文档库 最新最全的文档下载
当前位置:文档库 › 单线铁路长隧道施工通风计算

单线铁路长隧道施工通风计算

单线铁路长隧道施工通风计算
单线铁路长隧道施工通风计算

单线铁路长隧道施工通风计算

一、基础资料

(一)《铁路隧道施工规范》对于通风的主要要求:

15.1.1隧道在整个施工过程中,作业环境应符合下列卫生及安全标准:

1 空气中氧气含量,按体积计不得小于20%。

2 粉尘容许浓度,每立方米空气中含有10%以上的游离二氧化硅的粉尘不得大于2mg。

4有害气体最高容许浓度:

1) 一氧化碳最高容许浓度为30mg/m3;在特殊情况下,施工人员必须进入工作面时,浓度可为100mg/m3;但工作时间不得大于30min;

2)二氧化碳按体积计不得大于0.5%;

3)氮氧化物(换算成NO2)为5mg/m3以下。

5隧道内气温不得高于28℃。

15.1.2隧道施工通风应能提供洞内各项作业所需的最小风量,每人应供应新鲜空气3m3/min,采用内燃机械作业时,供风量不宜小于3 m3/min。

15.1.3隧道施工独头掘进长度超过150m时,必须采用机械通风。

15.1.4隧道施工通风的风速,全断面开挖时不应小于0.15m/s,在分部开挖的坑道中不应小于0.25m/s。

15.1.7通风管的安装应符合下列要求:

1 单独压入式的进风管口或吸出式的出风管口应设在洞外,前者宜在洞口里程20m以外,后者则应作成烟囱式。

2通风管靠近开挖工作面的距离应根据具体情况确定。压入式通风管的出口距开挖面的距离应通过计算确定。

3采用混合式通风时,当一组通风机向前移动,另一组通风机的管路应相应接长。两组通风管交错的距离不得小于20~30m。

4通风管的安装应平顺,接头严密,每100m平均漏风率不应大于2%。弯管半径不得小于通风管直径的3倍。

5通风管采用软管时,靠近风机部分,应采用加强型风管。

(二)《铁路工程设计技术手册·隧道》对施工通风方式与布置

的要求:

通风方式与布置应根据施工方法、设备条件、掘进长度、开挖面积以及污染物质的含量与种类等情况确定。

1. 选择通风方式的一般原则

(1)有轨运输施工的隧道宜采用吸出式或混合式通风。

(2)无轨运输施工的隧道宜采用压入式或变换式通风。

(3)有平行导坑施工的隧道应采用巷道式通风。

(4)自然通风因其影响因素较多,不稳定且不易控制,故应避免采用。

2. 选择通风方式时应注意的几个问题

(1)通风方式应针对污染源的特性,要求避免成洞段二次被污染,且应有利于快速施工。例如,爆破污染源发生在掘进工作面,污染物质的量不随开挖长度变化,采用吸出式或混合式通风有利;无轨运输柴油机车废气的污染,发生在整个运输巷道内,由于巷道内的风速低于运输车辆的走行速度,废气浓度将发生重叠,愈往下风侧浓度愈高,采用压入式或变换式通风有利。

(2)单独的吸出式通风,易在工作面形成炮烟停滞区,不利快速施工。为此,常在工作面

处另设局扇以构成混合式通风系统。

(三)计算基础

1.炸药单耗1.6kg/m3。

2.开挖断面按Ⅲ围岩另加0.1m超挖量计为45.3m3/m,最大进尺2.4m。

3.每进尺同时爆炸的最大炸药消耗量:

A=1.6×45.3×2.4=174(kg)

3. 通风时间t=20min。

4. 洞内同时工作最多人数m=50人。

5. 按混合式通风设计,其压入式最大通风距离按200m计(紧随衬砌台车,衬砌台车距掌子面最大距离不超过150m);吸出式通风距离按20m(出风口距洞口距离)+2600m(隧道长度)-180m(进风口距掌子面距离)=2440m。

二、计算

(一)通风量计算

1. 按洞内同时工作的最多人数计算风量

Q=qmK

式中Q——计算风量,m3/min;

q——洞内每人每分钟需新鲜空气量,m3/min;

m——洞内同时工作的最多人数;

K——风量备用系数,取1.10~1.15。

计算:

Q=3×50×1.15=172.5(m3/min)

2. 按满足洞内允许最小风速要求计算风量

Q=60sv

式中s——隧道断面积,m2;

v——允许最小风速,取全断面v=0.15m/s,分部开挖v=0.25m/s,瓦斯隧道v=1.0m/s。

计算:

Q=60×45.3×0.25=679.5( m3/min 3)

3. 按洞内同一时间内爆破使用的最多炸药量计算风量

(1)压入式通风

式中t——通风时间,min;

A——一次爆破的炸药用量,kg;

S——巷道断面积,m2;

L——通风区段长度,m。

如果考虑的通风区段长度L大于极限长度L极限,则式中的L应该用L极限代替。

式中K′——紊流扩散系数,K′=0.8;

b——爆破1kg炸药生成的CO量,b=40L/kg炸药;

c——巷道内容许的CO浓度,c=0.008%。

计算:

通风距离L=2600m ,L >L 极限,故计算式中L 用L 极限代替。

海拔修正:

式中 Q 高——高海拔地区需要的风量,m3/min ;

P 高——高海拔地区大气压,mmHg(1mmHg=101325/760Pa); 不同海拔高度相应的大气压力P 高

漏风计算:

煤矿对百米漏风率的限定见下表:

式中 Q 扇——通风机风量,m3/min ;

Q 工——工作面风量,m3/min ,Q 工= Q 高; η100——百米漏风率,%。

(2)混合式通风

式中 L 吸——吸出式风管末端距工作面的距离,这里L 吸=180m 。 计算:

漏风计算:

此为局部通风,根据煤矿有关规定,

式中P——漏风系数,见漏风系数表。

漏风系数表

计算:

Q混压=1295.3m3/min=21.59 m3/s

Q混吸=(1.2~1.3)Q混压

Q混吸=1.3Q混压=1683.9 m3/min=28.07m3/s

漏风检算:

Q有效=(1-26×1.5%)Q混吸=1027.2m3/min=17.12m3/s

最小风速检算:

vmin=17.12/(π×0.702)=11.12m/s

(二)风压计算

计算公式:

主要考虑摩擦阻力,对于局部阻力,在施工中应绝对避免,如避免拐弯、分岔、会合、变径,接头尽量用粘接法等。

式中Q扇——通风机风量,m3/min;

h摩——风筒的摩擦,Pa;

a——风筒的摩擦阻力系数,N·S2/m4;

