文档库 最新最全的文档下载
当前位置:文档库 › 1车身焊接工艺1

1车身焊接工艺1

1车身焊接工艺1
1车身焊接工艺1

车身焊接工艺

一、车身装焊工艺的特点

汽车车身壳体是一个复杂的结构件,它是由百余种、甚至数百种薄板冲压件经焊接、铆接

、机械联结及粘接等方法联结而成的。由于车身冲压件的材料大都是具有良好焊接性能的低碳钢,所以焊接是现代车身制造中应用最广泛的联结方式。表1列举了车身制造中常用的

焊接方法:

表1 车身制造中常用的焊接方法及典型应用实例

焊接方法典型应用实例

电阻焊点

焊单点焊悬挂式点焊机车身总成、车身侧围等分总成

固定式点焊机小型板类零件

多点焊压床式多点焊机车身底板总成

C形多点焊接车门、发动机盖总成

缝焊悬挂式缝焊机车身顶盖流水槽

固定式缝焊机油箱总成

凸焊螺母、小支架

焊CO2气体保护焊车身总成

亚弧焊车身顶盖后两侧接缝

手工电弧焊厚料零部件

气焊氧—乙炔焊车身总成补焊

钎焊锡钎焊水箱

焊微弧等离子焊车身顶盖后角板

激光焊车身底板

车身制造中应用最多的是电阻焊,一般占整个焊接工作量的60%以上,有的车身几乎全部采用电阻焊。除此之外就是二氧化碳碳气体保护焊,它主要用于车身骨架和车身总成的焊接

中。

由于车身零件大都是薄壁板件或薄壁杆件,其刚性很差,所以在装焊过程中必须使用多点定位夹紧的专用装焊夹具,以保证各零件或合件在焊接处的贴合和相互位置,特别是门窗

等孔洞的尺寸等。这也是车身装焊工艺的特点之一。

为便于制造,车身设计时,通常将车身划分为若干个分总成,各分总成又划分为若干个合

件,合件由若干个零件组成。车身装焊的顺序则是上述过程的逆过程,即先将若干个零件装焊成合件,再将若干个合件和零件装焊成分总成,最后将分总成和合件

、零件装焊成车身总成。轿车白车身装焊大致的程序图为如图1所示:

前底板分总成

前内挡泥板总成

前轮胎挡泥板总成前端分总成

前围板总成

散热器罩总成底板分总成

中底板分总成

后底板分总成

门框总成

后轮胎挡泥板总成

后翼子板总成侧围分总成车身总成顶盖侧流水槽

门锁加强板

前风挡下盖板总成

后围上盖板总成

后围下盖板总成

仪表板总成白车身顶盖总成

发动机盖总成

前翼子板总成

行李箱盖总成

车门总成

图1 轿车白车身装焊程序图

二、电阻焊

1.电阻焊及其特点

将置于两电极之间的工件加压,并在焊接处通以电流,利用电流通过工件本身产的的热量来加热而形成局部熔化,断电冷却时,在压力继续作用下而形成牢固接头。这种工艺过程称为电阻焊。电阻焊的种类很多,按接头形式可分为搭接电阻焊和对接电阻焊两种。结合工艺方法,搭接电阻焊又可分为点焊、缝焊和凸焊三种,对接电阻焊一般有电阻对焊和闪

光对焊两种。

特点:

(1)利用电流通过工件焊接处的电阻而产生的热量对工件加热。即热量不是来源于工

件之外,而是内部热源。

(2)整个焊接过程都是在压力作用校完成的,即必须施加压力。

(3)在焊接处不需加任何填充材料,也不需任何保护剂。

形成电阻焊接头的基本条件只有电极压力和焊接电流。

2.点焊

点焊是利用在焊件间形成的一个个焊点来联接焊件的。两焊件被压紧于两柱形电极之间并

通以强大的电流,利用电阻热将工件焊接区加热到形成应有尺寸的熔化核心为止。然后切断电流,熔核在压力作用下冷却结晶形成焊点。点焊在车身制造中应用最广。点焊的形式很多,但按供电方向来分只有单面点焊和双面点焊两种。在这两种点焊中按同时完成的焊

