文档库 最新最全的文档下载
当前位置:文档库 › 爆破破岩机理的探讨

爆破破岩机理的探讨

爆破破岩机理的探讨
爆破破岩机理的探讨

爆破

1)工业炸药基本要求:1、具有足够的爆炸能量2、具有合适的感度,保证使用、运输、搬运等环节的安全,并能被8号雷管或其他引爆体直接引爆3、具有一定的化学安定性,在储存中不变质、老化、失效、甚至爆炸,具有一定的存储期4、爆炸生成的有毒气体少5、原材料来源广,成本低廉,便于生产加工。 2)铵梯炸药成分:1、硝酸铵作氧化剂2、梯恩梯作还原剂3、木粉起疏松作用,可以阻止硝酸铵颗粒之间的粘结4、石蜡作防潮剂 3)乳化炸药(油包水型结构)主要成分:1、氧化剂水溶液2、燃料油3、乳化剂4、敏化剂5,稳定剂6,高热剂 4)最大安全电流:给电雷管通以恒定直流电,5min内不致引爆雷管的电流最大值,叫做最大安全电流,又称工作电流。 5)最小发火电流:给电雷管通以恒定的直流电,能准确地引爆雷管的最小电流值,称为电雷管的最小发火电流,一般不大于0.7A。 6)电雷管的反应时间:电雷管从通入最低准爆电流开始到引火头点燃的这一时间,称为电雷管的点燃时间tB,从引火头点燃开始到雷管爆炸的这一时间,称为传导时间θB,tB与θB 之和称为电雷管的反应时间。 7)电力起爆法优点:1、在准备到整个施工过程中,从挑选雷管到连接起爆网路等所有工序,都能用仪表进行检查;并能按设计计算数据,即使发现施工和网路连接中的质量和错误,从而保证了爆破的可靠性和准确性。2、能在安全隐蔽的地点远距离起爆药包群,使爆破工作在安全条件下顺利进行。3、能准确地控制起爆时间和药包群之间的爆炸顺序,因而可保证良好的爆破效果。4、可同时起爆大量雷管等。 电力起爆法缺点:1、普通电雷管不具备抗杂散电流和抗静电的能力。所以,在有杂散电流的地点或露天爆破遇有雷电时,危险性较大,此时应避免使用普通电雷管。2、电力起爆准备工作量大,操作复杂,作业时间较长。3、电爆网路的设计计算,敷设和连接要求较高,操作人员必须要有一定的技术水平。4、需要可靠的电源和必要的仪表设备等。 8)导爆管起爆法优点:操作简单轻便,使用安全、准确、可靠;能抗杂散电流、静电和雷电;原料是塑料,金属和棉纱的用量少;导爆管运输安全。缺点:不能用仪表检测网路连接质量;爆炸时产生冲击波,不适用于有瓦斯与矿尘爆炸危险的矿山。 1)爆炸:爆炸是物质系统一种极迅速的物理或化学变化,在变化过程中,瞬间放出其内含能量,并借助系统内原有气体或爆炸生成气体的膨胀,对系统周围介质做功,是之发生巨大的破坏效应,并伴随有强烈的发光和声响。分为,物理爆炸,化学爆炸,核爆炸 2)炸药:炸药是在一定条件下,能够发生快速化学反应,放出能量,生成气体产物,并显示爆炸效应的化合物或混合物。炸药是主要由碳、氢、氮、氧四种元素组成的化合物或混合物。 炸药特点:平常条件下,炸药是比较安定的物质,但一旦外界给予足够的活化能,使炸药内各种分子的运动速度和相互碰撞力增加,是之发生迅速的化学反应,就会丧失安定性,引起炸药爆炸。需要指出,炸药爆炸通常是从局部分子被活化、分解开始的,其反应热又使周围炸药分子被活化、分解,如此循环下去,直至全部炸药反应完毕。 3)爆炸三要素:反应的放热性、生成气体产物(必须借助气体介质才能转化为机械功)、化学反应和传播的高速性(由冲击波所激起) 4)炸药化学变化形式:1、缓慢分解(特点:炸药内个点温度相同;在全部炸药内反应同时进行,没有集中的反应区;分解时,既可以吸热,也可以放热,决定于炸药类型和环境温度)2、燃烧(特点:炸药的燃烧过程只是在炸药的局部区域(即反应区)内进行并在炸药内一层层地传播。)3、爆轰(特点:是借助于冲击波对炸药一层层的强烈

岩石破碎

第二章岩石的破碎理论(爆炸理论和钻爆法) 20%-30% 对周围介质做功C H O N CO CO2 H2O 炸药爆炸三要素:高温高压(生成大量气体)高速 三种形式:缓慢分解燃烧爆炸 2000—9000m/s 第二节爆炸理论与炸药(炸药的分类) 1. 殉爆:感度来表示难易程度 2. 传爆:爆轰波和爆速 影响稳定爆轰的主要因素:直径:临界直径;极限直径;炸药密度:混合炸药有临界密度;起爆冲能 3 间隙效应 二、炸药的性能参数 动作用以猛度表示静作用以爆力表示 爆速:高低中炸药 炸药的敏感度:热感度、机械感度、冲击感度、起爆冲能感度和静电火花感度热感度:热安定和火焰感度 机械感度:冲击感度,摩擦感度 起爆冲能感度:用殉爆距离表示 静电感度:e 电子是带负电荷静电 三、爆轰产物和有毒气体 二氧化碳CO2 一氧化塘CO 水H2O 氮氧化物NO N2 炸药的氧平衡:零氧,正氧,负氧CO 第三节矿用炸药与起爆器材 一、矿用炸药的分类 1,煤矿使用炸药:5级等级越高,威力越小,1、2级低瓦斯 铵梯炸药,睡觉炸药,乳化炸药 32mm*190 35mm*170 水胶炸药:含水炸药 乳化炸药:适用于软岩和煤层中工作 2,岩石炸药:硝酸铵,TNT和木粉组成 3,露天炸药: 二、起爆器材 雷管、导爆索、导爆管 1.雷管:管壳、加强帽、起爆药、加强药和电引火装置;桥丝用镍铬丝 脚线;桥丝,管壳,密封塞,纸垫,桥丝连接引火头,起爆药 煤矿瞬发电雷管: 2,秒延期电雷管 3,毫秒延期电雷管 4,抗杂散电流电雷管:无桥丝电雷管和低阻桥丝电雷管 电雷管的主要性能参数:全电阻,最大安全电流,最小发火电流(二)导爆索、继爆管和导爆管

