文档库 最新最全的文档下载
当前位置:文档库 › 结构动力方程摄动法

结构动力方程摄动法

结构动力方程摄动法
结构动力方程摄动法

摄动方法Perturbation Method

把系统视为理想模型的参数或结构作了微小扰动的结果来研究其运动过程的数学方法。这种方法最早应用于天体力学,用来计算小天体对大天体运动的影响,后来广泛应用于物理学和力学的理论研究。摄动方法作为一般的数学方法,也是控制理论研究中的一种工具。摄动方法的基本思路是:如果一个系统Sε中包含有一个难以精确确定或作

缓慢变化的参数ε,就可以令ε=0,使系统Sε退化为s0,而把Sε看作是s0受到(由

于ε≠0而引起的)摄动而形成的受扰系统。问题因而简化成为在求解S0的基础上来找

出系统Sε的运动表达式。这样做往往能达到简化数学处理的目的。摄动方法所提供的

系统Sε的运动Γε的形式是s的幂级数(可能包含负幂次项),级数的各项系数是有关

变量(时间、状态变量等)的函数。如果在这些变量的容许变化范围内,当ε趋于零时,Γε的表达式一致地(均匀地)趋于S0的运动表达式Γ0,就称表达式Γε为一致有效的。

摄动问题可分为正则摄动和奇异摄动两类形式。如果令ε=0,Γε的表达式可化为

Γ0,而且是一致有效的,就称这个摄动问题是正则摄动问题。如果在Sε中令ε=0会导

致问题无解或多解,或者虽然当ε=0时Sε能化为s0并有解Γ0,但表达式Γε不一致

有效,则称这个摄动问题为奇异摄动问题。正则摄动问题比较简单,也易于处理。常用的方法有幂级数展开法(不包含ε的负幂次)、参数微分法、迭代法等。奇异摄动问题

则复杂得多,当ε趋于0时系统Sε的行为或结构往往发生本质的或剧烈的改变,出现

各种复杂的现象。奇异摄动问题的研究已发展为控制理论的一个重要分支。其中常用的方法有伸缩坐标法、匹配渐近展开法、复合展开法、参数变易法、平均法、多重尺度法等。

对于弱非线性系统,若把非线性部分看作是对线性部分的摄动,常能用摄动方法

(这种情况常称为小参数法)得到相当好的结果。奇异摄动理论与分岔理论、突变论等也有比较密切的关系。

坐标摄动法

研究天体在真实轨道上的坐标和在中间轨道上的坐标之差,这个差值称为坐标摄动。在经典方法中,常把坐标摄动表示为某个小参量(例如摄动行星的质量)的幂级数,然后逐项进行计算。由于计算技术的发展,微分方程近似解法中皮卡迭代法正逐步代替原来的小参量幂级数展开方法。它的主要优点是有统一的迭代过程,使计算过程能高度自动化。

直角坐标摄动

这是1858年恩克在研究彗星的运动时提出的,它讨论坐标摄动在直角坐标系中的

表示式,经常用于计算短周期彗星和月球火箭的轨道。这种方法的优点是:摄动方程的推导简单,形式对称,可以直接得到坐标,便于计算天体的历表。它的缺点是:以直角坐标表示的摄动量难于显示出摄动的几何特性和力学含义;随着时间跨度的增长,直接坐标的三个摄动量往往同时变大,以致不能把它们所服从的方程作线性化处理,否则就要多次更换零点。

球坐标摄动

自然天体一般总是围绕着某个主天体运动,例如行星绕着太阳运动,卫星绕着行星运动。因此,球坐标或极坐标的摄动就有较明显的几何意义。克莱洛和拉普拉斯在研究彗星的运动和大行星运动理论时最早提出了球坐标摄动方法。后来,纽康对拉普拉斯方法作了改进,特别是在展开摄动函数时运用了算符运算,使展开过程不仅有简洁的数学表示式,而且有规则的处理过程,便于以后在电子计算机上进行计算。纽康成功地运用这个方法研究了水星、金星、地球、火星四颗内行星以及天王星、海王星的运动,据此编成的内行星的历表,一直是二十世纪以来编算天文年历的基础。希尔提出了一种以真近点角为引数的球坐标摄动法,它曾被成功地用于计算第一号小行星──谷神星的摄动。