L——风筒全长,m;

d——风筒直径,m。

柔性风筒的摩擦阻力系数受诸多因素的影响,不是常数,而且变化幅度很大,因此难以求得风筒风阻的精确值。而且风筒的风阻值与风筒的维护和管理也有着密切关系,现场常根据实测的风阻求出百米风筒的风阻值称为百米风阻,其中包括摩擦风阻和接头等局部风阻。以百米风阻值作为衡量通风管理质量的指标之一,也可作为局部通风的设计依据。下表为开滦等矿对柔性风筒百米风阻值的实测值。

实测资料时,可按下表取值。

1. 压入式通风

实际使用风筒直径为1500mm,a和R局取值按风筒直径为700~1000mm标准,对于1500mm 直径风筒偏大;风筒节长按20m。

a=24.5×10-4 N·s2/m4时:

h总=h摩+h局=R摩Q2+R局Q2=(5.12+298.9)×(7779.43/60)2=5110874.4(Pa)

显然,接头对阻力的影响很大,现场应尽量将接头粘接,这样R局=0,则h总=h摩。

h总=h摩=5.12×(7779.43/60)2=86072.2(Pa)

以上风压难以实现,若采用2×110KW轴流风机,高效风量为2385m3/min,则共需这样的风机4台,则h总=h摩=5.12×(2385/60)2=8089.92(Pa)

仍然难以实现,故压入式通风方案难以实现。

2. 混合式通风

h混压=h摩=

h混吸=h摩=

三、风机选择

(一)压入式风机

初选2×30KW轴流风机,风压为500~3200Pa,风量为680~1325m3/min,当Q=1295.3 m3/min 时,h=624.3Pa≥596.6Pa。

所以可以选择2×30KW轴流风机。

(二)吸出式风机

初选2×110KW三级调速轴流风机,风压为1378~5355Pa,风量为1550~2912m3/min,当Q=1683.9 m3/min时,h=4964.0Pa≥4031.8Pa。

所以可以选择2×110KW三级调速轴流风机。

隧道施工通风设计精编

隧道施工通风设计精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

课程名称:隧道工程 设计题目:隧道施工通风设计院系: 专业: 年级: 姓名: 指导教师:

课程设计任务书 专业姓名学号开题日期:年月日完成日期:年月日 题目隧道施工通风设计 一、设计的目的 掌握隧道通风设计过程。 二、设计的内容及要求 根据提供的隧道工程,确定需风量;确定风压;选择风机;进行风机及风管布置。 三、指导教师评语 四、成绩

指导教师 (签章) 年月日 一.设计资料

二.设计要求 针对以上工程,进行2#隧道进口不同长度施工通风设计,要求采用风道压入式通风方式,进行风量计算、风压计算,以此为依据,进行风机选择(根据网上调研等方式)以及风机及风管的布置(风管可自选,不一定按所给资料)。隧道深度:2260m 三.设计内容 1.风量计算 隧道施工通风计算按照下列几个方面计算取其中最大值,在考虑漏风因素进行调整,并加备用系数后,作为选择风机的依据。 (1)按洞内同时工作的最多人数计算: Q kmq 式中:Q:所需风量3 m (/min)

k :风量备用系数,常取 m :洞内同时工作的最多人数,本设计为30人。 q :洞内每人每分钟需要新鲜空气量,取33/min m 人 计算得:31.130399/min Q kmq m ==??= (2)按同时爆破的最多炸药量计算: 本设计选用压入式通风,则计算公式为: Q =式中:S :坑道断面面积(2m ),90。 A :同时爆破的炸药量,。 t :爆破后的通风时间30min 。 L :爆破后的炮烟扩散长度,100米。 计算得:37.8880.8(/min)30Q m == (4)按洞内允许最下风速计算: 60Q v s =?? 式中:v :洞内允许最小风速,/m s 。 S :坑道断面面积,902m 。

隧道通风方案通风计算

隧道通风方案通风 计算

蒙河铁路屏边隧道斜井 通风方案 1、工程概况 屏边隧道全长10381m,进口里程DⅡK60+875,出口里程DIK71+256,为单线隧道,设计为单面下坡,坡度分别为-20.2‰(坡长9025m)、-10‰(坡长650m)及-1‰(坡长706m),最大埋深660m。 屏边斜井位于隧道线路右侧,斜井与正洞隧道中心线交汇点里程为DⅡK66+300,斜井与线路中线蒙自方向夹角80°,井口里程为XDK1+218,水平长度1218m,综合坡度为85‰。本斜井采用无轨单车道运输,断面净空尺寸 5.6m(宽)×6.0m(高)。斜井施工任务为斜井1218m(XDK0+000~XDK1+218),平导1735.29m(PDK66+294.71~PDK68+030),辅助正洞4165m(DⅡK63+835~DⅡK68+000),其中出口方向为1700m(DⅡK66+300~DⅡK68+000),进口方向2465m(DⅡK63+835~DⅡK66+300)。 2、通风控制条件 隧道在整个施工过程中,作业环境应符合下列卫生及安全标准: 隧道内氧气含量:按体积计不得小于20%。 粉尘允许浓度:每立方米空气中含有10%以上游离二氧化硅的粉尘为2mg;含有10%以下游离二氧化硅的水泥粉尘为6mg;二氧化硅含量在10%以下,不含有毒物质的矿物性和动植物性的粉尘为10mg。 有害气体浓度:一氧化碳不大于30mg/m3,当施工人员进入开挖面

检查时,浓度为100mg/m3,但必须在30min内降至30mg/m3;二氧化碳按体积计不超过0.5%;氮氧化物(换算为NO2)5mg/m3以下。洞内温度:隧道内气温不超过28℃,洞内噪声不大于90dB。 洞内风量要求:隧道施工时供给每人的新鲜空气量不应低于 4m3/min,采用内燃机械作业时供风量不应低于4m3/(min.kw)。 洞内风速要求:全断面开挖时不小于0.15m/s,在分部开挖的坑道中不小于0.25m/s。 3、施工通风方案 根据确定的施工方案和任务划分情况,施工通风采用管道压入式通风,与风机相接的风管选用φ1800mm负压管(长度10m),在洞内转弯处加设负压通风管。洞外风机进风口至斜井井口距离不小于20m,风管出风口至掌子面距离L=60m。 斜井长度1218m,与正洞交汇后承担进口方向2245m、出口方向1700m的开挖任务,独头掘进长达3683m,通风难度最大,因此考虑采取分阶段通风形式。 采用独管路压入式通风,在交叉口往进口方向16m处设置风室作为二级接力通风风室,体积为270m3。风室旁另架设两台55x2KW风机分别给进出口方向通风,风机与风室采用φ1500mm钢管连接。为了加快污风风速,采用射流风机通风技术。 由于通风距离长,洞内回流风阻大,射流风机安装位置在风流需要导向处,如斜井口与正洞交汇处,横通道处,其它在洞内间隔600m安装一台。洞内风室及通风管布设见图。