爆破工程-知识点知识讲解

●爆破工程特点:对安全的高度重视和对爆破作业人员的素质有较高的要求。 ●爆破方法:(1)按药包形状:集中、平面、延长药包法,异性药包。 (2)按装药方式和装药空间形状不同:药室、药壶、炮孔、裸露药包法。 (3)按爆破技术:定向,预裂、光面,微差爆破;其他特殊条件下爆破技术。 ●浅孔:孔径<50mm,孔深≥3~5m ●深孔:孔径≥80mm,孔深>12~15mm ●钻孔方法:冲击式、旋转式、旋转冲击式、滚压式。 ●潜孔钻机:工作方式属于风动冲击式凿岩,穿孔过程中风动冲击器跟钻头一起潜入孔内。 ●潜孔钻机优点:(1)其冲击器活塞直接撞击在钻头上,能量损失少,穿孔速度受孔深影 响少,因此能穿凿出直径较大和较深的炮孔。(2)冲击器潜入孔内工作,噪声小。(3)冲击器排出的飞起可用来排碴,节省动力。(4)冲击力传递简单,钻杆使用寿命长。 (5)与牙轮钻机相比,钻孔结果好,购置费用低。 ●潜孔钻机缺点:(1)冲击器的气缸直径受钻孔直径限制,孔径愈小,穿孔速度愈低。(2) 当孔径在200mm以上时,穿孔速度没有牙轮款,而动力消耗更多。 ●工业炸药:指用于矿山、铁道、水利、建材等部门的民用炸药。 ●工业炸药的基本要求:(1)有足够的爆炸能量。(2)有合适的感度。(3)有一定的 化学安定性。(4)爆炸生成的有毒气体少。(5)原料来源广,成本低廉,便于生产。 ●工业炸药分类:(1)按主要化学成分:硝胺类、硝化甘油类、芳香族硝基化合物类炸药, 液氧炸药。(2)按使用条件:准许在一切地下和露天爆破工程中使用的炸药,包括有瓦斯和矿尘爆炸危险的矿山;准许在(同上),但不包括(同上);只准许在露天爆破工程中使用的炸药。 ●起爆药:雷汞(不铝),氮化铅(二氧化碳湿不铜),二硝基重氮酚(常用)。 ●单质炸药(加强药):梯恩梯(TNT),黑索金(RDX),泰安(PETN)。 ●混合炸药:(1)铵梯炸药:岩石、露天、煤矿、高威力硝铵炸药。(2)铵油炸药。(3) 铵松蜡炸药。(4)含水炸药:浆状、水胶、乳化炸药。(5)煤矿许用炸药:粉状硝酸铵类、许用含水、离子交换、被筒炸药。 ●起爆器材:雷管、导火索、导爆索、导爆管、继爆管、起爆药柱。 ●电雷管:瞬发、秒延期、毫秒延期、抗杂散电流、安全电雷管,无起爆药雷管。 ●电雷管性能参数:电雷管全电阻,最大安全电流,最小发火电流,6ms发火电流,100ms 发火电流,电雷管的反应时间,发火冲能。 ●电雷管全电阻:每发电雷管的桥丝电阻和脚丝电阻之和。 ●导火索检验:外观检查、喷火强度试验、耐水性能试验、燃速测定。 ●导爆索:药芯白色,表面鲜红色,以黑索金或泰安做药芯,以棉麻线做覆盖材料的传递 爆轰波的一种索状起爆器材。 ●导爆管性能:起爆感度,传爆速度,传爆性能,耐火性能,抗冲击性能,抗水性能,抗 电性能,破坏性能,强度性能。 ●起爆方法:电力、导火索、导爆索、导爆管起爆法。 ●电力起爆法:利用电雷管通电后起爆产生的爆炸能引起爆炸炸药的方法。优点:(1) 在整个施工过程中,都能用仪表进行检查,并能按设计计算数据,及时发现施工中的质量和错误,保证了爆破的准确性和可靠性。(2)能在安全隐蔽的地点远距离起爆药包群,使爆破工作安全顺利进行。(3)能准确控制起爆时间和爆炸顺序,因而保证良好爆破效果。(4)可同时起爆大量雷管等。 缺点:(1)普通电雷管不具备抗杂散电流和抗静电的能力。(2)电力起爆准备工作量大,操作复杂,作业时间较长。(3)电爆网络的设计计算、敷设和连接要求较高。(4)需要可靠的电源和必要的仪表设备等。

