文档库 最新最全的文档下载
当前位置:文档库 › 噪声系数(Noise Figure)对手机射频接收机灵敏度之影响

噪声系数(Noise Figure)对手机射频接收机灵敏度之影响

噪声系数(Noise Figure)对手机射频接收机灵敏度之影响
噪声系数(Noise Figure)对手机射频接收机灵敏度之影响

Noise Figure

所谓灵敏度,指的是在SNR能接受的情况下,其接收机能接收到的最小讯号[1-2],其公式如下:

第二项是所谓的Noise Figure,理想上SNR当然是越大越好,最好是无限大(表示都没有噪声),但实际上不可能没有噪声,因此,由[3-4]可知,所谓Noise Figure,衡量的是当一个讯号进入一个系统时,其输出讯号的SNR下降多寡,亦即其噪声对系统的危害程度,示意图与定义如下:

而接收机整体的Noise Figure,公式如下:

由上式可知,越前面的阶级,对于Noise Figure的影响就越大,而一般接收机的方块图如下[5] :

因此,从天线到LNA,包含ASM、SAW Filter、以及接收路径走线,这三者的Loss 总和,对于接收机整体的Noise Figure,有最大影响,因为由[5]可知,若这边的Loss多1 dB,则接收机整体的Noise Figure,就是直接增加1 dB,因此挑选ASM 时,要尽量挑选Insertion Loss较小的[7]。

而由[8]可知,SAW Filter可以抑制带外噪声,因此原则上须在LNA输入端,添加SAW Filter,避免带外噪声劣化接收机整体性能。但有些接收机,其SAW Filter 会摆放在LNA与Mixer之间,如下图[9] :

前述说过,LNA输入端的Loss,对于接收机整体的Noise Figure,有最大影响,因此上图的PCS与WCDMA,之所以将SAW Filter摆放在LNA之后,主要也是为了Noise Figure考虑,假设SAW Filter的Insertion Loss为1 dB,LNA的Gain 为10 dB,若将SAW Filter摆放在LNA之前,则接收机整体的Noise Figure,便是直接增加1 dB,但若放在LNA之后,则接收机整体的Noise Figure,只增加了1/10 = 0.1 dB。而在Layout时,其接收路径走线要尽可能短,线宽尽可能宽,这样才能将其Insertion Loss降低,甚至必要时,可以将走线下层的GND挖空,如此便可以在阻抗不变的情况下,进一步拓展线宽,使其Insertion Loss更为降低[10]。

另外,LNA输入端的Loss,除了Insertion Loss,也包含了Mismatch Loss,因此之所以做接收路径的匹配,主要也是为了降低Mismatch Loss,以便进一步降低Noise Figure,达到提升灵敏度之效[12-13]。至于匹配方法,可参照[11],在此就不赘述。

相较于内层走线,其表层走线可以有较短的走线长度,也可避免因穿层而产生的阻抗不连续效应,也较容易将阻抗控制在50奥姆(单端)或100奥姆(差分),同时也可拥有较宽的线宽,换句话说,表层走线可以有较小的Mismatch Loss与Insertion Loss,这对Noise Figure的降低,灵敏度的改善,自然是有帮助[10]。然而由[14]可知,表层走线较容易被噪声干扰,若接收讯号有噪声干扰,那么即便LNA输入端的Loss再怎么小,很有可能某些Channel的灵敏度会非常差。因此当接收路径在表层走线时,与周遭走线的距离要拉大,且GND务必要包好[14],尤其是单端走线,因为单端走线的抗干扰能力,不如差分讯号[15]。

再来谈谈GPS,由[5-6]可知,当输入讯号在LNA的线性区时,其Gain为一定值,但当输入讯号过大时,会使LNA饱和,导致Gain下降,亦即灵敏度变差,称之为Desense。

若LNA的Gain降为零,即输入讯号经过LNA时,完全不会被放大,则有可能被Noise Floor淹没,此时称该接收讯号被阻塞(Blocked)。

由于GPS接收的是太空卫星发射的讯号,其接收讯号极微弱,约-150 dBm,

因此其接收讯号强度并不会大到足以使其LNA饱和,加上GPS只有单一Channel[12],换言之,会使LNA饱和的,皆为带外噪声。以手机而言,因为里面会有许多射频功能,彼此间可能会有所干扰,如下图[12]:

尤其是WCDMA,会有所谓Tx Leakage的问题[6],再加上以手机而言,GPS与WCDMA都是用同一个接收机,例如高通的WTR1625L,所以若接收讯号太过靠近,很有可能WCDMA的Tx Leakage会先流到WCDMA的接收路径,再耦合到GPS的LNA输入端,由[5]可知,其Tx Leakage在LNA输入端,最大可到-24 dBm,远比GPS接收的-150 dBm来的大,会让LNA饱和。

因此一般而言,会先在LNA输入端,放上一颗SAW Filter,来抑制Tx Leakage[16],避免GPS LNA饱和,而因为LNA输入端的Loss对于Noise Figure影响最大,因此该SAW Filter的重点是Insertion Loss要小。