单线长大铁路隧道施工分析

单线长大铁路隧道施工分析 【摘要】伴随着现代科学技术的持续发展与经济社会现代化建设进程日益完善,社会大众持续增长的物质文化与精神文化需求同时对新时期的铁路隧道建设事业提出了更为全面与系统的发展要求。特别是对于空间限制因素较大,施工难度较大的单线长大铁路隧道施工而言,有关隧道施工过程中,相关施工技术的应用需要引起各方重点关注与重视。本文依据这一实际情况,主要从开挖施工以及出渣运输施工这两个方面入手,着眼于以上两环节施工过程中高效性施工方式的应用,围绕单线长大铁路隧道施工过程中的相关问题展开了较为详细的分析与阐述,旨在于为今后相关研究与实践工作的开展提供一定的参考与帮助。 【关键词】单线长大铁路隧道施工技术分析 A单线长大铁路隧道全长8900m,进口施工任务分配量为4300m单位。从实践研究经验的角度上来说,对于单口掘进工作任务量在4000m单位以上的单线长大铁路隧道施工而言,如何在确保单线长大铁路隧道施工质量得到可靠性满足的基础之上,合理提高单线长大铁路隧道的施工进度与施工效率,无疑有着极为重要的意义。本文试针对以上问题做详细分析与说明。 1 单线长大铁路隧道开挖施工技术分析 在单线长大铁路隧道开挖施工过程当中,为确保对施工工期的有效缩短,同时保障施工质量的可靠性,首先需要于上导坑及下导坑位置设置合理的光爆层结构。同时还需要确保掏槽处理作业的有效性,在此基础之上还应当结合对围岩循环进尺参数的合理调整,确保开挖有效且高效。 (1)开挖过程当中需要预留光爆层结构:本文所研究铁路隧道出口位置的运输方式选取为无轨化运行方式,洞口位置所对应围岩等级为级,施工方式选取为超短正台阶施工方式,支护方式选取以锚喷方式为主。与此同时,结合整个单线长大铁路隧道施工前期地质勘查资料显示:该铁路隧道出口段位置主要围岩结构形式表现为灰岩、水平围岩以及白云质灰岩。以上三种类型的围岩结构最为显著的地质特性在于:整体性较好、稳固性较高。为确保在铁路隧道施工过程中所涉及到的装渣机装渣作业需求能够得到充分满足,铁路隧道下导施工断面的结构形式应当设定为圆弧形方式,基本结构尺寸为4m×4m形式,与此同时,为最大限度的保障铁路隧道开挖阶段光爆处理效果的有效性,在上导坑及下导坑布置过程当中,应当将其预留一定的光爆层结构,该层基本厚度参数设定为75cm单位。在此基础之上,考虑到单线长大铁路隧道施工在施工工期方面有着比较严格的要求,从而应当实现对钻进时间的合理控制,按照此种方式最大限度的保障上导坑及下导坑钻进作业能够同时进行。实践应用结果显示:因为在下导坑施工钻进作业过程当中预先设定了光爆层,一方面使得光爆作业效果得到了显著提升,另一方面也是的下导坑施工周边间隔距离以及钻进精度能够得到可靠性满足。在施工过程当中,如果操作人员发现上下导坑钻进施工作业所对应的时间要求无法得到可靠性满足,则可以通过及时对上下导坑位置断面分配尺寸进行合理调整的方

隧道施工通风环境卫生标准及风量计算

隧道施工通风环境卫生标准及风量计算 根据中华人民共和国行业标准——《公路隧道施工技术规范》(JTJ042-94)第11.3.1款规定及参照有关其他行业标准,对隧道内施工作业环境应符合下列卫生标准: 1、坑道中的氧气含量按体积比不低于20%; 2、粉尘浓度: 每立方米空气中含有10%以上游离二氧化硅的粉尘不大于2mg;含有10%以下游离二氧化硅的水泥粉尘不大于6mg;二氧化硅含量在10%以下,不含有毒物质的矿物性和动植物性的粉尘不大于10mg; 3、有害气体: 1)一氧化碳:不大于30mg/m3;当施工人员进入开挖工作面检查时,浓度可为100mg/m3,但必须在30min~35min 内降至30mg/m3; 2)二氧化碳:按体积不超过0.5%; 3)氮氧化物换算成二氧化氮控制在5mg/m3以下; 4、隧道内气温不得超过280C; 5、隧道施工时,供给每人的新鲜空气量不低于3m3/min,采用内燃机械作业时,1Kw的供风量不小于3m3/min; 6、隧道开挖时全断面风速不小于0.15m/s,坑道内不小于0.25m/s; 10.2风量计算

风量计算:(按排除炮烟计算) Q=2.25/T 3√G(AL)2×φ×b/ P2 Q----工作面通风量m3/min; T----通风时间min;取T=15 min G----同时爆破的炸药量Kg;取G=270Kg A----掘进巷道的断面积m2 取A=90m2 L----巷道全长或临界长度m;巷道全长3000米; φ----淋水系数,取φ=0.6; b----炸药爆炸时有害气体生成量,煤层中爆破取100,岩层中爆破取40; P----风筒漏风系数; P100----百米漏风系数,取2% 长距离隧道掘进时,炮烟在巷道流动过程中,与巷道内的空气混合,在未到达巷道出口时已被稀释到允许浓度,从工作面至炮烟稀释到允许浓度的距离称为临界长度,在这种情况下,公式中应用临界长度代入计算。 L=12.5GbK/AP2 P==1/1-L/100P100×2%=1/1-3000/100×2%=2.5 K----紊流扩散系数 l----风筒口距工作面长度 D----风筒直径 l=4√A=4√90=38m