TBM破岩机理及刀圈改形技术研究_李亮

文章编号:1001-8360(2000)S0-0008-03 T BM破岩机理及刀圈改形技术研究 李 亮, 傅鹤林 (长沙铁道学院科学研究处,长沙 410075) 摘 要:通过地应力对破岩影响的分析,对T BM破岩机理进行了研究,着重考虑了岩石破裂角对破岩效果的影 响。在刀圈荷载一定的条件下,为提高破岩效果可以针对不同的岩石采用不同的刀圈外形。结合秦岭隧道的工程 实际,提出了提高工作效率的刀圈改形方案。 关键词:T BM;破岩机理;刀圈改形 中图分类号:U455.6 文献标识码:A Rock breaking mechanism by TBM and modification to pan knife ring LI Liang, FU He-lin (Science Research Dep t.,Changs ha Railway Univer sity,C han gsha410075,Chin a) Abstract:T he effect o f earth pressur e to r ock breaking is studied.T he principle of rock breaking mechanism by TBM is discussed and the action o f ro ck breaking angle is emphasized.Efficiency of rock breaking can be increased by using proper pan knife for differ ent rock sedim entary w hen the thrust of machine is a constant.A modification o f pan knife is pr ovided for using in Qinling tunnel. Keywords:TBM;ro ck breaking mechanism;modification of pan knife 为了提高我国铁路隧道的装备水平和参与国际竞争的能力,铁道部从德国Wir th公司引进了两台TBM 掘进机在中国最长的秦岭隧道(18.4km)投入使用。由装有刀圈的刀盘、刀盘旋转驱动装置和刀盘纵向推进装置组成的凿进挖掘系统(boring or excavating sy stem)是整个机器中的最重要部分,其性能和质量的好坏直接影响着掘进机的整个工作效率。该系统中的碟形刀圈,在整个掘进过程中始终与掌子面上的岩石接触,是挤压破岩凿进的刀具,因而是整个掘进机的关键零件。由于秦岭的岩体属于多重变质体,地质条件极其复杂,岩体坚硬而且岩性变化大,导致T BM刀圈出现卷刀、崩口、断裂、刀圈移位磨蚀度偏大及空磨刀等现象,严重影响掘进速度。为了使刀圈适应秦岭的复杂地质条件,有必要对T BM破岩机理进行研究,在给定的机械条件下,提出适合不同地质环境的刀圈方案。 1 地应力场对破岩的影响 由于掌子面岩体在刀圈挤压力作用下,岩体处于三向受力状态,按摩尔-库仑定理,要使岩体发生挤压破收稿日期:1999-10-11;修回日期:2000-03-07 基金项目:铁道部T BM刀具攻关技术研究课题(95G48B) 作者简介:李 亮(1962—),男,江苏泰兴人,副教授,硕士坏,所受压力R必须满足 R>R y+1+sin< 1-sin< R3=R y+1-L L R3(1)式中,R y为岩体单轴抗压强度;<,L分别为岩体内摩擦角和泊松比;R3为地应力场的某一方向的主应力。 秦岭隧道北口岩体为混合变质片麻岩。由于岩体发生变质的因素主要为高温、高压和化学性质活泼的流体所致。高压的作用导致大的断裂结构及高地应力场存在,根据勘测结果发现的F4等大断层及地应力场测试结果,说明秦岭北口变质岩形成的原因与高压作用有关。 由已有的测试结果可知,秦岭隧道岩体的裂隙系数为0.6~0.8,岩体的单轴抗压强度为100~320 M Pa,岩体泊松比为0.20~0.25,岩体的取样通常是完整性比较好的岩体,室内单轴抗压强度代表了现场完整性比较好的岩体强度,假定工作面岩体的地应力场按理想自重应力场为主计算,当工作面深度约400m 时,取C=27.5kN/m3,则R3=11M Pa,在式(1)中,令L=0.25,则由计算可知,要使完整性较好的岩体发生挤压破坏,R必须大于133~353M Pa。而对节理裂隙发育的岩体,地应力场在岩体开挖过程中就已经转移到了完整性较好的岩体上,因而在开挖节理裂隙发育的 第22卷增刊铁 道 学 报V ol.22 Supple. 2000年5月JOU RN AL O F T HE CHIN A RA IL W AY SO CI ET Y M ay 2000

南华大学-岩石的爆破破碎机理

南华大学-岩石的爆破破碎机理 第七章岩石的爆破破碎机理 概论 爆破是目前采矿工程中和其他基础工程中应用最广泛最频繁的一种破碎岩石的有效手段。为了更有效的利用炸药爆炸释放的能量达到一定的工程目的,研究炸药包爆炸作用下岩石的破碎机理是一项重要的科研课题。 炸药爆轰过程属于超动态动力学问题,从药包起爆到岩石破碎,只有几十微秒。 岩石的爆破机理研究是在生产实践的基础上,借助于高速摄影,模拟试验,数值分析对爆破过程中在岩石内发生的应力、应变、破裂、飞散等现象的观测基础上总结而成的。 (讲课时间5分钟) 第一节岩石爆破破坏的几种假说 一、爆炸气体产物膨胀压力破坏理论(讲课时间10分钟) 岩石主要由于装药空间内爆炸气体产物的压力作用而破坏。 炸药爆炸—气体产物(高温,高压)—在岩中产生应力场—引起应力场内质点的径向位移—径向压应力—切向拉应力—岩石产生径向裂纹;如果存在自由面,岩石位移的阻力在自由面方向上最小,岩石质点速度在自由面方向上最大,位移阻力各方向上的不等形成剪切应力导致岩石剪切破坏;爆炸气体剩余压力对岩块产生进一步的抛掷。 这种理论认为: 1、炸药的能量中动能仅为5%~15%,大部分能量在爆炸气体产物中; 2、岩石发生破裂和破碎所需时间小于爆炸气体施载于岩石的时间。 二、冲击波引起应力波反射破坏理论(讲课时间5分钟) 岩石的破坏主要是由自由面上应力波反射转变成的拉应力波造成的。 爆炸冲击波在自由面反射为拉伸波,岩石的抗拉强度低,岩石易受拉破坏。这种理论主要依据: 1、岩体的破碎是由自由面开始而逐渐向爆心发展的; 2、冲击波的压力比气体膨胀压力大得多。

图7-1 反射拉伸破坏 三、爆炸气体膨胀压力和冲击波所引起的应力波共同作用理论 (难点)(讲课时间10分钟) 爆破时岩石的破坏是爆炸气体和冲击波共同作用的结果,它们各自在岩石破坏过程的不同阶段起重要作用。 爆轰波衰减成应力波造成岩石“压碎”,压碎区以外造成径向裂隙。气体产生“气楔作用”使裂隙进一步延伸和张开,直到能量消耗完。尽管炸药的能量中动能仅为5%~15%,但岩石开始的破裂阶段是非常重要的。 爆炸气体产物膨胀的准静态能量是破碎岩石的主要能源,炸药作功能力同它的爆热和爆容有关。冲击波作用重要性同岩石的特性有关。岩石波阻抗较高时,要求有较高的应力波峰值,此时冲击波的作用更为重要。岩石按波阻抗值分为三类: 1、岩石波阻抗为10X105~25X105(g/cm2·s); 2、岩石波阻抗为5X105~10X105(g/cm2·s); 3、岩石波阻抗为2X105~5X105(g/cm2·s)。 不同条件下和不同目的情况下的爆破,可以通过控制炸药的应力波峰值和爆炸生成气 体的作用时间来达到预期目的