点数又可分为单点、双点和多点焊。

点焊是车身制造中应用最广的焊接方法,一辆轿车的车身上有3500~5000个焊点,可以说,汽车车身是一个典型的点焊结构件。

(1)点焊的机械性质

A.与铆接和螺栓紧固相比,点焊无松动且刚性高,但滑动系数小,在设计时必须注

意可能会出现的应力集中。

B.点焊没有像铆接和螺栓紧固那样的铆钉头和螺帽,所以剥离方向的抗拉强度不如

铆接和螺栓紧固,但剪切强度可以选取较大的焊点直径的以保证,因为可以说点焊优于铆

接和螺栓紧固。

C.点焊的疲劳强度,对于单纯的剪切载荷而言语铆接等差别不大,但在板有变形时

及承受剥离方向重复的载荷时,其疲劳强度软弱。

D.由于点焊焊点部分的金属组织不均匀,所以机械强度也不相同,一般周边强度大

,中心部强度小。

(2)点焊工艺要求

A.焊点质量的一般要求

点焊结构靠单个或若干个合格的焊点实现接头的连接,接头质量的好坏完全取决于焊点质

量及点距。焊点质量除了取决于焊点尺寸外,还与焊点表面与内部质量有关。

焊点外观上要求表面压坑浅、平滑呈均匀过渡,无明显凸肩或局部挤压的表面鼓起;外表面没有环状或颈项裂纹,也无熔化、烧伤或粘附的铜合金。从内部看,焊点形状应规则、

均匀,无超标的裂纹和缩孔等内部缺陷及热影响区金属的组织与力学性能有无发生明显的

变化等。不同厚度板和多层板的焊接,点焊和板厚的关系

两层点焊时:图2所示。

图2

三层焊点时:图3所示。

图3

点焊的使用范围(由板厚方面来看):

点焊用于薄板重叠搭接,虽然损失了重叠部分的材料,但使总成装配加工变得容易。如果

板厚较大的话,重叠部分的材料也随之增大,如果用对接接缝,熔焊焊接也不困难。

与之相反,随着点焊板厚的增加,由于焊机电气设备等机械电气容量成倍增大,点焊变得

十分不利。

根据上述理由,一般点焊的板厚为1.6mm以下,板厚在1.6~3.2mm之间,很难判定是采用熔

焊还是采用点焊,但在板厚为3.2mm以上,多数结构不采用点焊。

汽车车身覆盖件大都是低碳钢的薄板。表2为低碳钢板点焊的最小间距,最小搭接及强度,

可供选取焊接规范时参考。

表2

板厚

(mm) 最小

间距

(mm) 最小

搭接

(mm) A级 B级 C级

焊点直径

(mm) 强度

(kgf) 焊点直径(mm) 强度

(kgf) 焊点直径(mm) 强度

(kgf)

0.6 10 11 4.5 245以上 3.5 160以上 3.0 135以上

0.8 12 11 5.0 355 4.0 255 3.0 185

1.0 18 12 5.5 470 4.5 370 3.0 240

1.2 20 14 6.0 605 5.0 490 3.5 330

1.4 23 15 6.5 785 5.5 600 3.5 370

1.6 27 16 7.0 925 6.0 730 4.0 470

1.8 31 17 7.0 1000 6.0 815 4.0 525

2.0 35 18 7.5 11160 6.5 990 4.5 660

2.4 40 20 8.0 1465 6.5 1150 4.5 765

2.8 45 21 8.5 1790 7.0 1420 5.0 980

3.2 50 22 9.0 2045 7.0 1625 5.0 1120

注:a.本表所示的被焊件材料的抗拉强度为30~32kgf/mm2

b.强度为剪切强度

c.强度是按《焊接手册》的数值,并按焊点直径成比例计算出来的,不是实验数据。

d.最小焊点间距表示了实质上能忽略相邻点点焊分流效应的极限值。

e.最小搭接是如图4所示尺寸表示的长度。

f.不等厚板焊接时,按薄板考虑。

图4

B.点焊所需的最小空间:图5所示。

图5

(3)点焊设备

焊件的点焊是在点焊机上完成的。点焊机的种类很多,按用途可分为通用的和专用的两大

类。专用的点焊机主要是多点点焊机。通用式点焊机按安装方法又可分为固定式、移动式或悬挂式点焊机;按电源性质分为Ⅰ频、脉冲及变频点焊机;按加压机构的传动装置分为脚踏式、电动凸轮式、气压传动式及液压传动式点焊机等。但不论哪一类点焊机,一般均