其他坐标摄动

1963年穆森提出了另一种计算坐标摄动的方法,用于计算天体坐标在向径、速度

和角动量三个方向上的摄动量。尽管这样的分解不正交,但由于它有不少优点,如有较明显的力学意义,推导方便,积分直接、运用算符运算、各阶摄动方程具有统一而紧凑的形式,并便于计算自动化,现正用于建立新的大行星运动理论。

瞬时椭圆法

这是轨道要素作为基本变量的摄动方法。如果行星只受太阳的吸引,正如开普勒定律所描述的,它将沿着一个固定的椭圆运动,决定椭圆运动的六个轨道要素应是常数。若考虑到其他因素的影响,行星将偏离原来的椭圆,六个轨道要素就不再是常数,它们将遵循由常数变易法导出的规律而变化。在这种情况下,可得到一族椭圆,它们逐个地与真实轨道相切,在相切点,二者不仅有相同的坐标,而且有相同的速度;只是加速度

彼此不同,一个是真实加速度,另一个是椭圆加速度,二者之差正是摄动力引起的摄动加速度。由于种摄动加速度的作用,天体在下一时刻将离开这个椭圆,走上邻近的一个瞬时椭圆;相反,一旦摄动作用消失,天体将沿着消失点的瞬时椭圆一直运动下去。天体在太阳辐射压摄动下的运动正是这样:当辐射压起作用时,天体的瞬时椭圆不断变化;但当天体进入一个阳光照不到的阴影区时,辐射压消失,天体就沿着入影点的瞬时椭圆运动下去,直到跑出这个影子为止。天体的真实轨道就是瞬时椭圆族的包络线。与坐

标摄动相比,椭圆轨道要素的变化一般要缓慢得多,因而便于处理。瞬时椭圆法最早是欧拉在十八世纪中叶研究木星与土星的相互摄动时提出的,后由拉格朗日加以改进。他根据常数变易法,利用拉格朗日括号,严格地导出了描述椭圆轨道要素变化的摄动方程──拉格朗日方程。这种方法的应用十分广泛,特别是被勒威耶成功地用来研究大行星

的运动。

正则变换

这是一种以分析力学为基础的方法。其基本思想是:对变量进行一系列适当的正则变换,以求降低运动方程的阶次,使新的方程具有较简单的形式,例如得出一个描述等速直线运动或简谐振动的方程,从而使问题得解。十九世纪,德洛内从这个观点出发建立了著名的德洛内月球运动理论。他首先将月球的摄动函数展开成四百多个三角项,然后进行一系列的正则变换,使每次变换都能消去其中的一项。他花了差不多二十年的时

间,总共进行了上千次变换,找到了三个合适的角速度,将月球的轨道要素都表示成时间的三角多项式,而不包含任何长期项。德洛内的工作为天体力学中的变换理论奠定了基础。这种方法是由一系列形式统一的循环过程组成的,因此非常便于用电子计算机进行计算。德洛内之所以要进行那样多的变换,是为了对摄动函数中的每一项都给以严

格的数学处理。这在实用上是没有必要的,某些高阶项尽可以略去。以这种想法为指导,蔡佩尔在二十世纪初建立了蔡佩尔变换。他先把摄动函数中的角变量按它们变化快慢排队,然后在一定精度范围内寻找适当的变换,以便一次消去所有含快变量的项,得出一组平均化的方程,进而对新的方程重复类似的过程,直至消去全部角变量为止。与德洛内方法相比,这种方法的工作量小得多,因此,它一出现就被成功地用来研究小行星的运动。人造卫星上天后,它得到了更广泛的应用。但是,蔡佩尔变换也有一些缺点,其中最突出的是:决定新旧变量转换关系的母函数是混合型的,同时含有新旧两种变量,使用颇为不便。为了克服这一缺点,堀源一郎在二十世纪六十年代提出了一种以李变换为基础的理论──堀源-李变换。其优点是:不仅新旧变量之间的变换具有显函数的形式,同时其结果在正则变换之下保持不变,因此它与用哪一组正则变量进行计算无关,而具有通用性。电子计算机的创制和发展不仅大大提高数值计算的精度和速度,而且代替

人们完成大量机械的重复的推导,今天已广泛用于摄动理论研究。近年来,德普里特、亨拉德、罗姆利用电子计算机编制了一个分析月球历表。单就计算太阳主要摄动项而言,摄动函数就有近3,000项,并通过李变换,得到了近50,000项月球坐标表示式。其