然而除了靠LNA前端的SAW Filter来抑制Tx Leakage的危害,也可以靠Layout 来抑制,亦即GPS的接收路径,尽可能远离WCDMA的发射路径,由[17]可知,若GPS与WCDMA的隔离度有40 dB以上,那么Tx Leakage便几乎不会使GPS 的LNA饱和,导致Gain下降,如下图:

因此若隔离度足够,原则上便可不需要在LNA前端摆放SAW Filter,这样可进一步降低Noise Figure,提升灵敏度[17]。

然而除了Tx Leakage之外,手机中仍有许多带外噪声会干扰GPS,例如GSM与Bluetooth产生的IMD(Inter Modulation),或是PCS与WLAN产生的IMD,如下图[12] :

因为GPS不如GSM或WCDMA,有严格的Blocking测试,故原本对于GPS的线性度要求不高,反倒是对于灵敏度要求较高。但因手机会有Coexistence的问题,如上图的IMD,这表示GPS接收器必须要有更高的抵抗带外噪声能力,因此不得不重视其线性度的要求。原则上可以将LNA的Gain降低,避免后端饱和,以确保线性度,但如此一来,其Noise Figure又会因Gain的下降而提升,导致灵敏度变差[12]。

而由[8]可知,接收机的线性度,主要是取决于Mixer的线性度,因此若提高Mixer 线性度,便可提高接收机的线性度,进而加强抵抗带外噪声能力。但一般而言,GPS的Mixer,其线性度很难做到足以彻底抵抗带外噪声,因此不得不在Mixer 之前,摆放SAW Filter来抑制带外噪声,避免带外噪声被LNA放大后,进而使后端电路饱和[17]。因此一般而言,即便LNA前端可以不摆放SAW Filter,但LNA后端,仍旧会摆放SAW Filter来抑制带外噪声,例如AVAGO的ALM-1412,如下图[18] :

然而由上图可知,纵使LNA模块内部已有内建的匹配电路,但在外部的PCB走线,仍会作匹配(如上图的L3与L4),来降低Mismatch Loss。但是匹配组件皆为被动组件,会有Insertion Loss,这对Noise Figure当然不利,尤其GPS对于灵敏度又是相当要求,因此,若是将匹配组件拿掉,进而降低Insertion Loss,而Mismatch Loss的问题就单靠阻抗控制来解决,如此便可同时降低Insertion Loss与Mismatch Loss,这种方案可行吗?

原则上是可行,但在走线方面要非常注意,首先,天线到LNA的走线要非常短,因为走线一长,阻抗就很难控制得好,同时也会增加Insertion Loss。其次,由[10,14]可知,表层走线具有最短走线距离,以及阻抗容易控制在50奥姆/100奥姆的优点,因此天线到LNA的走线要走表层。再者,天线到LNA的走线,其线宽不宜过细,由[10]可知,其阻抗误差如下式:

因为PCB厂的制程能力,一般来说会有正负0.5mil的线宽误差,因此,若线宽过细,则可能会阻抗误差过大,如此阻抗便很难控制得好,同时Insertion Loss 也会因线宽过细而加大,因此该段走线的线宽不宜过细,必要时甚至可靠下层挖空的方式,在阻抗不变的情况下,来拓展线宽[10]。