由供电系统、控制系统、加压机构和冷却系统等几部分组成。

固定式点焊机在车身焊接中主要用来点焊合件、分总成和一些较小的总成。焊机不动,每

焊完一个焊点后,焊件移动一个点距,以进行下一个焊点的焊接。

移动式点焊机可以用在不便用固定式点焊机焊接的外形尺寸大的车身零部件。悬挂式点焊机是将焊接变压器和焊接工具悬挂在空中,移动方便灵活,适合于装焊大型薄板件。按变

压器与焊具连接方式,分为有缆式和无缆式两种。

有缆悬挂式点焊机的焊钳与变压器之间用一种特殊的电缆连接,其优点是移动方便,适合

于大总成的点焊,劳动强度低。缺点是二次回路长,功率损耗大。

无缆悬挂式点焊机,它的焊接工具部分与变压器直接连接,其优点是由于没有二次回路中电缆损耗,功率利用充分,在焊接同样厚度的材料时,变压器的功率和体积均可减小。缺

点是移动起来不

3.缝焊

缝焊类似于连续点焊,是以旋转的滚盘状电极代替点焊的柱状电极。所以缝焊的焊缝实质上是由许多彼此互相重叠的焊点组成。

缝焊按滚盘转动与馈电方式可分为连续缝焊,断续缝焊和步进式缝焊等。缝焊主要用于要

求气密性的焊缝.