隧道光面爆破和预裂爆破的原理是什么

隧道光面爆破和预裂爆破的原理是什么?应当采取的主要措施有哪些?两者有何区别?答:1.光面爆破作用原理:光面爆破的破岩机理十分复杂,目前仍在探索中。尽管在理论上还很成熟,但在定性分析方面已有共识。一般认为炸药起爆时,对岩体产生两种效应,主要是爆炸气体膨胀做功所起的作用。光面爆破是周边眼同时起爆,各炮眼的冲击波向四周作径向传播,相邻炮眼的冲击相遇,产生应力波德叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀令裂缝进一步扩展,形成平整的爆裂面。 预裂爆破作原理:主要指预裂爆破成缝机理。为了保证预裂爆破成功,首要的条件是不压坏预裂孔壁,其次是沿预孔连线方向成缝。当炸药爆炸后,产生的冲击压力和高压气体的作用,将会使孔壁产生剧烈破坏。要想不压坏孔壁必须采用不偶令装药法,即药包直径小于钻孔直径。试验发现,当药包与孔壁之间存在空气间隙时,由于空气的缓冲作用,使孔壁所受压力大大降低。试验得出,当不偶令系数M=2.5时,作用在炮孔内壁的最大切向应力只相当于不偶令系数为1时的大约1/16。因此,完全有可能利用现有的常用炸药,用不偶令装药来降低孔壁压力,把几万个大气压降到每平方厘米只有几千或几百会斤的压力值。当降低的压力值小于或极接近于岩石的极限抗压强度时,便可使孔壁不受爆破压缩破坏或者只受少量的振动。在利用不偶令装药保证孔壁不受破坏的前提下,第二个条件就是怎样保证在预定的方向成缝。实践经验证明,只需要调整相邻炮孔的距离或孔内装药量便可达到成缝的目的。 2.光面爆破的主要技术措施如下: (1).根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。 (2).严格控制周边眼的装药量,尽可能将药量沿眼大均匀分布。 (3).周边眼宜使用小直径药卷和低猛度、低爆速的炸药。为满足装药结构要求,可借助导爆索(传爆线)来实现客气间隔装药。 (4).采用毫秒微差有序起爆。要安排好开挖程序,使光面爆破具有良好的临空面。 (5).边孔直径小于等于50mm。 预裂爆破主要措施如下: (1)炮孔直径一般为50-200mm,对深孔宜采用较大的直径。 (2)炮孔间距宜为孔径的8-12倍,坚硬岩石取小值。 (3).不耦令系数(炮孔直径d与药卷直径d的比值)建议取2-4,坚硬岩石取小值。 (4).线装药密度一般取250-400g/m。 (5).药包结构形式,目前较多的是将药卷分散绑扎在传爆线上。分散药卷的相邻间距不宜大于50cm和不大于药卷的殉爆距离。考虑到孔底的夹制作用较大,底部药包应加强,约为线装药密度的2-5倍。 (6).装药时距孔口1m左右的深度内不要装药,可用粗砂填塞段过短,容易形成 漏头过长则不能出现裂缝。 3两者有区别: 1.概念方面区别:光面爆破是先爆除主体开挖部位的岩体,然后再起爆布置在设计轮廓线上的周边孔药包,将光爆层炸除,形式一个平整的开挖;预裂爆破是先起爆布置在设计轮廓线上的预裂破孔药包,形成一条沿设计轮廓线贯穿的裂缝,再在该人工裂缝的屏蔽下进行主体开挖部位的爆破,保证保留岩体免遭破坏。 2.起爆方法的区别:由于光面爆破孔是最后起爆,导爆索有可能遭受超前破坏,为了保证周边孔准爆,对光面爆破孔采用高段延期雷管与导爆索的双重起爆法。预裂孔若与主爆区爆孔组成同一网络起爆,则预裂孔应超前第一排爆孔75-100ms起爆。 3.主要技术措施要求的区别:(见第二问光面爆破和预裂爆破的主要措施)。

岩石理论

?第2章岩石理论 ?岩石是工程机械的施工对象之一,研究影响岩石破碎的因素,找出破碎岩石的规律, 对提高凿岩、破碎机械作业效率,优化作业过程具有重要意义。 ?岩石的破碎方法有:机械破碎、爆炸破碎、水射流破碎等,但国内外使用最多的是机 械破碎。 ?按机械破碎作用的性质不同,破岩方法可分为机械回转钻进破岩、机械冲击钻进破 岩以及冲击回转钻进破岩等。 ? 2.1.1 岩石的分类 ?岩石按其成因可分为:岩浆岩、沉积岩和变质岩。 ?岩石按矿物组成可分为:单矿物岩,如岩盐、石膏,无水石膏、灰岩、白云岩等; 多矿物岩石,如各种岩浆岩。 ?岩浆岩是由硬度较高的矿物组成的,其硬度与强度都较高;沉积岩是由强度较低的 矿物组成的,其硬度与强度也较低。 ?岩石的结构主要是指晶体结构和胶结物的结构 ? 2.1.2 岩石的可钻性分级 ?使用便携式岩石凿测器测定岩石的凿碎比能和凿480次后钎刃磨钝的宽度,将岩石 分7级: ?岩石的可钻性 ?岩石的可钻性是决定钻进效率的基本因素,它反映了钻进时岩石破碎的难易程度。 ?岩石可钻性及其分级在钻探生产中极为重要。 ?它是合理选择钻进方法、钻头结构及钻进规程参数的依据,同时也是考核机械生产 效率的根据。 ?§2.2 岩石物理机械性质 ? 2.2.1 岩石强度 ?(一)岩石强度的概念 ?作用于岩石上的外载荷增大到一定程度时,岩石就会发生破坏。破坏时岩石所能承 受的最大载荷称为极限载荷,单位面积上的极限载荷称为极限强度,简称为岩石的强度。 ?根据受力条件不同,岩石的强度可分为抗压强度、抗拉强度、抗剪强度和抗弯强度 等; ?根据应力状态,岩石的强度可分为单向应力状态下的强度、两向和三向应力状态下 的强度; ?岩石强度 ? 2.2.2 岩石硬度 ? 2.2.2 岩石硬度 ?(一)岩石硬度的概念 ?岩石硬度定义为岩石表面抵抗硬物局部压人的能力。 ?岩石的硬度与抗压强度的关系:二者有着密切的联系,但又有区别,岩石抗压强度 是岩石整体破碎时的阻力;而岩石的硬度是硬物局部压人岩石表面的阻力,是岩石表面抗破碎的能力。 ? 2.2.3 岩石的弹性、塑性和脆性 ?(一)岩石弹性、塑性和脆性的概念 ?在外力作用下,岩石会发生变形,随着载荷不断增加,变形也不断发展,最终 导致岩石破坏。