规模之大,远非德洛内理论所能相比。影响天体运动的摄动因素多种多样:有万有引

力引起的保守力,有介质阻尼引起的耗散力,有连续作用的力,也有诸如辐射压引起的间断力等。影响大行星动的主要摄动因素是行星间的相互吸引;地球大气的阻尼使卫星陨落于地面;太阳辐射压决定着彗尾的形状;潮汐摩擦则是卫星轨道演化的主要动力。只有准确地掌握各种摄动因素,才能准确无误地计算天体的运动,解释各种壮丽的天象。反之,通过精密的观测和准确掌握天体的运动规律,就可以根据摄动理论的分析,弄清天体周围的力学环境,如测定摄动天体的质量、主天体的学扁率和弹性模量、大气密度和各种引力场参数等等,至还能预告一些未知天体的存在与行迹。因此,摄动理论不仅有丰富的理论内容,也有较高的实用价值。

第六章 结构振动特征值问题的矩阵摄动法

第六章 结构振动特征值问题的矩阵摄动法 §6.1 概述 工程振动问题中经常遇到结构有小改动的情形,例如结构的制造误差、结构的小修改设计、对结构参数改变进行灵敏度分析等。这些情况都有一个共同的特点,就是结构的参数仅发生很小的变化。结构参数的小变化所引起的结构振动特性变化问题,对工程结构优化设计有重要意义。经典的方法是每修改一次方案就需要求解一次结构的固有特性,即求解广义特征值问题。这对于大型结构的振动分析,是非常麻烦的。我们希望能找到一种能够利用修改前结构的固有特性信息,且计算量小的方法,来解决上述问题。 矩阵摄动法就是这种结构特征值重分析和灵敏度快速分析的计算方法。 §6.2 孤立特征值的摄动法 对离散系统特征值问题,假定已经得到了其特征对的解: }]{[}]{[) (00)(0)(00i i i u M u K λ= (6-1) ][],[00M K 分别为参数未变化的原结构刚度矩阵和质量矩阵,第i 个特征值 2)(0)(0)(i i ωλ=,) (0 i ω为第i 阶固有频率,}{)(0i u 为第i 阶特征向量(固有模态)。结构参数的变化或修改设计一般通过刚度矩阵和质量矩阵的改变反映出来。即 ][][][10M M M ε+= (6-2) ][][][10K K K ε+= (6-3) ε称为小参数。 先看) (i 0λ是单根的情形。上标)(i 代表第i 个根,下标0)(代表参数未变化的 原结构。从物理意义上知道,绝大多数情况下,质量阵和刚度阵只有小变化时,特征值和特征向量也只有小量变化,根据摄动理论,特征值和特征向量按小参数ε展开为: +++=+++=)(2 2 )(1 ) (0) () (22)(1)(0)(}{}{}{}{i i i i i i i i u u u u λεελλλεε (6-4)

结构力学第五章习题及答案

第五章 习题 5—2 试用力法计算下列结构,并会出弯矩图。 解:1.判断超静定次数:n=1 2. 确定(选择)基本结构。 3.写出变形(位移)条件: (a ) 根据叠加原理,式(a )可写成 (b ) 4 .建立力法基本方程 将? 11 = 11 x 1代入(b)得 F P A B C l/2 l/2 (a) F P X 1 X 1=1 M 1图 基本体系 M P 图 l F P F P l /2 1=?0 1111=?+?=?P

(c ) 5. 计算系数和常数项 EI l l l l EI 332)21(1311= ???=δ 6. 将d11、 ?11代入力法方程式(c ) 7.作弯矩图 3FP P l /16 1111=?+P X δEI l F l F l l l F l l EI P P P P 4852322212312221(13 1= ???+????=?) (1651111↑=?-=P P F X δp M X M M +=116 32165l F l F l F M P P P A = -?=

解:1.判断超静定次数:n=1 2. 确定(选择)基本结构。 3.写出变形(位移)条件: (a ) 根据叠加原理,式(a )可写成 (b ) 4 .建立力法基本方程 将?11 = 11 x 1代入(b)得 (c ) EI 2 EI 1 F P A B X 1 X 1=1 F P C (b) M 1图 基本体系 M P 图 l F P (l -a ) 1=?0 1111=?+?=?P 0 1111=?+P X δ