Reference

[1] 热噪声与带宽对手机灵敏度之影响, 百度文库

[2] IQ讯号与信噪比对手机灵敏度之影响, 百度文库

[3] Noise Figure, Noise Factor and Sensitivity

[4] 射频微波通讯之量测及仪器介绍

[5] WCDMA之零中频接收机原理剖析大全, 百度文库

[6] WCDMA之Tx Leakage对于零中频接收机之危害, 百度文库

[7] 天线开关模块_简介, 百度文库

[8] RF Microelectronics, Razavi

[9] A single-chip multi-mode RF front-end circuit and module for W-CDMA, PCS,

and GPS applications

[10] 手机射频之阻抗控制, 百度文库

[11] Passive Impedance Matching___实战大全, 百度文库

[12] A Low Noise Figure 1.2-V CMOS GPS Receiver Integrated as a Part of a

Multimode Receiver, IEEE

[13] Topic: Two-Port Noise, UC Berkly

[14] Layout Concern about Trace, Ground and Via_简体中文, 百度文库

[15] 差分讯号简介, 百度文库

[16] LNA Products for GPS and Cellular Applications, RFMD

[17] 利用高线性度LNA模块减少GPS设备中的干扰

[18] ALM-1412 Low Noise Amplifier Module with Integrated Filter for 1.575 GHz

GPS Application, AVAGO

翻译_无线电接收器的噪声系数

无线电接收器的噪声系数 H. T. ERJISt, FELLOW, I.R.E. 摘要——本文给出了电波接收器噪系数的严格定义,此定义不局限于高增益接收机,也适用于普通的四端口网络。分析了接收器整体的噪声系数与其组件的噪声系数之间的关系,简要叙述了接收器组件与其噪声系数的测量方法之间的不匹配。 简介 当越来越短的波得到实际应用,无线电接收器的噪声源也越来越被重视。在很多相关论文中,特别是Llewellyn(英国音乐家)和Jansky(美国无线电工程师)在1928年发表的论文中,通过实验得到:热激噪声(约翰逊噪声)决定了短波无线电接收器的绝对灵敏度。早在1942年,North 建议采用的无线电接收器的绝对灵敏度的标准与我们当时所用的标准相差多达2倍。因为它是基于接收器输入电路的阻抗匹配,我们的标准很有局限性,所以我们采用了他的标准。 本文提出了一个更严格的关于无线电接收器的绝对灵敏度标准的定义,即噪声系数。该定义不局限于高增益接收机,也适用于普通的四端口网络。它使通过一个简单的分析就给出接收器整体的噪声系数与其组件的噪声系数之间的关系成为可能。对于双重检波接收器来说,这些组件可能是高频放大器、变频器和中频放大器。本文也给出了噪声系数的测量方法。

四端口网络噪声系数的定 义如图1所示,一个信号发生器 连接到输入端,输出电路也被标 记出来。网络的输入阻抗和输出 阻抗可能包含电抗成分,它们可 能与发生器和输出电路匹配或不匹配。四端口网络可能是一个放大器、转换器、衰减器或简单的变压器。信号发生器对于接下来的定义是必要的,但信号发生器里面的衰减器和连接右面的输出电路则只是为了表明对噪声系数和增益的测量。 噪声系数将依据可用信号功率、有效噪声功率、增益和有效带宽来定义,下面将给出这些术语的定义并进行讨论。 可用信号功率 阻为R0欧,电动势为E伏特的发生器提供给R1欧的电阻E2R1/(R0+R1)2瓦特的功率,当输出电路与发生器匹配,即R1= R0时,这个功率达到最大等于E2/4R0。E2/4R0被人们称为发生器的可用功率,它的定义与所连接的电路的阻抗无关。当R1不等于R0时,因为存在失配损耗,所以输出功率小于可用功率。事实上,在放大器的输入电路中,由于不匹配而降低的输出噪声可能比降低的输出信号更多,所以不匹配很可能是个有益的条件。正是这种放大器的输入电路中不匹配条件的存在,使本文中的术语“可用功率”显得更加恰当。在图1中,用S o表示信号发生器输出端的可用信号功率。这里S o等于V2/RA瓦特,当V表示衰减器输入端电压,R表示衰减器的特征阻抗,A表示

RF噪声系数的计算方法

噪声系数的计算及测量方法 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为

噪声系数(Noise Figure)对手机射频接收机灵敏度之影响

Noise Figure 所谓灵敏度,指的是在SNR能接受的情况下,其接收机能接收到的最小讯号[1-2],其公式如下: 第二项是所谓的Noise Figure,理想上SNR当然是越大越好,最好是无限大(表示都没有噪声),但实际上不可能没有噪声,因此,由[3-4]可知,所谓Noise Figure,衡量的是当一个讯号进入一个系统时,其输出讯号的SNR下降多寡,亦即其噪声对系统的危害程度,示意图与定义如下:

而接收机整体的Noise Figure,公式如下: 由上式可知,越前面的阶级,对于Noise Figure的影响就越大,而一般接收机的方块图如下[5] : 因此,从天线到LNA,包含ASM、SAW Filter、以及接收路径走线,这三者的Loss 总和,对于接收机整体的Noise Figure,有最大影响,因为由[5]可知,若这边的Loss多1 dB,则接收机整体的Noise Figure,就是直接增加1 dB,因此挑选ASM 时,要尽量挑选Insertion Loss较小的[7]。

而由[8]可知,SAW Filter可以抑制带外噪声,因此原则上须在LNA输入端,添加SAW Filter,避免带外噪声劣化接收机整体性能。但有些接收机,其SAW Filter 会摆放在LNA与Mixer之间,如下图[9] : 前述说过,LNA输入端的Loss,对于接收机整体的Noise Figure,有最大影响,因此上图的PCS与WCDMA,之所以将SAW Filter摆放在LNA之后,主要也是为了Noise Figure考虑,假设SAW Filter的Insertion Loss为1 dB,LNA的Gain 为10 dB,若将SAW Filter摆放在LNA之前,则接收机整体的Noise Figure,便是直接增加1 dB,但若放在LNA之后,则接收机整体的Noise Figure,只增加了1/10 = 0.1 dB。而在Layout时,其接收路径走线要尽可能短,线宽尽可能宽,这样才能将其Insertion Loss降低,甚至必要时,可以将走线下层的GND挖空,如此便可以在阻抗不变的情况下,进一步拓展线宽,使其Insertion Loss更为降低[10]。

噪声系数的原理和测试方法

噪声系数测试方法 针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。 图1是MAXIM公司TD-SCDMA手机射频单元参考设计的接收电路,该通道电压增益大于100dB,与基带单元接口为模拟I/Q信号,我们需要测量该通道的噪声系数。采用现有的噪声测试仪表是HP8970B,该仪表所能测量的最低频率为10MHz,而TD-SCDMA基带I/Q信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。 图1:MAXIM公司TD-SCDMA手机射频接收电路。 利用频谱仪直接测试 利用频谱仪直接测量噪声系数的仪器连接如图2所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于 100dB,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。 测量步骤一:先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号,调节接收机通道增益使I/Q端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G。