长大铁路隧道施工难点及应对措施

长大铁路隧道施工难点及应对措施 发表时间:2019-02-26T11:16:41.050Z 来源:《基层建设》2018年第36期作者:刘凯 [导读] 摘要:目前我国隧道钻爆法施工存在整体机械化程度较低、施工环境恶劣、工人劳动强度大的问题。 中铁二十一局集团第五工程有限公司重庆市永川区 402160 摘要:目前我国隧道钻爆法施工存在整体机械化程度较低、施工环境恶劣、工人劳动强度大的问题。该铁路作为西南地区穿越地层复杂的双线客货共线铁路,自开建以来,一直致力于推广和提高全线隧道施工技术水平,全面推进隧道建设新理念、新工艺、新技术的应用。本文以某单位承建的一座双线铁路隧道工程为例,介绍了长大铁路隧道施工的技术要点。 关键词:铁路;隧道;施工 随着我国经济发展及综合国力的提高,客货共线、高速铁路建设得到了空前发展。随着科学技术的进步和生产管理水平的提高,我国修筑山岭隧道的能力不断增长,修建隧道的规模和长度日益增加。在铁路线路建设中隧道一般为施工的关键环节,往往影响整个工程的进度。长大铁路隧道施工是研究人员、设计者及施工人员考虑的重点,特别是复杂地质条件下长大铁路隧道施工,越来越受到研究者的关注。复杂地质条件下,长大铁路隧道施工空间有限施工中相互干扰较大,在当前铁路建设工期大幅度压缩的情况下,提高长大铁路隧道施工成洞速率和工程质量,加快施工进度,使隧道提前于合同工期建成显得尤为重要。本文以某条在建铁路项目中某施工单位承建的一座隧道为例,介绍了长大隧道施工过程中所采取的相关措施。 一、概况 某在建铁路工程,全线正线隧道共计52座、长211km,占正线总长的54.7%。其中:L≥10km的隧道总长96.5km,全线隧道断面以双线为主,分为有砟和无砟形式,线路位于西南地区由北向南跨越区域广,铁路沿线地质条件复杂,穿越滑坡、危岩落石、崩塌、岩堆、泥石流、山体错落、岩溶、岩爆、有害气体、软土、粉砂、煤层瓦斯、高地温、高地应力等地层。 二、钻爆法施工现状 隧道钻爆法施工因其投资小、地质适应能力强,一直是国内山岭隧道的主要施工方法。 1、开挖工艺工法。开挖钻孔主要采用风动凿岩机、液压钻和简易的钻孔台架,个别长大隧道采用液压凿岩台车及多功能台车。围岩较好地段以机械开挖为主,采用全断面、台阶法施工;围岩较差地段以人工开挖配合小型机械设备为主,采用小断面分部开挖。 2、初期支护及设备。锚杆施作较多采用人工手持风钻打孔,施工劳动强度大,施工工效较低且施作质量较难控制;个别长大隧道采用凿岩台车进行锚杆的快速施作,但受技术、资金以及后期设备的维养等影响推广度较低。喷混作业一般采用小型湿喷机,施工效率较低、工程实体质量较难控制且施工现场环境比较恶劣,目前仅在较少的长大隧道内使用湿喷机械手。 3、仰拱施工及设备。仰拱施工一般采用简易仰拱栈桥,栈桥有效作业长度通常为6-12m,仰拱一次浇筑6-12m,简易栈桥移动通过装载机实现走行。仰拱模板采用标准钢模板或自行加工制作的弧形钢模板,仰拱纵向一次浇筑长度较短,施工接缝较多。 4、防排水及二次衬砌浇筑。防水板铺设采用自制的简易台架,人工需求量大且耗时较长,铺设质量较差时易形成拱部脱空或造成防水板拉断导致浇筑过程中二次衬砌混凝土隔离分层,而较少采用防水板铺设台车和防水板自动爬行焊机。衬砌台车采用全断面液压钢模板衬砌台车,钢模开口数量少、开孔尺寸较小,混凝土单窗集中供料、竖向跳窗供料及振捣不到位的现象突出,极易造成集料窝。二次养护未配备养护台车或其他养护设备,衬砌表面常出现麻面蜂窝、龟裂等表观缺陷。总体而言,目前国内山岭隧道钻爆法施工的整体机械化程度仍较低,工人劳动强度大,施工环境较恶劣,隧道实体工程质量及施工机械化配套水平仍有待提高。 三、某铁路隧道工程技术要点 1、建立监控量测信息化平台。建立隧道监控量测信息化平台,将全线隧道的监控量测数据统一纳入信息管理平台,同时明确施工单位是监控量测的责任主体,并将监控量测纳入施工工序管理。将全站仪测得的监控量测原始数据上传至数据存储中心,再通过数据交换平台建立全线信息共享的公共基础平台,保证建设、施工、设计、监理单位均能通过移动智能设备及时全面掌握隧道支护结构变形情况。自建立隧道监控量测信息化平台以来,取得了以下成效: 1)通过信息化监测数据,建立可靠的预警机制,实时掌握隧道初期支护的变形情况,确保施工人员及设备的安全。某施工单位承建的其中一座隧道共有4个作业面,施工至今共建立808条监控量测测线,施工期间发生过17次变形预警,均及时采取了措施, 2)实时掌握全隧道各级围岩的实际变形量,为隧道各级围岩的预留变形量值提供科学依据,在一定程度上减少了隧道出现的过度超挖和侵界现象,节约了工程成本。 3)通过对监控量测成果的运用,为优化隧道结构支护参数提供了依据,实现隧道结构支护参数的动态设计,保证隧道支护结构参数满足现场实际要求。 2、大断面隧道快速施工。为全面推行隧道快速施工技术,隧道开挖优先采用全断面法,其次采用微台阶、两台阶或三台阶法。软弱破碎围岩通过超前预支护或掌子面预加固等措施提高围岩自稳能力,创造微台阶开挖的施工条件。该方法强调初期支护快速封闭,要求初期支护钢架紧贴掌子面,初期支护仰拱及时封闭成环,紧跟下台阶。软弱围岩隧道施工时初期支护仰拱封闭成环距掌子面距离不大于35m。 3、确保隧道支护结构质量。明确初期支护是隧道的主要受力结构,提出初期支护应确保施工及运营期间围岩稳定及自身结构的安全,是施工安全最关键、最重要的保障。全隧道初期支护喷射混凝土采用湿喷工艺,极大地改善了混凝土的品质,初期支护混凝土的密实度、抗压和抗剪强度、抗渗性能得到充分保证;初期支护拱架采用工厂化加工并统一配送,确保钢架的加工质量。 4、隧道施工机械化设备推广应用 1)为全面贯彻新奥法施工理念,确保围岩和隧道初期支护结构作为承载主体,全面提高隧道初期支护结构的强度,业主单位要求全线隧道各工作面必须使用湿喷机械手,湿喷机械手喷射能力不小于20m3/h。为此,我项目对喷浆设备进行了采购,现场投入4台喷射能力达30m3/h的湿喷机械手,现场采用湿喷工艺结合喷射机械手作业相对于传统人工干喷或潮喷作业,采用喷射机械手极大地减少了粉尘量;同时,与小型湿喷机作业相比,采用机械手施工,使得人员远离喷射面遥控作业,为施工人员提供了一个相对良好的作业环境,降低了施工风险,降低了职业病的危害。2)避免了传统人工喷射时空洞和强度不达标等问题的发生,大幅度减少隧道后期出现的质量缺陷和病害。现场喷射机械手作业平均工效为30m3/h,而传统人工喷射作业平均工效为4m3/h,施工工效得到了极大的提高,同时降低了工人的劳动强度。总之,采用湿喷机械手作业,虽然前期投资大,但是由于人员需求少、施工效率高,施工综合成本要低于干喷机和小型湿喷机。