5. 计算系数和常数项 1 33)3221(1)]332()(21)332()(21[13 2331211EI a EI a l a a a EI a l a a l l a a a l EI + -=???++??-?++??-?= δ2 2216)2()(]3 )(2)(213)()(21 [1EI a l a l F a l F a a l a l F a a l EI P P P P +--= -??-?+-??-?=? 6. 将d11、 ?11代入力法方程式(c ) 31 23 3 231)1(322a I I l a al l F X P --+-= 7.作弯矩图 (d )解: 超静定次数为2 选择基本结构如图(1)所示力法典型方程为: d 11X 1+d 12X 2+△1P =0 d 21X 1 + d 22X 2+△2P =0 计算系数和常数项,为此作作出X 1=1、X 2=1和荷载单独作用下的弯矩图如(2)(3)(4)所示计 p M X M M +=1 1(a)

一阶常微分方程的奇解

摘要.................................................... 错误!未定义书签。 1.何谓奇解.............................................. 错误!未定义书签。 2.奇解的产生............................................ 错误!未定义书签。 3.包络跟奇解的关系...................................... 错误!未定义书签。 4.理论上证明C-判别曲线与P-判别曲线方法................. 错误!未定义书签。 克莱罗微分方程 ..................................... 错误!未定义书签。 5.奇解的基本性质........................................ 错误!未定义书签。 定理1 ............................................. 错误!未定义书签。 定理2 ............................................. 错误!未定义书签。 定理3 ............................................. 错误!未定义书签。 6.小结.................................................. 错误!未定义书签。参考文献:.............................................. 错误!未定义书签。

常微分方程的发展史

摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微 分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定. 命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元 素的解称为“通解”.在很长一段时间里,人们致力于“求通解”. 关键词:常微分方程,发展,起源 正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。17 世纪,牛顿,英国,1642-1727)和莱布尼兹,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。雅可比·伯努利自己解决了

前者。翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(,荷兰,1629-1695)独立地解决了后者。 有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。因此,最初人们的注意力放在某些类型的微分方程的一般解法上。 1691 年,莱布尼兹给出了变量分离法。他还把一阶齐次方程使其变量分离。1694 年,他使用了常数变易法把一阶常微分方程化成积分。 1695 年,雅可比·伯努利给出著名的伯努利方程。莱布尼兹用变换,将其化为线性方程。约翰和雅可比给出了各自的解法,其本质上都是变量分离法。 1734 年,欧拉,瑞士,1707-1783)给出了恰当方程的定义。他与克莱罗. Clairaut,法国,1713-1765)各自找到了方程是恰当方程的条件,并发现:若方程是恰当的,则它是可积的。那么对非恰当方程如何求解呢1739 年克莱罗提出了积分因子的概念,欧拉确定了可采用积分因子的方程类属。这样,到 18 世纪 40 年代,一阶常微分方程的初等方法都已清楚了,与此相联系,通解与特解的问题也弄清楚了。

结构动力学思考题解答

结构动力学思考题 made by 李云屹 思考题一 1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同? 主要区别为: (1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响; (2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化; (3)动力学的求解方法通常与荷载类型有关,静力学一般无关。 运动方程的不同: 动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。 2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数; 静力自由度:确定结构体系在空间中的几何位置的独立参数。 意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。 3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体系,它们所采用的手法有什么不同? 4、在结构振动的过程中引起阻尼的原因有哪些? (1)材料的内摩擦或材料变形引起的热耗散; (2)构件连接处或结构构件与非结构构件之间的摩擦; (3)结构外部介质的阻尼。 5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变? 如果满足条件: (1)线性问题; (2)重力的影响预先被平衡; 则动位移的运动方程不会改变,否则会改变。 思考题二 1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]? k ij:由第j自由度的单位位移所引起的第i自由度的力; m ij:由第j自由度的单位加速度所引起的第i自由度的力。 依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。

结构动力学习题解答(一二章)