爆炸的动静作用破岩与动态裂纹扩展机理研究

爆炸的动静作用破岩与动态裂纹扩展机理研究岩石的爆破理论包括两部分:一是爆炸应力波的动态作用,二是爆生气体的准静态作用。目前我们认为岩石的爆炸破岩是两者共同作用的结果,只是在不同的爆破参数和装药条件下两者各自的作用程度不同而已。 因此,在研究岩石爆破破岩机理时必须同时考虑到两者对岩石破碎的不同贡献,提高精细化控制爆破效果,深化爆破理论。基于上述考虑,本文单独分别对爆炸应力波的动作用和爆生气体的准静态作用进行试验研究,同时结合DLSM数值模拟,对动态裂纹的扩展过程进行分析。 课题的研究成果将为定向断裂控制爆破提供理论基础。本文的研究内容主要包括以下几个方面:1.基于NSCB测试方法,利用霍普金森杆试验系统,同时结合高速摄影、DLSM数值分析、SEM电镜扫描、P波波速测量等技术手段,研究了砂岩等几种典型岩石类材料的在常规及特殊状态下的动态断裂韧度,发现:岩石类材料的动态断裂韧度表现出明显的加载率依赖性,随着加载率的增大,岩石的动态断裂韧度呈逐渐增大的趋势。 试验中发现,相同加载率的条件下,花岗岩的断裂韧度最高,煤的断裂韧度最低,砂岩和泥岩较为接近,有机玻璃的断裂韧度低于3种岩石但高于煤。DLSM数值分析也得到与试验类似的结果,但加载面对测试结果有着重要的影响,理想的线性加载并不适用于岩石类材料动态断裂韧度测试研究,自由面加载和5mm面加载时的数值计算结果能够与试验较好的吻合。 同时,底端支座的约束条件也会对测试产生影响。高温处理后砂岩的断裂韧度测试中发现,在同一个热处理温度时,断裂韧度随加载率的变化成线性增加的趋势。

特别的,加载率较低时,各个热处理温度时的断裂韧度值较为接近,但加载率较高时,断裂韧度值则有较大差别,断裂韧度-加载率曲线的斜率随热处理温度的升高而减小。含层理煤的动态断裂韧度测试发现,随着节理倾角的增大,“动态断裂韧度”有减小的趋势,但并不是呈线性递减的关系。 天然的层理结构分布并不均匀,其赋存状态及其矿物构成不一,这些都会对测试结果带来影响。2.利用数字激光动态焦散线试验方法(DLDC),进行了不同装药结构切缝药包爆破试验,揭示切缝药包不耦合装药爆破爆生气体准静态作用机理,同时利用显式动力分析程序LS-DYNA模拟切缝药包爆炸以及初始裂纹形成的早期过程,并对不耦合系数与爆破损伤之间的关系进行了探讨。 不耦合系数对爆生裂纹扩展有显著的影响。不耦合系数α1为1.67时,主裂纹扩展长度和裂纹数目最佳。 爆炸应力波与爆生气体对裂纹的扩展产生了影响。不耦合装药使得应力波的幅值降低,爆生气体的准静态作用加强。 在以橡皮泥为介质的试验中,应力强度因子和速度的变化幅度较小。橡皮泥介质作为炸药爆炸产物与炮孔壁间的缓冲层,使得能量传递增加,应力波的作用时间延长,爆炸的作用范围加大。 次裂纹尖端的动态能量释放率数值整体上小于两条主裂纹。能量沿切缝药包壁的切缝方向优先释放,促使炮孔切缝方向的径向裂纹受到强烈的拉应力而快速扩展,从而抑制非切缝方向裂纹的扩展。 数值模拟的结果表明,空气不耦合装药时,在固体介质中产生的高强压应力超过其抗压强度时,就会在炮孔壁上形成粉碎区,其面积虽小,但耗能很大。为了避免粉碎区的形成,使爆炸产生的能量更多的用于切缝方向裂纹的扩展,从改善

现代爆破理论

现代爆破理论2006年6月16日

前言 随着爆破技术和相邻学科的发展,爆破理论的研究也有了长足的进步。特别是岩体结构力学、岩石动力学和计算机模拟爆破技术的发展,使爆破理论的研究更实用化,更系统化了。 当今岩体力学已从以材料力学为基础的连续介质岩体力学发展为以工程地质为基础的非连续介质岩体力学。岩体结构面特征对爆破的影响日益引起人们的重视。 岩石动力学作为爆炸力学、冲击力学与爆破工程相结合的一门边缘学科,它的产生和发展无疑对岩石爆破破碎原理的研究是一种推动力量。 计算机模拟爆破技术的发展,不仅可以预算出最优的爆破效果,而且可以在计算机上再现岩石爆破的动态过程,从而大大减少现场试验所消耗的人力、物力,并能准确地查明各种因素对爆破效果的影响。它代表着90年代爆破技术的最高水平,也是爆破技术由工艺过渡到科学的重要标志之一。但是,从总体上看,爆破理论的发展仍然滞后爆破技术的要求,理论研究和生产实际仍有不小的差距。再加上爆破过程的瞬时性和岩石性质的模糊性、不确定性、致使爆破理论众说纷法,争论不止。美国矿业局W.L.福尔内(Faurney)等人认为:“岩石破碎的过程仍然没有阐明,在公开文献中尚有许多混乱和相互矛盾的论点……”南非的C.V.B.坎宁安(Cunninghan)在论及岩石爆破过程中动压与静压哪个占主导地位时谈到“60年代以来,一直为人们所争论,毫无疑问,今后仍将争论一段时间”。南非矿业研究会高级工程师J.R布里克曼(Brinkman)在1987年召开的第二届爆破破岩国际会议(2nd International Symposium on Rock Fragmentation byBlasting)上谈到:“岩石爆破破碎机理目前仍存在着相互矛盾的观点”。 在爆破理论迅速发展又众说纷云、相互矛盾的情况下,从发展的角度去研究不同时期各派爆破理论的主要论点、依据,从中找出发展趋势,无论是对于爆破理论本身的研究还是指导工程实践都有着重要意义。 爆破理论的传统内容包括,岩石是在什么作用力下破碎的;破碎的规律以及其影响因素。随着人们对爆破现象认识的逐步加深,对于爆破理论的研究内容和范围也相应扩大。 1958年日本召开的岩石爆破机理讨论会上,东京大学的山口梅太郎认为,爆破机理的研究范围应该包括: (1)力学的爆破机理: 理论的研究; 爆破时的各种测定; 现场爆破效果的总结。 (2)关于炸药的研究: 广义的炸药破坏力的研究; 药室内压力的研究。 (3)对作为爆炸对象的岩石性质的研究: 岩石物理性质的研究; 作为岩体的岩石性质的研究。 实践证明,这些观点已被很多人接受。前苏联学者A.H.哈努卡耶夫(Ханукаев)认为,爆破法破碎岩石的过程就是岩石爆破的物理过程。要使更多的炸药能量用于破碎岩石,就必须使炸药的爆轰性能与岩石的性质相匹配。因此,炸药的研究和岩石性质的研究构成了爆破机理研究的重要组成部分。我国著名学者杨善元教授认为,爆破是一种动态的力学过程,用“岩石爆破动力学”来概括岩石爆破的理论基础比较合适,其内容应该包括:(1)波动物理学; (2)爆炸力学(包括热流体力学与冲击波理论,热化学与爆轰理论);

