文档库

最新最全的文档下载
当前位置:文档库 > 对数函数及其性质-对数的公式互化-详尽的讲解

对数函数及其性质-对数的公式互化-详尽的讲解

2.1 对数与对数运算

对数函数及其性质-对数的公式互化-详尽的讲解

1.对数的概念

一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.

说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ⇔x =log a N ,从而得对数恒等式:a log a N =N .

(2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.

(3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质:

①零和负数没有对数,即N >0;

②1的对数为零,即log a 1=0;

③底的对数等于1,即log a a =1.

2.对数的运算法则

利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.

(1)基本公式

①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和.

②log a M N

=log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数的对数减去除数的对数.

③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数.

(2)对数的运算性质注意点

①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4).

②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N

=log a M log a N

,log a M n =(log a M )n . 3.对数换底公式

在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底