测量步骤二:接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q端口在刚才点频频点处的噪声功率谱密度,I端口记为Pncdensity(dBm/Hz), Q端口记为Pnsdensity(dBm/Hz),则接收通道噪声系数有下式给出: 上式中kb表示波尔兹曼常数,F是噪声系数真值,我们用NF表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF的显式表达式如下: 或者: 关于方程2与方程3的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为: 接收机I/Q端口点频信号分别为:

接收机灵敏度计算公式

接收灵敏度的定义公式 摘要:本应用笔记论述了扩频系统灵敏度的定义以及计算数字通信接收机灵敏度的方法。本文提供了接收机灵敏度方程的逐步推导过程,还包括具体数字的实例,以便验证其数学定义。 在扩频数字通信接收机中,链路的度量参数Eb/No (每比特能量与噪声功率谱密度的比值)与达到某预期接收机灵敏度所需的射频信号功率值的关系是从标准噪声系数F的定义中推导出来的。CDMA、WCDMA蜂窝系统接收机及其它扩频系统的射频工程师可以利用推导出的接收机灵敏度方程进行设计,对于任意给定的输入信号电平,设计人员通过权衡扩频链路的预算即可确定接收机参数。 从噪声系数F推导Eb/No关系 根据定义,F是设备(单级设备,多级设备,或者是整个接收机)输入端的信噪比与这个设备输出端的信噪比的比值(图1)。因为噪声在不同的时间点以不可预见的方式变化,所以用均方信号与均方噪声之比表示信噪比(SNR)。 图1. 下面是在图1中用到的参数的定义,在灵敏度方程中也会用到它们: Sin = 可获得的输入信号功率(W) Nin = 可获得的输入热噪声功率(W) = KTBRF其中: K = 波尔兹曼常数= × 10-23 W/Hz/K, T = 290K,室温 BRF = 射频载波带宽(Hz) = 扩频系统的码片速率 Sout = 可获得的输出信号功率(W) Nout = 可获得的输出噪声功率(W) G = 设备增益(数值) F = 设备噪声系数(数值) 的定义如下: F = (Sin / Nin) / (Sout / Nout) = (Sin / Nin) ×(Nout / Sout) 用输入噪声Nin表示Nout: Nout = (F × Nin × Sout) / Sin其中Sout = G × Sin 得到: Nout = F × Nin × G

射频电路的设计原理及应用

射频电路的设计原理及应用 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一 本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成 在中频内部。 射频电路方框图 一、接收电路的结构和工作原理 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点 (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 2、电路分析 (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 接收电路方框图

(2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。 图一、图二 作用:其主要作用有两个: a)、完成接收和发射切换; b)、 完成900M/1800M信号接收切换。 逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。 由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。 3)、滤波器: 结构:手机中有高频滤波器、中频滤波器。 作用:其主要作用:滤除其他无用信号,得到纯正接收信号。后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。 4)、高放管(高频放大管、低噪声放大器): 结构:手机中高放管有两个:900M高放管、1800M高放管。都是三极管共发射极放大电路;后期新型手机把高放管集成在中频内部。