隧道通风课程设计

通风计算 1基本资料 1.公路等级:一级公路 2.车道数、交通条件:2车道、单向 =80km/h 3.设计行车速度:u r 4.隧道长度:1340m;隧道纵坡:1.5% 5.平均海拔高度:1240m;隧道气压:101.325-10×1.24=88.925 6.通风断面面积:62.982 m,周长为30.9m 7.洞内平均温度:12℃,285K 2通风方式 根据设计任务书中的交通量预测,近期(2013 年)年平均日交通量为7465辆/每日,远期(2030年)10963辆/每日,隧道为单洞单向交通,设计小时交通量按年平均日交通量的10%计算,故近期设计高峰小时交通量为747辆/h,远期为1096辆/h。 根据设计任务书所给的车辆组成和汽柴比,将其换算成实际交通量,小客车:20%,大客车:27.2%,小货车:7.8%,中货车:20.6%,大货车:20.1%,拖挂车:4.3%,汽柴比:小客车、小货车全为汽油车;中货 0.39:0.61;大客 0.37:0.63;大货、拖挂全为柴油车,结果如表6.1所示 表6.1车辆组成及汽柴比 可按下列方法初步判定是否设置机械通风。 由于本隧道为单向交通隧道,则可用公式(6.1) L*N≤2×105式(1) 式中:L——隧道长度(m);

N ——设计交通量(辆/h )。 其中L 、N 为设计资料给定,取值远期为N=1096辆/h ,L=1340m 由上式,得 1340×1096=1.46×106 >2×105 以上只是隧道是否需要机械通风的经验公式,只能作为初步判定,是否设置风机还应考虑公路等级、隧道断面、长度、纵坡、交通条件及自然条件进行综合分析,由初步设计可知知本设计需要机械通风。 3 需风量计算 CO 设计浓度可按《公路隧道通风照明设计规范》查表按中插值法的再加上50ppm 。设计隧道长度为1340m ,查表知ppm =ppm δ()292。交通阻滞时取 =300ppm δ。烟雾设计应按规范查表,设计车速为80km/h ,k (m 2)=0.0070m -1 。同时,根据规范规定,在确定需风量时,应对计算行车速度以下各工况车速按20km/h 为一档分别进行计算,并考虑交通阻滞时的状态(平均车速为10 km/h ),鹊起较大者为设计需风量。 CO : n m m m-1f =?∑ (N )219×1.0+110×7+85×2.5+88×5+188+138+220+48=2235.5 烟雾:n m m m-1 f =?∑ (N )188×1.5+138×1.0+220×1.5+48×1.5=822 3.1 CO 排放量计算 CO 排放量应按式(6.2)计算 61 1()3.610n CO co a d h iv m m m Q q f f f f L N f ==????????∑ 式(2) 式中:CO Q ——隧道全长CO 排放量(m 3/s ); co q ——CO 基准排放量(m 3/辆·km ),可取为0.01 m 3/辆·km ; a f ——考虑CO 车况系数查表取1.0; d f ——车密度系数,查表取0.75; h f ——考虑CO 的海拔高度系数,海拔高度取1240m 查表取1.52; m f ——考虑CO 的车型系数,查表; iv f ——考虑CO 的纵坡—车速系数,查表取1.0; n ——车型类别数; m N ——相应车型的设计交通量(辆/h )查表。 稀释CO 的需风量应按式(6.3)计算

隧道通风计算 (2)

精心整理 隧进口出工区均采用双管路压入式通风。 通风管选用φ1500mmPVC 软式通风管,洞外风机进风口至洞口距离L=30m ,风管出风口至掌子面距离L=42m 。(当掌子面布置局扇时,L=80m )。 ⑴基本参数选用 独头通风长度按L=4905m 计算; 开挖断面A :A=116.7m 3; 平均百米漏风系率:P100=1%; 软管达西数λ:λ=0.015; 空气密度ρ:ρ=1.16kg/m 3; 工作面最多作业人数:n=60人; 作业人员供风量:q=4m 3/人.min ; 一次爆破最大药量G :G=438.1kg ; 爆破通风时间t :t=30min ; 工作面最小风速v :v=0.25m/s 。 ⑵开挖面所需风量Q 开 ①按作业人数计算:Q 开=4n=4×60=240m 3/min ; ②按最小风速计算:Q 开=60A ×v=116.7×0.25×60=1750m 3/min ; ③按排除爆破烟尘计算: p-风管全程漏风系数 p=1/(1-L ×P100/100) =1/(1-4905×1%/100)=1.64 Ф-淋水系数;Ф=0.3 b-炸药爆破时有害气体生成量,b=40m 3/kg L-隧道爆破临界长度L=12.5×G ×b ×K/(A ×P 2) =12.5×438.1×40×0.53/(116.7×1.642) =370m 322 25.2p b AL G t Q φ)(开=

=1154m 3/min 考虑系统漏风,故风机量Q=1154×1.64=1892m 3/min ④按稀释和排除内燃机废气计算风量 采用无轨运输,洞内内燃设备配置较多,废气排放量较大,供风量应足够将内燃设备所排放的废气全面稀释和排出,使有害气体降至允许浓度以下,计算可按下式计算: 式中:K-功率通风计算系数,我国暂行规定为2.8~3.0m 3/min Ni-各台柴油机械设备的功率 Ti-利用率系数 根据本隧道施工实际情况,主要有以下三种工况的组合:开挖钻眼工况+台车衬砌工况+防水板铺设工况+喷锚支护工况;爆破出碴工况+仰拱充填工况+防水板铺设工况;爆破出碴工况+台车衬砌工况+防水板铺设工况。 上述三种不同工况组合中,爆破出碴工况+台车衬砌工况+防水板铺设工况,配置的内燃设备最多,排放的废气也最多,需要供风量最大。该工况在施工至分界里程时配置的内燃设备如下表所示: 内燃设备配置表 机械名称 配置台数 工作台数 单机功率(kW ) 内燃机利用系数Ti ZLC50B 装载机 1 1 145 0.50 15自卸汽车 10 5 150 0.45 砼罐车 4 2 85 0.50 计算Q=1485m 3/min ;考虑系统漏风,故Q=1485×1.64=2435m 3/min 。 施工通风风量计算一览表 序 号 不同因素 计算需风量 (m 3 /min ) 实际风量 m 3 /min 计算公式 1 按排出炮烟 1154 1892 2 稀释内燃气体 1485 2435 3 按洞内作业人员 240 39 4 Q=4n 4 按允许最低风速 1750 2835 Q=60A ×v 风压按通风系统克服局部风阻、沿程风阻以及其他阻力之和作为系统提供的风压。计算见下表: 风压计算表 计算式 参数 行车隧道 322 32264 .140 3.037007.1161.4383025.225.2????==)()(开p b AL G t Q φ∑==N i i i KN T Q 1