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

总结一阶常微分方程奇解的求法

总结一阶微分方程奇解的求法 摘要:利用有关奇解的存在定理,总结出求一阶微分方程奇解的几种方法,并通过一些具体的例题说明这几种方法的应用 Using relevant theorems to develop several methods of finding singular solution of ordinary differential equation. In addition, illustrate the application of these methods through the concrete examples. 关键词:常微分方程 奇解 c-判别式 p-判别式 方法一:利用c-判别式求奇解 设一阶微分方程0, ,=?? ? ?? dx dy y x F ① 可求出方程①的通解为()0,,=c y x φ ② 如果()()???==0 ,,0,,' c y x c y x c φφ ③ 是微分方程①的解,且对③式满足:()()02 '2 '≠+y x φφ ④ 则③是微分方程①的奇解,且是通解②的包络。 例1:方程() 2 2 2 x x y dy dx dy dx + -= 的奇解 解:首先,本具题意求出该微分方程的通解为2 2 2 c cx y x ++= 与4 2 x y = 其中c 为任意常数 当时2 2 2 c cx y x ++= , ()y c cx x c y x -++= 2 2 2 ,,φ 其相应的c -判别式为 ? ??=+=-++02022x 2 c x y c cx 易得到: ? ??=-=2 2c y c x

代入原微分方程,可知? ??=-=2 2c y c x 不是原微分方程的解; 当4 2 x y = 时,易求出2 ,1''x y x ==φφ,则有()()02 '2 '≠+y x φφ 故4 2 x y = 为原微分方程的奇解 例2:试求微分方程() () y y dy dx 9 42 2 1= -的奇解 解:首先,根据题意求出微分方程的通解为:()()0322=---y y c x 其中c 为任意常数 再由相应的c-判别式: ()()()? ??=--=---020 322c x y y c x 易求出:? ??==0y c x 或 ???==3y c x 当???==0y c x 时,代入原微分方程成立; 所以? ??==0y c x 为原微分方程的解 且有()02'=--=c x x φ;()()93232 '-=---=y y y y φ 满足(Φ‘ x )2 +(Φ‘ y )2≠0 易验证???==3y c x 不是原微分方程的解 故x=c, y=0 是元微分方程的奇解。 方法二:利用p-判别法求奇解 在微分方程①中,设y ′=p,则此方程的p-判别式为: ()()?????==0,,0 ,,' p y x F p y x F p ⑤ 消去p 之后得到的函数y=?(x)是微分方程①身为解,

结构力学题库答案

1 : 图 a 桁 架, 力 法 基 本 结 构 如 图 b ,力 法 典 型 方 程 中 的 系 数 为 :( ) 3. 2:图示结构用力矩分配法计算时,结点A 的约束力矩(不平衡 力矩)为(以顺时针转为正) ( ) 4.3Pl/16 3:图示桁架1,2杆内力为: 4. 4:连续梁和 M 图如图所示,则支座B 的竖向反力 F By 是:

4.17.07(↑) 5:用常应变三角形单元分析平面问题时,单元之间()。 3.应变、位移均不连续; 6:图示体系的几何组成为 1.几何不变,无多余联系; 7:超静定结构在荷载作用下的内力和位移计算中,各杆的刚度为() 4.内力计算可用相对值,位移计算须用绝对值 8:图示结构用力矩分配法计算时,结点A之杆AB的分配系数

μAB 为(各杆 EI= 常数)( ) 4.1/7 9:有限元分析中的应力矩阵是两组量之间的变换矩阵,这两组量是( )。 4.单元结点位移与单元应力 10:图示结构用位移法计算时,其基本未知量数目为( ) 4.角位移=3,线位移=2 11:图示结构,各柱EI=常数,用位移法计算时,基本未知量数 目是( ) 3.6 12:图示结构两杆长均为d,EI=常数。则A 点的垂直位移为( ) 4.qd 4/6EI (↓) 13:图示桁架,各杆EA 为常数,除支座链杆外,零杆数为:

1.四 根 ; 14:图示结构,各杆线刚度均为i,用力矩分配法计算时,分配 系数μAB 为( ) 2. 15:在位移法中,将铰接端的角位移,滑动支撑端的线位移作为基本未知量: 3.可以,但不必; 1:用图乘法求位移的必要条件之一是:( ) 2.结构可分为等截面直杆段; 2:由于静定结构内力仅由平衡条件决定,故在温度改变作用下静定结构将( ) 2.不产生内力 3:图示结构,各杆EI=常数,欲使结点B 的转角为零,比值P1/P2应 为( ) 2.1