缝焊也是电阻焊,焊接原理跟点焊一样,只不过是缝焊用滚盘代替了点焊的电极,焊件置于两滚盘之间,靠滚盘转动带动焊件向前移动。同时通以焊接电流,形成类似连续点焊的

焊缝。

缝焊按滚盘转动与馈电方式分为:连续缝焊、断续缝焊和步进式缝焊。按供电方向或一次

成缝条数也可分为单面缝焊、双面缝焊、单缝缝焊和双缝缝焊等。

断续缝焊时,滚盘连续转动,焊件在两滚盘间连续移动,而焊接电流断续接通。由于焊接电流间断地接通,滚盘和焊件有冷却的机会,滚盘损耗小,焊缝也不易过热,因此应用最

广泛。

由于缝焊的分流较大,故焊接电流一般比点焊增加(20~60)%,具体数值视材料厚度和点

距而定。

要求气密性的缝焊接头,各焊点之间必须有一定的重叠,通常焊点间距应比焊点直径小

(30~50)%,焊点间距可按下列经验公式选取。

对于低碳钢C=(2.8~3.2)t

对于铝合金C=(2.0~2.4)t

式中C——缝焊焊点间距(mm);t——两焊件中较薄焊件的厚度(mm)。

对于非气密性接头,焊点间距可在很宽的范围内变化,甚至可以使各相邻焊点相互分

离,成为缝点焊。

缝焊工艺参数主要是根据被焊金属的性能、厚度、质量要求和设备条件来选

择,通常可参考已有的推荐数据初步确定(表3),再通过工艺试验加以修正。

表3 低碳钢的缝焊规范

条件板厚/mm 电极压力/N 通电时间/周波休止时间/周波电流

/A 焊接速度/m/min 焊点数

/点/cm

最小标准

(A) 0.6

0.8

1.0

1.6

2.4 2100 2400

2700

3400

4500

5000 2500 3200

4100

5400

6800

7700 2

2

2

3

3

4 1

1

2

1

1

2 12500 15000 18300 21000 22000 23000 2.70 2.62

2.50

2.30

2.15

2.03 4.3

4.5

3.5

4.0

4.1

3.0

(B) 0.6

0.8

1.0

2.0

2.4 2100 2400

2700

3400

4500

5000 2500 3200

4100

5400

6800

7700 2

3

3

4

6

7 2

2

3

5

6

6 11000 13000 15000 17500 20000 21000 1.90 1.83

1.70

1.60

1.40

1.27 4.7

4.0

3.5

2.8

2.4

2.2

(C) 0.6

0.8

1.6

2.0

2.4 2100

2400

2700

3400

4500

5000 2500

3200

4100

5400

6800

7700 3

2

2

4

6

6 3

4

4

4

6

6 9000

12000

13500

15400

16000

17000 1.14

1.07

0.99

0.91

0.76

0.70 5.1

5.5

5.1

4.9

4.0

4.3

4.凸焊

凸焊是点焊的一种变型,它是利用零件原有的能使电流集中的型面、倒角或预控制的凸点来作为焊接部位的。凸焊时,一次可在接头处形成一个或多个熔核。在汽车车身制造中,

凸焊主要用于将较小的零件(如螺母、垫圈等)焊到较大的零件上。

凸焊与点焊相比,其不同点是在焊件上预先加工出凸点,或利用焊件上原有的能使电流集

中的型面、倒角等作为焊接时的局部接触部位。因为是凸点接触,提高了单位面积上的压力与电流,有利于板件表面氧化膜的破裂与热量的集中,减小了分流电流,一次可进行多

点凸焊,提高了生产率,并减小了接头的变形。

凸焊的特征:

(1)即使热容量明显不同的组合也很容易得到良好的热平衡(焊接厚板和薄板时,厚

板上加上突点,厚板的热容量就等于薄板的热容量)。

(2)可得到与板厚无关的低强度焊接(点焊时根据板厚决定焊点的大小)。

(3)电极寿命长,操作效率高。

(4)能进行焊点间距小的点焊。

凸焊的标准凸起形状如表4和图6所示。

表4

板厚

(mm) 突起尺寸

C D E F R J

0.3 1.3 0.8 0.3 0.3 0.8 0.15

0.4 1.4 0.9 0.4 0.4 0.9 0.15

0.5 1.7 1.0 0.5 0.5 1.0 0.15

0.6 2.0 1.1 0.6 0.6 1.2 0.15

0.8 2.4 1.2 0.8 0.8 1.6 0.15

1.0

2.8 1.4 0.9 0.9 2.0 0.2

1.2 3.0 1.6 1.0 1.0

2.2 0.2

1.6 4.0

2.0 1.2 1.2 2.7 0.2

2.0 4.8 2.6 1.4 1.4

3.2 0.3

2.4 5.6

3.0 1.6 1.6 3.8 0.3

2.8 6.3

3.5 1.8 1.8

4.4 0.4

3.2 7.2

4.0 2.1 2.1

5.5 0.4

注:凸起的大小取决于薄板的板厚,凸起在厚板上加工。

图6

凸焊由于需要预先冲制出凸起部分,所以比点焊多一些焊前准备的工序和设备。因而,在选用凸焊时,必须全面考虑。为了使各个凸点熔化能均匀一致,凸焊时电极压力和焊接电流应均匀地分布在同时焊的各个凸点上。为此,凸点冲制必须精确,尺寸稳定,且焊

件必须仔细清理。

5.二氧化碳气体保护焊

二氧化碳气体保护焊是一种熔化极气体保护电弧焊接法,它利用焊丝与工件间产生的电弧

来熔化金属,由CO2气体作为保护气体,并采用光焊丝作为填充金属。(1)CO2气体

保护焊与其他电弧焊相比,具有以下优点:生产率高。操作性能好。焊接质量高。对铁锈的敏感性小。成本低。易于实现机械化和自动化。气体保护焊的适应性强,应用范围广。

(2)二氧化碳气体保护焊的规范参数,主要有电源极性、焊丝直径、电弧电压、焊接电流、气体流量、焊接速度、焊丝伸出长度、直流回路电感等。选择这些参数的原则是:要在保证焊接质量的前提下,尽可能提高劳动生产率,并要注意焊接规范参数对飞