单线铁路隧道机械化配套施工经济性分析

单线铁路隧道机械化配套施工经济性分析 摘要:通过研究衢宁铁路某单线隧道I级机械化配套施工的实际机械配置、进度 及成本指标,对比国科铁法〔2017〕33号文件单线隧道机械化施工补充定额消耗指标,分析单线铁路隧道机械化配套施工经济性,总结当前单线隧道机械化配套 施工存在的困难及建议,以供类似工程项目参考。 关键词:单线铁路隧道、机械化配套、经济性、分析 引言:当前,建筑基建行业竞争日趋激烈,想要在激烈的市场竞争中生存发展,必须不断提升施工企业的核心竞争力,随着制造科技进步、铁路建设标准以 及人工成本的不断提高,采用大型机械化配套施工已成为施工企业提升核心竞争 力的重要途径之一。 国内初步设计定性为Ⅰ级风险重难点铁路隧道,均要求按机械化配套施工考虑,特别是单线小断面长大隧道地质条件复杂,安全风险高,施工难度大,但存 在实际消耗指标与行业定额偏差诸多问题,目前单线铁路项目存在普遍亏损,在 这样的背景下,合理探索机械化配套施工在单线小断面隧道应用经济性极有必要。 一、某单线铁路隧道概况 衢宁铁路某单线隧道长度16270m,断面面积56m2/延米,隧道以Ⅱ、Ⅲ围岩为主占比94.67%。隧道共有12条断层、12条节理密集带、2处接触带,隧道探 勘地质复杂,存在隧道高地温、高地应力、放射性等诸多不良地质条件,安全风 险大。该隧道作为控制性工程按Ⅰ级风险隧道管理,初步设计按Ⅰ级机械化配套 组织施工。 二、机械化配套施工应用情况 (一)隧道I级机械化配套配置情况 本文为更简明、直观对比分析,选取该隧道出口、1#斜井工区两个工区主要 工序数据进行统计分析,各工区详见配置如下: 1.开挖工序:全电脑三臂凿岩台车1台,开挖队长1人,司钻工7人,炮工 12人,维修队长1人,维修人员6人,抽水工3人。 2.喷砼工序:湿喷机械手1台,队长1人,操作人员3人,辅助人员2人, 维保人员1人。 3.锚杆工序:锚杆工序采用凿岩台车钻孔,人工辅助安装注浆的方式,设备 及人员与开挖工序共用; 4.钢筋、防水板采用多功能台架,仰拱采用全液压仰拱台车,衬砌浇筑采用 无门架衬砌台车。 (二)机械化配套掘进进度 根据工区实际施工组织安排,统计掌子面近15个月掘进进度,排出非正常月份影响,单线隧道单向每月掘进最高记录179m,平均进度158m。实际进度统计见下表: 单线铁路实际机械化理论掘进指标,要充分考虑以下因素: 1.三臂凿岩台车、喷射手属于大型设备,洞内施工条件差,使用自然磨损大,维护保养时间增加,从项目设备维修保养时间统计分析,台车因维修保养影响时 间增加,平均每个月影响约4~5天。 2.目前铁路项目受国家政策大环境、高铁大战略影响,各级单位检查极其频繁,质量安全标准严苛,每月影响施工的时间长,且铁路长大隧道普遍地处山区

铁路长大隧道突发事件应急预案.doc

延安工务段铁路长大隧道 突发事件应急预案 1总则 1.1.编制目的 为有效预防和减少铁路隧道内突发事件,及时、科学、高效进行处置,最大限度减少铁路隧道内突发事件造成的人员伤亡、财产损失和社会影响。 1.2编制依据 《中华人民共和国突发事件应对法》、《中华人民共和国铁路法》、《铁路交通事故应急救援和调查处理条例》、《铁路运输安全保护条例》、《国家突发公共事件总体应急预案》、《国家处置铁路交通事故应急预案》、《铁路交通事故调查处理规则》、《铁路交通事故应急救援规则》、《铁路处置长大隧道突发事件应急预案》等有关法律法规和《关于印发<铁路处置长大隧道突发事件应急预案>的通知》(铁办〔2010〕11号)文件规定、《西安铁路局处置铁路长大隧道突发事件应急预案》西铁安函〔2011〕602号。 1.3适用范围

投入运营的国家铁路或由国家铁路控股的,长度超过3km的铁路隧道内发生的突发事件。 1.4工作原则 (1)以人为本。将保障人民群众的生命财产安全作为隧道应急救援的首要任务,采取有效措施确保旅客、沿线群众和救援人员的人身安全,最大限度减少人员伤亡和财产损失 (2)预防为主。加强隧道内固定设备设施风险隐患排查和整改,确保列车在隧道内运行质量状态良好,从根本上提高铁路隧道风险防范能力和水平;加强铁路隧道应急体系建设,应用先进预警监测技术,不断提高隧道救援装备技术水平和应急救援能力。 (3)统一指挥。建立健全“统一指挥、分级负责、反应灵敏、运转高效”的隧道应急救援工作机制,段为应急救援工作的责任主体,负责制定和完善管辖范围内隧道的应急预案,明确应急救援工作的部门和责任人,统筹协调和指挥隧道应急救援工作。各相关车间和科室要统一执行段的应急预案,各车间结合具体情况制定细化方案,强化协同应对,确保救援有序、高效进行。 (4)快速救援。针对客货列车火灾、爆炸、冲突、脱轨实际情况,快速制定救援方案。隧道内救援难度大,要抓住有

隧道通风方案设计,通风计算

蒙河铁路屏边隧道斜井 通风方案 1、工程概况 屏边隧道全长10381m,进口里程DⅡK60+875,出口里程DIK71+256,为单线隧道,设计为单面下坡,坡度分别为-20.2‰(坡长9025m)、-10‰(坡长650m)及-1‰(坡长706m),最大埋深660m。 屏边斜井位于隧道线路右侧,斜井与正洞隧道中心线交汇点里程为D ⅡK66+300,斜井与线路中线蒙自方向夹角80°,井口里程为XDK1+218,水平长度1218m,综合坡度为85‰。本斜井采用无轨单车道运输,断面净空尺寸5.6m(宽)×6.0m(高)。斜井施工任务为斜井1218m(XDK0+000~XDK1+218),平导1735.29m(PDK66+294.71~PDK68+030),辅助正洞4165m (DⅡK63+835~DⅡK68+000),其中出口方向为1700m(DⅡK66+300~DⅡK68+000),进口方向2465m(DⅡK63+835~DⅡK66+300)。 2、通风控制条件 隧道在整个施工过程中,作业环境应符合下列卫生及安全标准: 隧道内氧气含量:按体积计不得小于20%。 粉尘允许浓度:每立方米空气中含有10%以上游离二氧化硅的粉尘为2mg;含有10%以下游离二氧化硅的水泥粉尘为6mg;二氧化硅含量在10%以下,不含有毒物质的矿物性和动植物性的粉尘为10mg。 有害气体浓度:一氧化碳不大于30mg/m3,当施工人员进入开挖面检查时,浓度为100mg/m3,但必须在30min内降至30mg/m3;二氧化碳按体积计不超过0.5%;氮氧化物(换算为NO2)5mg/m3以下。洞内温度:隧道内气温不超过28℃,洞内噪声不大于90dB。