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

结构动力学例题复习题

第十六章结构动力学 【例16-1】不计杆件分布质量和轴向变形,确定图16-6 所示刚架的动力自由度。 图16-6 【解】各刚架的自由度确定如图中所示。这里要注意以下两点: 1.在确定刚架的自由度时,引用受弯直杆上任意两点之间的距离保持不变的假定。根据这个假定并加入最少数量的链杆以限制刚架上所有质量的位置,则刚架的自由度数目即等于所加链杆数目。 2.集中质量的质点数并不一定等于体系的自由度数,而根据自由度的定义及问题的具体情形确定。

【例16-2】 试用柔度法建立图16-7a 所示单自由度体系,受均布动荷载)t (q 作用的运动方程。 【解】本题特点是,动荷载不是作用在质量上的集中荷载。对于非质量处的集中动荷载的情况,在建立运动方程时,一般采用柔度法较为方便。 设图a 质量任一时刻沿自由度方向的位移为y (向下为正)。把惯性力I 、阻尼力R 及动荷载)(t P ,均看作是一个静荷载,则在其作用下体系在质量处的位移y ,由叠加原理(见图b 、c 、d 及e ),则 )(R I y P D I P +δ+?=?+?+?= 式中,)t (q EI 38454P λ=?,EI 483 λ=δ。将它们代入上式,并注意到y m I &&-=,y c R &-=,得 )(48)(38453 4y c y m EI t q EI y &&&λλ--+= 图16-7 经整理后可得 )(t P ky y c y m E =++&&& 式中,3EI 481k λ=δ= ,)(8 5)(t q k t P P E λ=?= )(t P E 称为等效动荷载或等效干扰力。其含义为:)(t P E 直接作用于质量上所产生的位移和 实际动荷载引起的位移相等。图a 的相当体系如图f 所示。 【例16-3】 图16-8a 为刚性外伸梁,C 处为弹性支座,其刚度系数为k ,梁端点A 、D 处分别有m 和 3 m 质量,端点D 处装有阻尼器c ,同时梁BD 段受有均布动荷载)t (q 作用,试建立刚性梁的运动方程。 【解】 因为梁是刚性的,这个体系仅有一个自由度,故它的动力响应可由一个运动方程来表达,方程可以用直接平衡法来建立。 这个单自由度体系可能产生的位移形式如图b 所示,可以用铰B 的运动)t (α作为基本

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x 解:当0)1)(1(22≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程:

①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得 到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:0 1、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 02、 022 1 1≠b a b a ,???=++=++00 222111 c y b x a c y b x a 的解为),(00y x ,令???-=-=0 0y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( 以上都可以化为变量可分离方程。 例2.1、 2 5--+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 7 1+= - ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy 解:由???=+-=+-012012y x y x 得到?????=-=3131y x ,令?? ???-=+=3131y v x u ,有???==du dx dv dy ,代入得到

一类二阶微分方程的非线性奇摄动n点边值问题

第26卷 第2期 2010年3月福建师范大学学报(自然科学版)Jo ur nal of F ujian N or mal U niver sity (Nat ur al Science Edition)V ol.26 N o.2M ar.2010文章编号:1000-5277(2010)02-0034-04 一类二阶微分方程的非线性奇摄动n 点边值问题 李晓琴,余赞平,周哲彦 (福建师范大学数学与计算机科学学院,福建福州 350108) 摘要:在一定条件下,研究了一类带有小参数的二阶非线性微分方程的非线性n 点边值问题解的存在性与渐近估计. 关键词:二阶微分方程;非线性边值问题;解的存在性;渐近估计 中图分类号:O 175.8 文献标识码:A  收稿日期:2009-03-26 基金项目:福建省自然科学基金资助项目(2006J0204)  通讯作者:余赞平,副教授,研究方向为奇异摄动问题.yu 3423191@yah oo .com .cn The Nonlinear Singularly Perturbed n -point Boundary Value Problem for a Kind of Second Order Differential Equations LI Xiao -qin ,YU Zan -pin ,ZHOU Zhe -yan (School of M athematics and Com p uter Science ,Fuj ian N or mal University ,F uz hou 350108,China ) Abstract :Under given conditions ,researches the existence and asymptotic estimate of the solution of a kind of no nlinear n -po int boundar y value pro blems for second o rder differential equatio n w ith small param eter. Key words :seco nd order differential equation;nonlinear bo undary value problem ; existence of solutio n ;asy mpto tic estimate 在流体力学和量子力学等许多自然科学领域中常常遇到微分方程的边值问题,因此,微分方程的边值问题及其奇异摄动的研究受到人们的极大关注 [1-2].关于二阶非线性奇摄动的两点边值问题已有一些成果[3-4],近几年来,3点或一般的n 点边值问题的研究取得了一些进展[5-8].本文研究如下一类二阶微分方程的非线性n 点边值问题 y ″=f (t ,y ,y ′, ), a

