,再按顺序排列” 相同的排列:元素完全相同,并且元素的排列顺序完全相同。若只有元素相同或部分相同,而排列顺序不相同,都是不同的排列。比如abc 与acb 是两个不同的排列 描述排列的基本方法:树状图 排列数公式:),)(1()2)(1(*∈+-???--=N m n m n n n n A m n 我们把正整数由1到n 的连乘积,叫做n 的阶乘,用!n 表示,即12)2()1(!??????-?-?=n n n n ,并规定1!0=。 全排列数公式可写成!n A n n =. 由此,排列数公式可以写成阶乘式: )!(!)1()2)(1(m n n m n n n n A m n -= +-???--=(主要用于化简、证明等) 二、组合 定义:一般地,从n 个不同元素中取出)(n m m ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合;组合数用符号m n C 表示 对组合定义的理解: 取出的m 个元素不考虑顺序,也就是说元素没有位置要求,无序性是组合的特点. 只要两个组合中的元素完全相同,则不论元素的顺序如何,都是相同的组合.只有当两个组合中的元素不完全相同时,才是不同的组合 排列与组合的区别:主要看交换元素的顺序对结果是否有影响,有影响就是“有序”,是排列问题;没影响就是“无序”,是组合问题。 组合数公式: ),()!(!!!)1()2)(1(n m N m n m n m n m m n n n n A A C m m m n m n ≤∈-=+-???--==*,且 变式:),,()! ()1()2)(1()!(!!n m N m n C m n m n n n m n m n C m n n m n ≤∈=-+???--=-= *-且

排列组合公式_排列组合计算公式

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

计数原理与排列组合

计数原理与排列组合 计数原理一、知识导学 1.分类计数原理:完成一件事n类办法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事分成n个步骤,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法. 二、经典例题导讲[例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种 分析:学生进门有7种选择,同样出门也有7种选择,由分步计数原理,该学生的进出门方案有7×7=49种. ∴应选D . [例3]三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到几个不同的三位数(6不能作9用). 解:解法一 第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有3 2=8种选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6个不同的三位数. [例5] 用0,1,2,3,4,5这六个数字, (1)可以组成多少个数字不重复的三位数? (2)可以组成多少个数字不重复的三位奇数? (3)可以组成多少个数字不重复的小于1000的自然数? 解:(1)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由分步计数原理知所求三位数共有5×5×4=100个. (3)分三步:①先选个位数字,由于组成的三位数是奇数,因此有3种选法;②再选百位数字有4种选法;③个位数字也有4种选法.由分步计数原理知所求三位数共有3×4×4=48个. (4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数,共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个 四、典型习题导练 1.将4个不同的小球放入编号为1、2、3的三个不同的盒子中,其中每个盒子都不空的放法共有( ) A .43种 B .3 4种 C .18种 D .36种

两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个) 【例题解析】 1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?

排列组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

12.1计数原理与简单排列组合问题

第十二章 计数原理 本章知识结构图 第一节 计数原理与简单排列组合问题 考纲解读 1.理解分类加法计数原理和分步乘法计数原理. 2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题. 3.理解排列、组合的概念. 4.能用计数原理推导排列数、组合数公式. 命题趋势探究 1.本节为高考必考内容,一般有1~2道选择题或填空题. 2.题目主要以实际应用题形式出现. 3.试题的解法具有多样性,一般根据计数重复或遗漏来设计错误选项,在解答选择题时可通过正向(分类相加)和反向(总数减去对立数)互相检验,也可以通过排除法筛选正确选项. 知识点精讲 基本概念 1.分类加法计数原理 ○ 1有n 类方法 完成一件事 ○ 2任两类无公共方法(互斥) 共有N = ○ 3每类中每法可单独做好这件事 12n m m m ++???+ 种不同方法.如图12-1所示.

计 计 A 计计计计1 计计1 计计2 计计 m1 计计计计n 计计1 计计2 计计 m n m1计 m n计 计计计计A计计 m1+m2+m3+···+m n计计计计计计 图12-1 2.分步乘法计数原理 ○1必须走完n步,才能完成任务 完成一件事○2前一步怎么走对后一步怎么共有N 走无影响(独立) 12n m m m =??????种不同方法.如图12-2所示. m1计m n计 计计计计B计计m1×m2×m3×···×m n计计计计计 计 m2计m i计 图12-2 两个原理及其区别. 分类加法计数原理和“分类”有关,如果完成某件事情有n类办法,这n类办法之间是互斥的,那么求完成这件事情的方法总数时,就用分类加法计数原理. 分步乘法计数原理和“分步”有关,是针对“分步完成”的问题.如果完成某件事情有n个步骤,而且这几个步骤缺一不可,且互不影响(独立),当且仅当依次完成这n个步骤后,这件事情才算完成,那么求完成这件事情的方法总数时,就用分步乘法计数原理. 当然,在解决实际问题时,并不一定是单一应用分类计数原理或分步计数原理,有时可能同时用到两个计数原理.即分类时,每类的方法可能运用分步完成;而分步后,每步的方法数可能会采取分类的思想求方法数.对于同一问题,我们可以从不同的角度去处理,从而得到不同的解法(但方法数相同),这也是检验排列组合问题的很好方法. 3.排列与排列数 从n个不同元素中取出m(m≤n)个(不同)元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.从n个不同元素中选取m个元素(n≥m)的排列个数 共有A m n . ()()() A121 m n n n n n m =--???-+ g g g g (m个连续正整数之积,n为最大数). ()() A12321! n n n n n n =--???= g g g g g g 注

计数问题与排列组合问题

计数问题与排列组合问题 一、北京考题特征分析: (05)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚 三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为 ( ) A .4841212 14C C C B .4841212 14A A C C .33484121214A C C C D .33 484121214A C C C 分步计数原理,易错选D. 这种错点训练应当从怎样算完成一件事情分析起,对于错的应当举例说明为什么错. (06年未考) (07理)记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不 排在两端,不同的排法共有( ) A.1440种 B.960种 C.720种 D.480种 以相邻与位置受限相结合(两个条件)基础,有原型略高于简单原型 启发:对基本型适度组 合命题 (07文)某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的 牌照号码共有( ) A.()2142610C A 个 B.242610A A 个 C.()2142610C 个 D.242610A 个 考察分步计算原理与可重复,不可重复问题结合,考察全面,学生审题能力. (08年未考) 但在概率解答题中涉及到. (09理)7.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为 ( ) A .324 B .328 C .360 D .648 (2010年)(4)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为 (A )8289A A (B )8289A C (C ) 8287A A (D )8287A C (2011年) (12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有 __________个。(用数字作答) 北京的考题的确重在凸现两个基本原理,在每一类或是每一步计数考虑正确用排列数或 是组合数来表示。教学时始终抓住完成一件事情需要分为几类或是几步来完成. 教学时注意控制层次,首先学生要能列出符合条件的,不重不漏的列出;能够正确的用 排列数、组合数来表示一个计数问题.

相关文档
相关文档 最新文档