接收机射频热噪声分析

接收机射频热噪声分析 摘要:本文首选介绍了电路噪声理论基础,通过建立了接收机射频通道的简化 模型,推导了射频通道的噪声系数表达式,并分析了接收机射频通道的热噪声特性。 关键词:射频热噪音分析 在电子系统中,噪声被用来描述附加在电信号上面的、任何不希望出现的扰动。在无线 电通信、雷达和导航系统中,信号传递过程的各个环节,都会附加各种各样的噪声。这些噪 声对通信、雷达和导航系统的性能起着制约作用。实现低噪声设备的前提是发展电路噪声理论,设计低噪声电路及器件。目前随着集成电路一类器件的发展及应用,对复杂电路的噪声 分析计算以及设计,已经越来越具有重要性。 1接收机射频热噪声概述 1.1热噪声含义 在实际接收机系统中,由于自然或者人为的原因,存在各种起伏不定的随机的电压或者 电流波动,这些波动叠加在有用信号上面会对系统的信息传递产生影响。而这些随机的波动 往往是人们不希望出现的,因此被称为噪声。接收机输出的信号上面叠加的噪声一部分是在 进入接收机前就已经具有的,称为外部噪声,另一部分是接收机内部产生的,称为内部噪声。外部噪声是信号在传输介质中传播时引入的噪声,包括人为噪声、大气噪声和空间噪声等。 内部噪声是由接收机自身引入的,如电阻中的自由电子热运动引起的热噪声,晶体管中的载 流子随机产生、复合和扩散引起的散弹噪声等,也称之为起伏噪声。其中,热噪声是由于导 体内部自由电子和振动粒子的热相互作用而产生的。热相互作用导致电阻两端电子到达速度 随机变化,因此电阻两端的电位差也随机变化,在某个值附近上下波动。电子设备的电阻总 会产生热噪声。 1.2热噪声特征 1928年J.B.Johnson首先研究了热噪声,所以热噪声也被称为约翰逊噪声。由于热噪声的 频率可以覆盖全部频段,并且在整个频域的功率谱密度为一恒定值,因此也被称为白噪声。 一个阻值为R的电阻,在噪声频带宽度B内,产生的电压均方值是: 一个实际电阻可以等效为一个理想电阻和一个电压源串联的形式,如图一(a)所示, 其中R是无噪声的理想电阻,用戴维南定理可以将该电路变换为一个电阻和一个电流源并联 的形式,如图一(b)所示。 图一电阻热噪声模型 电流源的电流均方值为: 1.3热噪声的表示 (1)噪声系数。对于一个二端口网络,假设输入端的噪声温度是T0=290K,网络输入端 的信噪比与网络输出端信噪比的比值就是噪声因子F,即: 噪声因子的对数形式称为噪声系数,用NF表示。噪声因子和噪声系数只是同一个量的 不同表示形式,对于选定频率的线性系统而言,噪声系数是两个噪声功率之比,即在输出端得 到的单位带宽总噪声功率(在相应的输出频率上)与在输入频率上由输入终端产生的那部分噪 声功率之比。输入终端的噪声温度在任何频率上都是标准温度290°K。 (2)等效噪声温度。与噪声系数相同,等效噪声温度也是一个反映系统对噪声恶化程度 的指标,噪声温度的定义从另外一个角度来理解系统的噪声模型。噪声温度的定义如下:将 输入端等效为温度为T0=290K的电阻,二端口网络的可获噪声功率为No=Na+GkT0B。假设二 端口网络不产生内部噪声,只经过一个理想放大器,输出的可获噪声功率为GkT0B。然后, 增大输入端电阻的温度,使得输出端的可获噪声功率等于No,这时输入端增加的温度为Te,Te就是等效噪声温度。由等效噪声温度可以很容易表示系统的内部噪声功率,即Na=kTeB,

技术专家手把手教你计算放大器噪声系数

导读] 本文简要介绍了两种放大器架构的噪声系数计算,包括inverting,non-inverting 架构的噪声系数计算,并提供计算小工具。关键词:噪声系数放大器 1. 引言 在各种放大器使用的场合,我们时常需要计算到放大器,却没有一个直观的方式来看放大器这一级对链路噪声的影响。本文讨论了各种放大器架构下,放大器的噪声系数的计算方式。 2. 放大器噪声指标 电子元件应用中,常见如下5 种噪声来源: 1. 散弹噪声(shot noise,白噪声,在频谱中表现为平坦的) 2. 热噪声(thermal noise,白噪声,在频谱中表现为平坦的) 3. 闪烁噪声(flicker noise,1/f 噪声) 4. 突发噪声(burst noise,脉冲噪声) 5. 雪崩噪声(Avalanche noise,反向击穿时才出现的噪声) 基本上每个放大器都有输入电压噪声和输入电流噪声两个指标。在频域,通常其单位用nV/rtHz,和pA/rtHz 来表征。如下图: Figure 1 输入电压噪声和电流噪声曲线图例 按噪声种类来分,其大致贡献在不同的频段如下:

Figure 2 噪声种类分布图 如果把所有电容,电感都看做无噪声的器件,一个普通的放大器的输出噪声按主要的贡献可以按如下图所示: Figure 3 放大器噪声分量分解

根据这个估计,可以得到如下电阻值的电压噪声: 在输出的噪声中,上图的各个分量其贡献如下: 输出的噪声是这些分量的均方和:

Figure 4 放大器电压噪声等效输出模型 同理,对上式中的第4 项,负端的电流噪声,也可以建立这样的模型:

噪声系数测量方法

噪声系数测量的三种方法 摘要:本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数(NF)有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 式1 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数: * HG = 高增益模式,LG = 低增益模式 噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA在低增益模式下),一些则具有非常高的增益和宽范围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。

图1. 噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在内部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率范围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率范围内测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义: 式2. 在这个定义中,噪声由两个因素产生。一个是到达射频系统输入的干扰,与需要的有用信号不同。第二个是由于射频系统载波的随机扰动(LNA,混频器和接收机等)。第二种情况是布朗运动的结果,应用于任何电子器件中的热平衡,器件的可利用的噪声功率为: PNA = kTΔF,