孤立特征值情况的矩阵摄动法

孤立特征值情况的矩阵摄动法 一、基本方程 设原始特征值问题是 )~1(0 0000n i x M x K i i i ==λ (1) 相应的正交规范条件是 )~1,(000n j i x M x ij j T i ==δ (2) 或 )~1,(0000n j i x K x ij i j T i ==δλ 其中,0M 、0K 分别是原系统的n n ?阶对称质量阵、刚度阵,0i λ是特征值,且200i i ωλ=,0i ω是固有频率,0i x 是相应的特征向量,ij δ是Kronecker 函数(j i =时,1=ij δ,j i ≠时,0=ij δ),下标n j i ~1,=。以下为方便起见,均省去这一说明。 系统结构参数改变后,相应的质量阵、刚度阵均有相应的变化,设系统修改后的质量阵、刚度阵分别为 ? ? ?+=+=101 0K K K M M M εε (3) 式中ε是一个小参数,与0=ε对应的系统就是原系统(1),1M ε、1K ε分别代表0M 、0K 的变化,当01→M ε,01→K ε时,0M M →,0K K →。显然,新系统(即结构修改后的系统或称摄动系统)的特征值问题及相应的正交规范条件是 i i i x M M x K K )()(10 10ελε+=+ (4) ij j T i x M M x δε=+)(10 (5) 其中,i λ为新系统的特征值,i x 是相应的特征向量。 如果原系统的0i λ各不相同,且相互间距不小,此时就称0i λ为系统(1)的孤立特征值。 在这种情况下,当1M ε、1K ε很小时,新系统的特征值i λ及相应的i x 均只有小变化。根据摄动理论,可将i λ、i x 按小参数ε展开成幂级数(因此,胡海昌院士称其为小参数法),即 )(3 2210ελεελλλO +++=i i i i (6) )(3 22 10εεεO +++=i i i i x x x x (7)

结构动力学习题解答一二章

第一章 单自由度系统 1、1 总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析与动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 与势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1、2 叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

一阶常微分方程的奇解

摘要 (2) 1.何谓奇解 (2) 2.奇解的产生 (3) 3.包络跟奇解的关系 (4) 4.理论上证明C-判别曲线与P-判别曲线方法 (5) 4.1 克莱罗微分方程 (9) 5.奇解的基本性质 (12) 5.1 定理1 (12) 5.2 定理2 (14) 5.3 定理3 (14) 6.小结 (14) 参考文献: (15)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式 1.何谓奇解 设一阶隐式方程),,(,y y x F =0有一特解