岩石的爆破破碎机理2008

岩石的爆破破碎机理2008-07-09 17:39 一、岩石爆破破碎的主因 破碎岩石的炸药能量以两种形式释放出来,一种是冲击波,一种是爆炸气体。但是岩石破碎的主要原因究竟是冲击波作用的结果还是爆炸气体作用的结果,由于认识和掌握资料的不同,便出现了不同的结果。 1、冲击波拉伸破坏理论(该观点的代表人物日野熊、美国矿业局的戴维尔) 当炸药在岩石中爆轰时,生成的高温、高压和高速的冲击波猛烈冲击周围的岩石,在岩石中引起强烈的应力波,它的强度大大超过了岩石的动抗压强度,因此引起周围岩石的过度破碎。当压缩应力波通过粉碎圈以后,继续往外传播,但是它的强度已大大下降到不能直接引起岩石的破碎。当它达到自由面时,压缩应力波从自由面反射成拉伸应力波,虽然此时波的强度已很低,但是岩石的抗拉强度大大低于抗压强度,所以仍足以将岩石拉断。这种破裂方式亦称“片落”。随着反射波往里传播,“片落”继续发生,一直将漏斗内的岩石完全拉裂为止。因此岩石破碎的主要部分是入射波和反射波作用的结果,爆炸气体的作用只限于岩石的辅助破碎和破裂岩石的抛掷。 2、爆炸气体的膨胀压理论(该观点的代表人物村田勉等) 从静力学的观点出发,认为药包爆炸后,产生大量高温、高压气体,这种气体膨胀时所产生的推力作用在药包周围的岩壁上,引起岩石质点的径向位移,由于作用力不等引起的不同的径向位移,导致在岩石中形成剪切应力。当这种剪切应力超过岩石的极限抗剪强度时就会引起岩石的破裂。当爆炸气体的膨胀推力足够大时,还会引起自由面附近的岩石隆起、鼓开并沿径向方向推出。它在很大程度上忽视了冲击波的作用。 3、冲击波和爆炸气体综合作用理论(该观点的代表人物有C.W.利文斯顿、φ.A.鲍姆,伊藤一郎,P.A.帕尔逊、H.K.卡特尔,L.C.朗和N.T.哈根等)这种观点的学者认为:岩石的破碎是由冲击波和爆炸气体膨胀压力综合作用的结果。即两种作用形式在爆破的不同阶段和针对不同岩石所起的作用不同,爆炸冲击波(应力波)使岩石产生裂隙,并将原始损伤裂隙进一步扩展;随后爆炸气体使这些裂隙贯通、扩大形成岩块,脱离母岩。此外,爆炸冲击波对高阻抗的致密、坚硬岩石作用更大,而爆炸气体膨胀压力对低阻抗的软弱岩石的破碎效果更佳。 二、炸药在岩石中的爆破作用的范围 1、炸药的内部作用 假设岩石为均匀介质,当炸药置于无限均质岩石中爆炸时,在岩石中将形成以炸药为中心的由近及远的不同破坏区域,分别称为粉碎区、裂隙区及弹性振动区。 (1)粉碎区(压缩区) 炸药爆炸后,爆轰波和高温、高压爆炸气体迅速膨胀形成的冲击波作用在孔壁上,都将在岩石中激起冲击波或应力波,其压力高达几万MPa、温度高达30000以上,远远超过岩石的动态抗压强度,致使炮孔周围岩石呈塑性状态,在几到几十毫米的范围内岩石熔融。尔后随着温度的急剧下降,将岩石粉碎成微细的颗粒,把原来的炮孔扩大成空腔,称为粉碎区。如果所处岩石为塑性岩石(黏土质岩石、凝灰岩、绿泥岩等),则近区岩石被压缩成致密的、坚固的硬壳空腔,