单线小断面长大铁路隧道快速施工

龙源期刊网 https://www.wendangku.net/doc/2c12765692.html, 单线小断面长大铁路隧道快速施工 作者:高翔 来源:《价值工程》2017年第19期 摘要:单线小断面长大铁路隧道由于断面小,不利于车辆通行;施工干扰大,很难多工 序平行作业、交叉施工,施工很难全面开展,造成施工进度缓慢、工期压力大,加之各长大隧道均为重点控制工程。由于断面小,如何在空间狭小的隧道中,快速组织施工生产,一直困扰着我们铁路人。本文以三南线南平隧道2#斜井正线施工为实例,从施工组织、钻爆、出渣、 支护、管理制度等方面诠释单线小断面长大铁路隧道如何快速施工,顺利完成工期节点任务。 Abstract: The long railway tunnel with single track and small section, is not conducive to the traffic because of its small section; due to construction interference, it is difficult to take multiple parallel operations and cross construction, and carry out a comprehensive construction, resulting in the slow progress of construction, time pressure, in addition, the long tunnels are the key control project. Due to the small section, how to organize the rapid construction and production in the narrow tunnel, has plagued our railway man. In this paper, taking operation line construction of inclined shaft No.2 in the Sannan railway Nanping tunnel as an example, it expounds how to take the rapid construction of long railway tunnels with single track and small section, successfully complete the node task in duration from the construction organization, drilling and blasting, slag,support, management system and other aspects. 关键词:进度;纠偏;快速施工 Key words: schedule;rectification;rapid construction 中图分类号:U459.1 文献标识码:A 文章编号:1006-4311(2017)19-0104-02 1 工程现状 1.1 工程概况 南平隧道总长9.8km,共有进出口、三个斜井,本文以2#斜井为实例;2#斜井斜井直线长1512m,曲线长1552m,坡度为11.9%,小里程承担正洞任务1254m、大里程承担正洞任务1258m,弃渣场距离洞口3km,断面较小(6m*7m)、且两侧开挖干扰大、隧道长、地处山区夜间雾大导致出渣缓慢,困难重重,施工进度缓慢,后期面临巨大工期压力。 1.2 涌水量情况(表1、表2) 2 进度现状以及因素分析

铁路长大隧道突发事件应急预案

资料范本 本资料为word版本,可以直接编辑和打印,感谢您的下载 铁路长大隧道突发事件应急预案 地点:__________________ 时间:__________________ 说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容

太原铁路局处置铁路长大隧道 突发事件应急预案 1 总则 1.1 编制目的 有效预防和减少铁路隧道内突发事件,及时、科学、高效的进行处置,最大限度减少铁路隧道内突发事件造成的人员伤亡、财产损失和社会影响。实现安全风险全面受控,确保铁路安全生产稳定有序。 1.2 编制依据 《中华人民共和国突发事件应对法》、《中华人民共和国安全生产法》、《中华人民共和国铁路法》、《铁路运输安全保护条例》、《国家突发公共事件总体应急预案》、《国家处置铁路行车事故应急预案》、《铁路交通事故应急救援和事故调查处理条例》、《铁路交通事故调查处理规则》、《铁路交通事故应急救援规则》和《铁路技术管理规程》等法律、法规、规章和文件规定。 1.3 分类分级 本预案所称突发事件,是指突然发生,造成或者可能造成严重社会危害,需要采取应急处置措施予以应对的自然灾害、事故灾难、公共卫生事件和社会安全事件。 突发事件造成的铁路交通事故按照其性质、严重程度、

可控性和影响范围等因素,应急响应标准分为四级:Ⅰ级(特别重大)、Ⅱ级(重大)、Ⅲ级(较大)和Ⅳ级(一般)。 1.3.1 I级应急响应标准 符合下列情况之一者,为I级应急响应: (1)造成30人以上死亡; (2)造成100人以上重伤(包括急性工业中毒,下同); (3)直接经济损失超过1亿元以上; (4)铁路繁忙客运列车脱轨18辆以上、货物列车脱轨60辆以上并中断铁路行车48小时以上的; (5)国务院决定需要启动的I级应急响应。 1.3.2 Ⅱ级应急响应 符合下列情况之一者,为Ⅱ级应急响应: ⑴造成10人以上、30人以下死亡; ⑵造成50人以上、100人以下重伤; ⑶造成5000万元以上1亿元以下直接经济损失; ⑷客运列车脱轨18辆以上; ⑸货运列车脱轨60辆以上的; ⑹客运列车脱轨2辆以上18辆以下,并中断繁忙干线铁路行车24小时以上或者中断其他线路铁路行车48小时以上; ⑺货运列车脱轨6辆以上60辆以下,并中断行车繁忙干线24小时以上或者中断其他线路铁路行车48小时以上。

隧道施工通风设计说明

课程名称:隧道工程 设计题目:隧道施工通风设计院系: 专业: 年级: 姓名: 指导教师:

课程设计任务书 专业姓名学号 开题日期:年月日完成日期:年月日题目隧道施工通风设计 一、设计的目的 掌握隧道通风设计过程。 二、设计的容及要求 根据提供的隧道工程,确定需风量;确定风压;选择风机;进行风机及风管布置。 三、指导教师评语 四、成绩 指导教师 (签章)

年月日一.设计资料

二.设计要求 针对以上工程,进行2#隧道进口不同长度施工通风设计,要求采用风道压入式通风方式,进行风量计算、风压计算,以此为依据,进行风机选择(根据网上调研等方式)以及风机及风管的布置(风管可自选,不一定按所给资料)。隧道深度:2260m 三.设计容 1.风量计算 隧道施工通风计算按照下列几个方面计算取其中最大值,在考虑 漏风因素进行调整,并加备用系数后,作为选择风机的依据。 (1) 按洞同时工作的最多人数计算: Q kmq = 式中:Q :所需风量3(/min)m k :风量备用系数,常取1.1 m :洞同时工作的最多人数,本设计为30人。 q :洞每人每分钟需要新鲜空气量,取33/min m g 人 计算得:31.130399/min Q kmq m ==??= (2)按同时爆破的最多炸药量计算: 本设计选用压入式通风,则计算公式为:

Q =式中:S :坑道断面面积(2m ),90。 A :同时爆破的炸药量,0.48t 。 t :爆破后的通风时间30min 。 L :爆破后的炮烟扩散长度,100米。 计算得:37.8880.8(/min)30 Q m == (4)按洞允许最下风速计算: 60Q v s =?? 式中:v :洞允许最小风速,0.15/m s 。 S :坑道断面面积,902m 。 计算得:360600.1590810/min Q v s m =??=??= 综上,取计算结果最大值3880.8/min Q m =为所需风量。 2.漏风计算 (1)通风机的供风量除满足上述条件计算所需的风量外,还需考虑漏失的风量,即: Q 供=P Q ? 式中:Q :上述计算结果最大值 P :漏风系数。由送风距离及每百米漏风率计算得出。 由设计资料知,L 管=2260m ,每百米漏风率为1.5%,则送风距离漏风量为:22600.0150.339100 ?= 则漏风系数为:10.339 1.339P =+= 计算得:Q 供=P Q ? 1.339880.81179=?=3/min m (2)由于隧道所处高原地区,大气压强降低,需要进行风量修正: 100h n h Q Q P =

隧道施工通风计算

隧道施工通风计算 一、规范规定 《铁路隧道施工规范》(TB10204-2002)规定: ⑴空气中氧气含量,按体积计不得小于20%。 ⑵粉尘容许浓度,每立方米空气中含有10%以上的游离二氧化硅的粉尘不得大于2mg。 ⑶瓦斯隧道装药爆破时,爆破地点20m内,风流中瓦斯浓度必须小于0.5%;总回风道风流中瓦斯浓度应小于0.75%;开挖面瓦斯浓度大于1.5%时,所有人员必须撤至安全地点。防止瓦斯积聚的风速不宜小于1m/s。 ⑷有害气体最高容许浓度: ①一氧化碳最高容许浓度为30mg/m3;在特殊情况下,施工人员必须进入工作面时,浓度可为100mg/m3;但工作时间不得大于30min。 ②二氧化碳按体积计不得大于0.5%。 )为5mg/m3。 ③氮氧化物(换算成NO 2 ⑸隧道内气温不得高于28℃。 ⑹隧道内噪声不得大于90dB。 ⑺隧道施工通风应能提供洞内各项作业所需的最小风量,每人应供应新鲜空气3m3/min,采用内燃机械时,供风量不宜小于3m3/(min·kW)。 ⑺隧道施工通风的风速,全断面开挖时不应小于0.15m/s,在分部开挖的坑道中不应小于0.25m/s。 ⑼每100m平均漏风率不应大于2%。 二、通风方案的确定 隧道施工通风主要采用机械通风,其通风方式按风道类型一般分为巷道式和管道式两种,其中后者按送风方式不同又可分为压入式、吸出式和混合式三种。它们各有其优缺点(见表1)。 表1 几种管道式通风方案的比较

综合考虑隧道独头掘进长度、断面大小、开挖方法、出渣运输方式、设备条件等因素,通过分析比较,确定压入式通风较为适合无轨运输施工,可使足够的新鲜空气能很快被送至工作面,实现快速掘进。 三、风量计算 ⑴按洞内同时工作的最多人数计算风量: k m q Q ??= q —每人每分钟呼吸所需新鲜空气量,取4.0m 3/min ; m —洞内同时工作的最多人数,50人; k —风量备用系数,取1.15。 计算得:Q =230m 3/min ⑵按排出炮烟计算风量: 计算方法一: t Al Gb Q 0 5-= G —同时爆破的炸药消耗量,q l A G ??=,得100.2kg ; A —掘进面积,26m 2; l —循环进尺,4.0m ; q —单位耗炸药量,1.7kg/m 3 ;

隧道通风计算

隧进口出工区均采用双管路压入式通风。 通风管选用? 1500mmPV 软式通风管,洞外风机进风口至洞口距离 L=30m 风管出风口至掌子面距离 L=42m (当掌子面布置局扇时,L=80m ) ⑴基本参数选用 独头通风长度按L=4905m 计算; 开挖断面A : A=116.7m ; 平均百米漏风系率:P100=1% 软管达西数入:入=0.015 ; 空气密度 p :p =1.16kg/m 3 ; 工作面最多作业人数:n=60人; 作业人员供风量:q=4nV 人.min ; 一次爆破最大药量G: G=438.1kg ; 爆破通风时间t : t=30min ; 工作面最小风速 v : v=0.25m/s 。 ⑵开挖面所需风量Q 开 ① 按作业人数计算:Q 开=4n=4X 60=240m/min ; ② 按最小风速计算:Q 开=60AX v=116.7 x 0.25 x 60=1750ri 3 /min ; ③ 按排除爆破烟尘计算: P-风管全程漏风系数 p=1/ (1-L x P100/100) =1/ (1-4905 x 1%/100) =1.64 2.25 t ' 2 3,'G ( AL )

①-淋水系数;①=0.3 b-炸药爆破时有害气体生成量,b=40nVkg L-隧道爆破临界长度L=12.5 x GX bx K (AX p 2 ) X 438.1 x 40 x 0.53/ (116.7 x 1.642 ) =370m 考虑系统漏风,故风机量 Q=1154< 1.64=1892ni/min ④ 按稀释和排除内燃机废气计算风量 采用无轨运输,洞内内燃设备配置较多,废气排放量较大,供风量应足 够将内燃设备所排放的废气全面稀释和排出,使有害气体降至允许浓度以 下,计算可按下式计算: N Q T j KN j i 1 式中:K-功率通风计算系数,我国暂行规定为2.8?3.0m 3 /min Ni- 各台柴油机械设备的功率 Ti- 利用率系数 根据本隧道施工实际情况,主要有以下三种工况的组合:开挖钻眼工况 +台车衬砌工况+防水板铺设工况+喷锚支护工况;爆破出碴工况+仰拱充填工 况+防水板铺设工况;爆破出碴工况+台车衬砌工况+防水板铺设工况。 上述三种不同工况组合中,爆破出碴工况+台车衬砌工况+防水板铺设工 况,配置的内燃设备最多,排放的废气也最多,需要供风量最大。该工况在 施工至分界里程时配置的内燃设备如下表所示: = 12.5 2 .25 :G ( AL ) 2 b t : P 2 =1154n 3 /mi n 2.25 3 438 .1 30 ( 116 .7 3700 ) 0.3 40 1.64

相关文档
相关文档 最新文档