噪声系数相关

噪声系数的基本定义:F = total output noise power/output noise power due to input source,其中F称为Noise Factor,如果用dB表示,称为Noise Figure或NF。 输出噪声功率包含两部分:噪声源输入噪声引起的噪声功率输出和系统本身产生的噪声功率输出。 设噪声源输入噪声为KTB,则系统本身产生的噪声功率NA=(F-1)* KTBG,其中G为系统对输入噪声的增益。 F = (SNR IN )/(SNR OUT ),表征系统输入信噪比和输出信噪比的比值。当系统的信号 功率增益和噪声增益相等时该式成立,即系统为线性的。 美国联邦标准1037C的噪声因子定义如下: 噪声系数:标准噪声温度(通常为290 K)时,装置的输出噪声功率与其中由输入端点中热噪声引起的部分之比。注:如果装置本身不产生噪声,噪声系数则为实际输出噪声与残余噪声之比。在外差式系统中,输出噪声功率包括镜像频率变换引起的杂散噪声,但是标准噪声温度下输入端点中热噪声的部分仅包括通过系统的主频率变换出现在输出中的噪声,不包括通过镜像频率变换出现的噪声。 当信号链路中存在混频器时,需要区分双边带噪声系数F DSB ,单边带噪声系数 F SSB ,单边带有效噪声系数F SSBe 。 其中F SSB = 2*F DSB ; F SSBe = F SSB -1 = 2*F DSB -1 传统的单边带噪声系数F SSB ,假设允许来自于两个边带的噪声折叠至输出信号,但只有一个边带对表示预期信号有用。如果两处响应的转换增益相等,这就自然造成噪声系统增大3dB。相反,双边带噪声系数假设混频器的两处响应包含有预

WCDMABTS接收机灵敏度和整机噪声系数的理论计算

WCDMA BTS 接收机灵敏度和整机噪声系数的理论计算 1 概述 灵敏度是衡量接收机在一定条件下能够接收小信号的能力,它和诸多因素有关。例如,在不同的误码率、信纳比、信噪比等条件及不同的接收环境(静态、多径信道模型)情况下灵敏度概念和数值可能各不相同。 静态参考灵敏度是指接收机在静态理想传播环境(相当于有用信号直接输入接收机,没有任何外界干扰)下,错误比特率小于某一规定值时接收机可以接收最小有用信号的能力。它是各种传播条件中最高的灵敏度,也就是说在任何情况下的接收机灵敏度数值都不可能超过静态参考灵敏度。通常所讲的基站灵敏度一般是指它的静态参考灵敏度。 2 接收机灵敏度计算 基站接收机系统可以分为射频滤波、LNA、混频、中频滤波、放大、A/D变换、DSP 处理、解调等几部分组成,如图1所示。 图1 接收机原理框图 进入接收机输入端的信号有两种,有用信号P min 和热噪声信号P noise,由于接收机通道中电路本身也会产生噪声N f,因而在解调处有用信号和噪声信号的比例为: E b/N t=P min-P noise-N f(1) 其中E b/N t是有用信号平均比特能量与噪声和干扰功率谱密度的比值,又称为解调门限,相当于模拟FM调制的C/I(载干比),是衡量数字调制和编码方式品质因素的标准。E b/N t的值取决于该系统的调制方式和解调算法。P noise为接收机输入口处的热噪声信号,又称本底噪声,其数值为P noise=10Log(KT0·BW),其中K是波尔兹曼常数,K=1.38 10-23J/K;T0为标准噪声温度,T0=290K。则: P noise=10Log(KT0)+10Log(BW)=-174dBm+10Log(BW) (2) 式中BW为系统信道带宽。 对于WCDMA系统而言,BW=3.84MHz,由式(1)、(2)可以推出WCDMA基站接收机理论上静态参考灵敏度P min为: P min=-174dBm+10Log(BW)+ N f+ E b/N t =-108.15+ N f+ E b/N t(3)静态参考灵敏度是在静态传播情况下测得的数值,是衡量接收机性能好坏的一个重要指标。但在实际工作中,由于接收机所处的环境非常复杂,移动通信信道不可能是一个静态信

灵敏度

讨论这个议题的主要起因是:灵敏度(sensitivity)是如何确定的.[https://www.wendangku.net/doc/2a12928398.html,] 问题:我们经常看到某些GPS芯片 商宣称自己的芯片灵敏度是如何的高,但是根据对整个系统的分析可以看出系统的灵敏度主要取决于第一级LNA的设计,GPS产品的灵敏度取决于GPS芯片和放大器的设计,那么就带来下面的问题:[https://www.wendangku.net/doc/2a12928398.html,] 1)系统的灵敏度是如何计算的芯片的灵敏度对系统设计有什么影响 [https://www.wendangku.net/doc/2a12928398.html,] 2)接收GPS信号的功率和信噪比是一个什么样的水平 [https://www.wendangku.net/doc/2a12928398.html,] 3)如何按照信噪比,信号功率设计系统灵敏度 [https://www.wendangku.net/doc/2a12928398.html,] [https://www.wendangku.net/doc/2a12928398.html,] 这真是一篇超精华的帖子!感谢楼主和参与的所有人![5 2 jinfoxhe: R1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益. 2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB. 3 见1. snow99: 好象在说GPS, 不是GSM, 虽然看起来很像 GPS RF BW: 2.046 MHz Modulation: BPSK Process Gain: 46 d Thermal Noise Floor: kTB = -111 dBm/2.046MHz Required Eb/N0: 6 dB (不太清楚, 可以修正)