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

动力响应问题的摄动Riccati传递矩阵方法

2007年第26卷 5月 第5期 机械科学与技术 MechanicalScienceandTechnologyforAerospaceEn舀neering Mav2007 V01.26No.5 刘保国动力响应问题的摄动Riccati传递矩阵方法 刘保国,桑广伟 (河南工业大学机电工程学院,郑州450052) 摘要:基于Riccati传递矩阵法,给出了一维不确定参数结构系统动力学响应问题的二阶摄动计算方法。该方法在用于一维结构系统动力响应问题的摄动分析时,不需要按振型展开,避免了基于有限元的矩阵摄动方法所带来的模态截断误差问题,提高了分析结果的精度。以多跨转子——轴承系统为模型,导出了动力响应问题摄动Riccati传递矩阵法的具体计算公式,并编制了相应的计算分析程序。算例对弹性支承的等截面梁的动力响应问题进行了摄动分析,摄动计算结果和精确计算结果吻合良好。 关键词:摄动分析;Riccati传递矩阵法;动力响应 中图分类号:THll3.1;TBl23文献标识码:A文章编号:1003—8728(2007)05旬589D6 Perturbation砒ccatiTransferMatrixMethodfor DynamicResponseProblemS LiuBaoguo,SangGuangwei (Mechatronic0fElectricalEn舀neering,HenanUniversity0fTbchnology,zhenzhou450D52) Abstract:WeusetheRiceati磁msfermatrixme出odtopresentaseeond—orderperhlrbationcalculationmet}lodf.orthedynamicresponseproblemofaone—dimensionalstlllcturalsystemwithparameteruncertainties.TheperturbationcalculationmethodavoidsthemodaltmncationerrorscausedbytheFEM?basedmatrixperturbationmethod,thus enhancingtheaccumcyofperturbationanalysisresults. Setting山e rotor_be耐ngsystemwithmultiplespansasa model,wederiVethecalculationfo瑚ulasofthe perturbationRiccatitmnsfermatrixmethodfordynamicresponse pmblemsanddevelopitscomputationalpmgmm.Themetllodisappliedtotheperturbationanalysisofthedynamicresponsef而mabeamwithspringsupportsatbothends,andtllepenurbationcalculationresultsagreewellwith山eaccuratecalculationresults. Keywords:penurbationanalysis;Riccatitransfermatrixmethod;dynamicresponse 不确定参数结构在工程中十分普遍…。关于不确定参数对一维结构系统动力学性能和动力学响应的影响,原则上可以用摄动有限元素法进行研究旧J。但由于一维结构系统的特殊性,摄动有限元素法不是研究这类问题的最理想的方法。特别是在研究转子动力学问题时,由于油膜轴承、液体或气体密封的交叉刚度、阻尼项往往是不对称的,以及陀螺力矩的影响,用有限元素法形成的单元刚度阵和系统刚度阵是不对称的,阻尼也无法简单地以比例阻尼和小阻尼来替代,因此,在解决这些问题时用摄动有限元素法不能取得理想的结果”-。 传递矩阵法是研究一维结构系统动力学问题的有效手段,特别是在转子动力学问题的研究当中,传递矩阵法具有其独特的优势。典型的传递矩阵法有Myklestad.Pmhl传递矩阵法和Riccati传递矩阵法,它们具有结构型式简单、易于计算机程序实现等优点,但随着自由度数的增加和分析频率的提高,Myklestad—Prohl传递矩阵法会出现数值不稳定现象,而Riccati传递矩阵法克服了这个缺点,且计算精度高,数值也比较稳定旧J。 关于不确定参数对一维结构系统动力学特性的影响,文献[4—6]进行了详细的研究。本文基于 收稿日期:2006一04一03 基金项目:河南省高校杰出科研人才创新工程项目(2005KYcXol4)和河南工业大学博士科研基金资助 作者简介:刘保国(1962一),男(汉),河南,教授,博士,bguoliu@haut.edu.cn  万方数据

结构动力学习题解答(三四章)

第三章 多自由度系统 试求图3-10所示系统在平衡位置附近作微振动的振动方程。 图3-10 解:(1)系统自由度、广义坐标 图示系统自由度N=2,选x1、x2和x3为广义坐标; (2)系统运动微分方程 根据牛顿第二定律,建立系统运动微分方程如下: ;)(;)()(;)(3 4233332625323122222121111x K x x K x m x K x K x x K x x K x m x x K x K x m ---=------=---=&&&&&& 整理如下 ; 0)(;0)(;0)(3432333332653212222212111=++-=-++++-=-++x K K x K x m x K x K K K K x K x m x K x K K x m &&&&&& 写成矩阵形式 ;000)(0)(0) (0 0000321433365322221321321 ?? ????????=????????????????????+--+++--++????????????????????x x x K K K K K K K K K K K K x x x m m m &&&&&&(1) (3)系统特征方程 设)sin(,)sin(,)sin(332211?ω?ω?ω+=+=+=t A x t A x t A x 代入系统运动微分方程(1)得系统特征方程 ;000)(0)(0)(321234333 2 26532222121?? ????????=????????????????????-+---+++---+A A A m K K K K m K K K K K K m K K ωωω(2) (4)系统频率方程 系统特征方程(2)有非零解的充要条件是其系数行列式等于零, 即 ;0) (0)(0)(234333226532222121=-+---+++---+ωωωm K K K K m K K K K K K m K K 展开得系统频率方程

相关文档