岩石爆破破碎机理研究

黄志强 (桂林工学院,广西,桂林541004) 【摘 要】岩体的软弱层面会影响到爆破破碎效果,如何确定岩石材料的缺陷在爆破破碎中的影响因子是研究岩石破碎机理的关键。通过对当前岩石爆破破碎的研究现状进行综合分析、评述,讨论了岩石爆破破碎机理研究的要点以及今后的研究重点,为后续相关研究指出了方向。 【关键词】岩石破碎;爆破机理;损伤 【中图分类号】TD231.1 【文献标识码】A 【文章编号】1008-1151(2007)12-0086-02 岩石爆破的破碎效应是影响交通土建、水利、矿山等工程效益的重要指标,它影响到生产过程中的铲装、运输和粗碎等工序的效率和成本,也影响到道路、堤坝等基础工程的渗透性、沉降性和稳定性。因此,岩石爆破破碎理论的研究一直是岩石动力学和岩石爆破研究领域的一个热点问题,研究并揭示爆破作用下岩石破碎机理对促进爆破理论和相关技术的发展、提高工程质量和效益具有十分重要的理论和实际意义。 (一)当前研究成果 岩体由于其材料的特殊性,内部具有较多的节理、裂隙、层理等不连续层面,这些不连续面对爆破破碎效果会产生严重的影响,主要体现在应力集中、应力波反射增强、能量耗散、高压爆生气体外逸等。因此在岩石爆破设计、施工中如何处理岩石中的不连续面对爆破效果的影响,是当前研究岩石爆破破碎机理的主要问题。 国内外学者进行的大量研究指出:裂隙岩石的破碎是由爆炸冲击波与爆生气体共同作用的结果,但与均匀介质材料爆破相比,岩体的破碎主要是爆炸应力波作用的结果,裂隙岩体的爆炸气体膨胀压力较小,只是当应力波将岩石破碎成块以后,起到促使碎块分离的作用;应力波在裂隙岩体的传播过程中,在裂隙之间传播的扰动将会产生新的破裂;由于裂隙的发展速度有限,爆炸载荷的速率对裂隙的成长有较大的作用,而高应变率载荷容易产生较多的裂隙。 在此基础之上,当前的相关研究主要在两方面展开,一是追求普遍适用于各种爆破计算和分析、旨在建立相关计算模型的理论研究;一是结合一定工程实践,适用于一定范围的具体工程设计和参数优化的实验研究。在理论研究方面,从岩石破碎研究的发展历程来看,可将其分为弹性理论阶段、断裂理论阶段、损伤理论阶段和分形损伤理论4个阶段。 1.弹性理论阶段 弹性力学模型将岩石视为各向同性的均质、连续的弹性体,岩石在爆炸荷载作用下的破坏是因其内部最大应力超过岩石应力极限引起的。在破碎之前,岩石处于弹性状态。这种理论以弹性力学及有限元方法为基础,运用现代计算机技术可方便的简化工程问题、建立力学模型并加以分析计算。由于这种理论模型不考虑岩石的材料缺陷,其理论基础与实际情况有一定的差距。 2.断裂理论阶段 断裂力学模型认为岩石中的裂纹扩展及断裂破坏是影响岩石爆破破碎效果的主要因素。与弹性模型不同的是该类模型将岩石视为含有微裂纹的脆性材料,岩石的破化过程就是其内部裂纹产生、扩展和断裂的过程。但断裂力学模型仍将裂纹周围看作是均匀的连续介质,因而其仅适用于宏观裂纹形成之后的断裂阶段,对材料开始劣化到宏观裂纹形成之间的力学行为和物理过程并未进行分析描述,其适用范围只限于宏观裂纹已形成的有层理或沉积类岩石。 3.损伤理论阶段 1980年美国Sandia国家实验室的Kipp和Grady开始进行岩石爆破损伤模型的研究,他们认为岩石中存在着大量随机分布的原生裂纹,在爆破作用下部分原生裂纹将被激活并发生扩展,激活的裂纹数服从指数分布。他们运用损伤因子D表示这些岩石裂纹开裂及损伤程度。经过 Seamen、Grady、Kipp、Kus 等人的努力,最后,由 Throne 进一步完善建立了一个能 【收稿日期】2007-10-29 【作者简介】桂林工学院青年扶持基金项目,桂工院科[2007]4号 【作者简介】黄志强(1977-),男,四川武胜人,桂林工学院讲师,主要从事工程力学相关科研工作。 岩石爆破破碎机理研究

光面爆破作用原理

光面爆破作用原理 光面爆破的破岩机理是一个十分复杂的问题,目前仍在探索之中。尽管在理论上还不甚成熟,但在定性分析方面已有共识。一般认为,炸药起爆时,对岩体产生两种效应;二是爆炸气体膨胀做功所起的作用。光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀合裂缝进一步扩展,形成平整的爆裂面。 1.2光面爆破的技术要点 要使光面爆破取得良好效果,一般需掌握以下技术要点: 1、根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。 2、严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。 3、周边眼宜使用小直径药卷和低猛度、低爆速的炸药。为满足装药结构要求,可借助导爆索(传爆线)来实现空气间隔装药。 4、采用毫秒微差有序起爆。要安排好开挖程序,使光面爆破具有良好的临空面。 5、边孔直径小于等于50mm。 2主要应用 预裂爆破和光面爆破在坝基、边坡开挖中较多的运用。光面爆破在隧道开挖中的运用尤其广泛。 2.1(一)成缝机理 预裂爆破和光面爆破都要求沿设计轮廓产生规整的爆生裂缝面,两者成缝机理基本一致。现以预裂缝为例论述它们的成缝机理。 预裂爆破采用不耦合装药结构,其特征是药包和孔壁间有环状空气间隔层,该空气间隔层的存在削减了作用在孔壁上的爆炸压力峰值。因为岩石动抗压强度远大于抗拉强度,因此