Receiver NF: 3 dB (Typical) Sensitivity: -111 + 6 + 3 - 46 = -148 dBm 这只是一个大致结果, 考虑系统的其他算法以及Doppler校正, 最终灵敏度在-154 ~ -149之间 https://www.wendangku.net/doc/2a12928398.html,] Arm720: 楼上朋友对灵敏度的描述已经非常清楚了,降低系统的信噪比和噪声系数能提高系统的灵敏度.那么对于设计来说是不是可以这么理解: 1)根据灵敏度公式估算系统的接收灵敏度 2)根据估算的系统接收灵敏度计算对芯片接收灵敏度的要求 芯片接收的灵敏度反映了对前级放大器噪声系数和信噪比的设计要求. 不知我的理解是否正确,如果是这样,估算的原则又是什么那些参考书上有描述,我想详细的研究一下,多谢了! 那位测试过GPS信号的朋友能说一下GPS信号的接收功率和信噪比吗 Arm720: 看来我的发帖晚了一部,多谢jinfoxhe和snow99兄! 不过snow99兄的计算方法和上面公式好像对不上.你描述的是对GPS接收系统的需求,不只这些需求是如何计算出来的. 多谢了! 以下是引用jinfoxhe在2006-4-24 8:56:00的发言: 1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带 宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益. 2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB. 3 见1. 今天仔细看了看jinfoxhe兄的帖子,发现对关键问题进行了描述"Eb/N0为芯片在一定误码条件下的解调需要的信噪比",也就是说,你选的芯片就决定了接收系统灵敏度的理论值,这

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

噪声系数的计算及测量方法

噪声系数的计算及测量方法(一) 时间:2012-10-25 14:32:49 来源:作者: 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为 设Pi为信号源的输入信号功率,Pni为信号源内阻RS产生的噪声功率,Po和Pno 分别为信号和信号源内阻在负载上所产生的输出功率和输出噪声功率,Pna表示线性电路内部附加噪声功率在输出端的输出。

手机接收通道噪声系数测试

关键词 噪声系数、噪声温度、超噪比、Y 系数法、冷热负载法 概述: 针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。 Abstract : Often we face to test noise figure of a receiver with RF input and I/Q analogue output, normal noise figure instrument is not adequate for the limited frequency range, here we introduce two methods, one is to use spectrum analyzer, another method is to use standard noise source, and use Y-coefficient method to calculate the noise figure. 问题提出 下图是MAXIM 公司TD-SCDMA 手机射频单元参考设计的接收电路,该通道电压增益大于100dB ,与基带单元接口为模拟I/Q 信号,我们需要测量该通道的噪声系数。我们现有的噪声测试仪表是HP8970B ,该仪表所能测量的最低频率为10MHz ,而TD-SCDMA 基带I/Q 信号最高有用频率成份为640KHz ,显然该仪表不能满足我们的测量需求。 AFC RxI+RxI- CLK DATA ENRX RxQ+RxQ-RxAGC VBA GND 3~3.6Vdc LH46B Matching 图1:MAXIM 公司TD-SCDMA 手机射频接收电路

现代无线电接收机的系统噪声系数分析

关键词: noise factor, noise figure, noise-figure analysis, receivers, cascaded, Friis equation, direct conversion, zero-IF, low-IF, Y-factor, noise temperature, SSB, DSB, mixer as DUT, mixer noise figure, noise folding, Boltzmann constant 设计指南5594 现代无线电接收机的系统噪声系数分析 Charles Razzell, 执行总监 ? Apr 16, 2014, Maxim Integrated Products, Inc. 摘要:噪声系数的一般概念很好理解,并被系统和电路设计人员广泛采用,尤其被产品定义和电路设计者用来表示噪声性能,以及预测接收系统的总体灵敏度。引言 当信号链中存在混频器时,噪声系数分析就会产生原理性问题。所有实数混频器均折叠本振(LO)频率附近的RF频谱,产生输出,其中包括两个边带频率的叠加,合成公式为f OUT = |f RF - f LO|。在外差式结构中,可能认为其中之一是杂散频率,而另一成分才是有用的,因此需要采用镜像抑制滤波或镜像消除方法来大幅消除这些响应中的一种响应。在直接转换接收机中,情况则不同:两个边带(f RF = f LO 的上边带和下边带)均被转换并用于预期信号,所以其实是混频器的双边带应用。 业内经常使用的各种定义解释噪声折叠的不同程度。例如,传统的单边带噪声系数F SSB,假设允许来自于两个边带的噪声折叠至输出信号,但只有一个边带对表示预期信号有用。如果两处响应的转换增益相等,这就自然造成噪声系统增大3dB。相反,双边带噪声系数假设混频器的两处响应包含有预期信号,则噪声折叠(以及对应的信号折叠)不影响噪声系数。双边带噪声系数被应用于直接转换接收机以及射电天文接收机。然而,较深层次的分析表明,对于设计者来说,为给定的应用选择正确的噪声系数的―方式‖,然后替代标准弗林斯公式中的数字是不够的。如果这么做,会造成分析结果产生相当大的错误,当混频器或混频器之后的器件对确定系统噪声系数的作用比较重要时,甚至会产生严重后果。 本文综合介绍噪声系数的基本定义、混频器级联模块的公式分析方法,以及评估噪声系数的典型实验室方法。在第一部分中,我们介绍具有一个或多个混频器时如何修改级联噪声系数公式,并得出适用于常用下变频结构的公式。我们在第二部分继续深入讨论噪声系数测量的Y因子法。第二部分中,我们集中讨论混频器作为被测器件的情况,以便利用第一部分得出的级联公式得出适用的混频器噪声系数的测量方法。 混频器噪声的概念模型