可以控制削减后的爆压不致使孔壁产生明显的压缩破坏,但切向拉应力能使炮孔四周产生径向裂纹。加之孔与孔间彼此的聚能作用,使孔间连线产生应力集中,孔壁连线上的初始裂纹进一步发展,而滞后的高压气体的准静态作用,使沿缝产生气刃劈裂作用,使周边孔间连线上的裂纹全部贯通成缝。 2.2(二)质量控制标准 1)开挖壁面岩石的完整性用岩壁上炮孔痕迹率来衡量,炮孔痕迹率也称半孔率,为开挖壁面上的炮孔痕迹总长与炮孔总长的百分比率。在水电部门,对节理裂隙极发育的岩体,一般应使炮孔痕迹率达到10%~50%;节理裂隙中等发育者应达50%~80%;节理裂隙不发育者应达80%以上。围岩壁面不应有明显的爆生裂隙。 2)围岩壁面不平整度(又称起伏差)的允许值为±15cm。 3)在临空面上,预裂缝宽度一般不宜小于1cm。实践表明,对软岩(如葛洲坝工程的粉砂岩),预裂缝宽度可达2cm以上,而且只有达到2cm以上时,才能起到有效的隔震作用;但对坚硬岩石,预裂缝宽度难以达到1cm。东江工程的花岗岩预裂缝宽仅6 m m,仍可起到有效隔震作用。地下工程预裂缝宽度比露天工程小得多,一般仅达0.3~0.5cm。因此,预裂缝的宽度标准与岩性及工程部位有关,应通过现场试验最终确定。 影响轮廓爆破质量的因素,除爆破参数外,主要依赖于地质条件和钻孔精度。这是因为爆生裂缝极易沿岩体原生裂隙、节理发展,而钻孔精度则是保证周边控爆质量的先决条件。 2.3(三)参数设计 预裂爆破和光面爆破的参数设计一般采用工程类比法,并通过现场试验最终确定。 (1)预裂爆破参数 1)孔径明挖工程为7 0~165mm;隧洞开挖为40~90mm;大型地下厂房为50~110mm。 2)孔距与岩石特性、炸药性质、装药情况、开挖壁面平整度要求和孔径大小有关。孔距一般为孔径的7~12倍。爆破质量要求高、岩质软弱、裂隙发育者取小值。 3)装药不偶合系数不偶合系数指炮孔半径与药卷半径的比值,为防止炮孔壁的破坏,该值一般取2~5。 4)线装药密度线装药密度是单位长度炮孔的平均装药量。影响预裂爆破参数的因素复杂,很难从理论上推导出严格的计算公式,以经验公式为主,目前国内较常用公式的基本形式 为 式中,QX—预裂爆破的线装药密度,kg/m; σC—岩石的极限抗压强度,MPa; a—炮孔间距,m;

破碎岩体强度理论综述

HOEK -BROWN强度准则及其在破碎岩体强 度中的应用 摘要:岩石是有大量岩块和结构面组成的不均匀的各向异性材料。但是因为岩体内部结构的不可预见性和建模、计算能力的限制,很多情况下,只能将岩体作为均匀的宏观复合材料进行研究。如何准确定义破碎岩体的强度成了一个关系计算准确性和工程安全的重要问题。本文阐述了岩石力学中破碎岩体的主要强度理论。并对HOEK -BROWN强度理论的提出、发展、参数的选取与确定及实际应用进行了详细的探讨。 关键词:HOEK -BROWN强度准则,破碎岩体,岩体强度理论 1.研究岩体强度理论的重要性 人类生活和经济活动越来越离不开以岩体为对象的工程建设,例如水利水电工程、铁道交通工程、工业与民用建筑、隧道工程、矿山建筑与开发工程、国防工程、冶金化工、地震与防护工程等。总的来说,它们都需要以研究岩体的力学特征为基础。随着岩体工程的规模、数量及复杂性的增加,所涉及的岩体力学的问题也越来越复杂,以至于经常有重大岩体工程事故发生。美国的圣弗朗斯西重力坝、法国马尔帕塞大坝、意大利瓦扬水电站、加拿大亚当贝克水电站压力管道及日本关门铁路隧道等工程的失败或失事的惨痛教训,使人们意识必须加强岩体力学理论研究和分析,正确把握岩体在外荷载作用下的强度、变形及破坏规律。 2.研究破碎岩体强度的难点 在实际工程中遇到的均质岩体情况很少见,所碰到的岩体绝大多数均被各种结构面切割与破碎。节理是岩体中发育最广泛的一种结构面,在很多情况下节理面的力学性质很软弱。节理的存在严重的破坏了岩体的连续性和完整性,大大改

变了岩体的力学性质。节理岩体工程性质的特殊性主要表现在一下三个方面不连续。节理岩体是由不同规模、不同形态、不同成因、不同方向和不同次序的节理面以及被节理面围限而成的结构体共同组成的综合体,节理岩体在几何上和工程性质上都具有不连续性。由于发育在岩体中的节理面具有明显方向性,受节理面影响,节理岩体的工程性质呈现显著的各向异性。另外,实际工程岩体被节理切割程度的大小也与岩体工程规模有关,工程岩体结构也会随着含节理数的多少而发生变化,如图所示,所考虑的岩体范围越小,岩体中所含有的节理数就愈少,因而岩体的结构类型也就会有所不同。由于节理岩体工程性质的不连续、各向异性以及岩体组成物质的非均质,加之节理面在岩体不同部位发育程度和分布规律的差异,不同工程部位的岩体表现出不同的工程性质。节理在地壳上部岩石中具有广泛的分布,并且在岩体介质中呈现出强度低、易变形的特征。节理的发育常常为大坝、边坡和地下硐室等工程带来隐患,并导致工程岩体的失稳与破坏。地质工程中的岩体强度预测、岩坡稳定性分析、岩基承载力确定、地下硐室围岩稳定性评价及相关的动力学现象围岩垮塌或岩爆均直接或间接与岩体变形及强度特征有关。鉴于此,普遍认为节理岩体变形及强度特征的研究是一个富有挑战性的基础性课题,开展此方面的研究不仅非常必要,而且有着重要的实用价值和工程意义。节理的存在不仅大大改变岩体的力学性质,降低岩体的变形模量及强度参数,并使岩体呈现明显的各向异性。节理岩体变形具有各向异性的特征己为人们所熟知,竖向分布节理岩体的变形模量明显大于水平分布节理岩体的变形模量,这种区别主要在于变形机制不同。垂直节理面的压缩变形量主要是由岩块和节理面压密综合而成,平行节理面方向的压缩变形量主要是岩块和水平节理面的错动构成,节理岩体各方向的变形性质的差异由此而产生。与变形特征相类似,节理岩体也具有明显的强度各向异性特征。通常为了实际的需要将岩石近似地简化为各向同性体,基本上未考虑各向异性的性质,对一种岩石只给出一个确定的强度指标。在实际的岩石试验过程中发现,即使是同一地点取出的岩石,不同方向上的强度试验结果,往往也具有很大的离散性。因为本身就已经是各向异性的岩体,在后期构造改造的作用下,其各向异性表现得更加突出。参照图所示,对不含节理的完整岩体,可认为其在宏观上为均质、各向同性的材料对含有一组、二组或三组节理的岩体,其力学性质通常表现为各向异性若岩体被四组或四组以上的等规模、等间距及强度基

相关文档