第2章 噪声系数和噪声温度

通常需要描述一个电路或系统内部噪声的大小,因此需要引入相应的物理量(噪声系数或噪声指数)来描述。 一.噪声系数的定义 图 2-35 为一线性四端网络, 它的噪声系数定义为输入端的信号噪声功率比(S/N)i 与输出端的信号噪声功率比(S/N)o 的比值, 即 图 2-35 噪声系数的定义 第四节 噪声系数和噪声温度 线性电路K P N F S i N i S o N o 信号功率 噪声功率

图中, K P 为电路的功率传输系数(或功率放大倍数),K P =So /S i 。 用N a 表示线性电路内部附加噪声功率在输出端的输出, 考虑到K P =So /S i , 上式可以表示为: o o i i o i F N S N S N S N S N ==)()(1i p a a p p F i i N K N N K K N N N +==+o p o F i p i N K N N N K N ==噪声系数通常用dB 表示, 用dB 表示的噪声系数为 o i F F N S N S Lg LgN dB N )()(1010)(==

关于噪声系数,有以下几点需要说明: (1) 由于噪声功率是与带宽B相联系的,为了不使噪声系数依赖于 (1) 指定的频宽,因此国际上式(2-6 (2-611)定义中的噪声功率是指单位频带内的噪声功率,即是指输出、输入噪声功率谱密度。此时的噪声系数将随指定的工作频率不同而不同,即表示点频的噪声系数。 (2) 由式(2-60)可以看出,输入、输出信号功率是成比例变化的, (2) 即噪声系数与输入信号大小无关,但却与输入噪声功率Ni有关,因此,为了明确,在噪声系数的定义中,规定输入噪声功率Ni为信号源内阻Rs的热噪声最大输出功率(由前可知为kTB),并规定温度为290K。

接收灵敏度的定义公式

接收灵敏度的定义公式 2011-11-21 12:19:17| 分类:默认分类|举报|字号订阅 接收灵敏度的定义公式< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />摘要:本应用笔记论述了扩频系统灵敏度的定义以及计算数字通信接收机灵敏度的方法。本文提供了接收机灵敏度方程的逐步推导过程,还包括具体数字的实例,以便验证其数学定义。在扩频数字通信接收机中,链路的度量参数Eb/No (每比特能量与噪声功率谱密度的比值)与达到某预期接收机灵敏度所需的射频信号功率值的关系是从标准噪声系数F的定义中推导出来的。CDMA、WCDMA蜂窝系统接收机及其它扩频系统的射频工程师可以利用推导出的接收机灵敏度方程进行设计,对于任意给定的输入信号电平,设计人员通过权衡扩频链路的预算即可确定接收机参数。 从噪声系数F推导Eb/No关系 根据定义,F是设备(单级设备,多级设备,或者是整个接收机)输入端的信噪比与这个设备输出端的信噪比的比值(图1)。因为噪声在不同的时间点以不可预见的方式变化,所以用均方信号与均方噪声之比表示信噪比(SNR)。 < xmlnamespace prefix ="v" ns ="urn:schemas-microsoft-com:vml" />图1.下面是在图1中用到的参数的定义,在灵敏度方程中也会用到它们: Sin = 可获得的输入信号功率(W) Nin = 可获得的输入热噪声功率(W) = KTBRF其中: K = 波尔兹曼常数= 1.381 × 10-23 W/Hz/K, T = 290K,室温 BRF = 射频载波带宽(Hz) = 扩频系统的码片速率 Sout = 可获得的输出信号功率(W) Nout = 可获得的输出噪声功率(W) G = 设备增益(数值) F = 设备噪声系数(数值)的定义如下: F = (Sin / Nin) / (Sout / Nout) = (Sin / Nin) ×(Nout / Sout)

射频电路结构和工作原理

射频电路结构和工作原理 一、射频电路组成和特点: 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。 RXI-P RXQ-P RXQ-N (射频电路方框图) 1、接收电路的结构和工作原理: 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,

高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点: (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 电路分析: (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 (接收电路方框图) (2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)

由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 塑料封套螺线管 (外置天线)(内置天线) 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图) 手机天线开关(合路器、双工滤波器)由四个电子开关构成。 900M收收GSM 900M收控收控 900M发控GSM 900M发入GSM (图一)(图二) 作用:其主要作用有两个: a)、完成接收和发射切换; b)、完成900M/1800M信号接收切换。

相关文档
相关文档 最新文档