溅,气孔、焊缝形成及焊接过程稳定性的影响,在汽车车身焊接中,常用的CO2气体保护焊

焊接规范列于表5中。

表5 CO2气体保护焊焊接规范

接头形式

板厚

/mm 焊丝直径

/mm 电流

/A 电压

/V 焊速

/m/min CO2流量

/l/min 焊脚

/mm

0.6~1

1.2

1.6

2.3

3.2

4.5 0.5~0.8

0.8

0.8~1.0

0.8~1.2

1.0~1.2

1.2 50~60

70

100

120

140

220 18

18

19

20

20

23 0.42~0.58 0.45

0.50

0.55

0.50

0.50 6~7 10~15

10~15

10~15

10~15

10~15

1.2

1.6

2.3

3.2

4.5 0.8~1.2 1.0~1.2

1.0~1.2

1.0~1.2

1.0 90

120

130

160

210 19

19

20

21

22 0.50

0.50

0.50

0.50

0.50 10~15 10~15

10~15

10~15

10~15

1.6

2.3

3.2

4.5 0.8~1.0

1.0~1.2

1.0~1.2

1.0~1.2 90

120

140

160 19

20

20.5

21 0.50

0.50

0.50

0.45 10~15

10~15

10~15

10~15 3.0

3.0

3.5

4.0

(3)焊接设备

CO2气体保护焊自动焊机是由焊接电源、送丝机构、行走机构、焊矩、气路系统和控制系统等部件组成。气路系统包括减压阀、预热器、干燥器和流量计等。CO2气体保护焊半自动焊

机中设有行走机构,其余部分与自动焊机相同。

CO2焊电源有如下几种:抽头式硅整流电源、高漏抗式硅整流电源、自调电感式硅整流电源、自饱和和电抗器式硅整流电源、可控硅式整流电源和晶体管式整流电源等。为了获得较

高的焊接质量,现在大都采用可控硅整流电源。

送丝机构的作用是将焊丝按要求的速度送至焊接电弧区,以保证焊接的正常进行,一般都采用等速送丝方式。CO2气体保护焊半自动焊机根据其送丝方式的不同,有推丝式、拉丝式和推拉丝式三种送丝机构,推丝式送丝机构用于直径较粗的焊丝。拉丝式送丝机构稳定可靠,焊工操作范围也不受限制,推拉丝式结构复杂,制作技术要求高,国内很少应用。国

内焊机常采用双主动式送丝辊轮,辊轮直径一般为(30~40)mm。

焊枪是直接施焊的工具,起到导电、导丝、导气的作用。常用的半自动焊枪有拉丝焊枪、

推丝式手枪形焊枪和推丝式鹅颈形焊枪。

三、激光焊接

激光焊接是本世纪汽车工业上应用的新技术。它的原理是利用原子受辐射,使工作物质受

激而产生的一种单色性高、方向性强、亮度高的光束,经聚焦后把光束聚焦到焦点上可获

得极高的能量密度,利用它与被焊工件相互作用,使金属发生蒸发、融化、熔合、结晶、

凝固而形成焊缝。

1.激光焊接特点

A.由于激光束的频谱宽度窄,经汇聚后后的光斑直径可小到0.01mm,功率密度可达

109W/cm2,它和电子束焊同属于高能焊。可焊0.1~50mm厚的工件。

B.脉冲激光焊加热过程短、焊点小、热影响区小。

C.与电子束焊相比,激光焊不需要真空,也不存在X射线防护问题。

D.能对难以接近的部位进行焊接,能透过玻璃或其他透明物体进行焊接。

E.激光不受电磁场的影响。

F.激光的电光转换效率低。工件的加工和组装精度要求高,夹具要求精密,因此焊接成本

高。

激光焊接的特点是被焊接工件变形极小,几乎没有连接间隙,焊接深度/宽度比高,例如焊缝宽1毫米,深为5毫米,因此焊接极为牢固,表面焊缝宽度很小,连接间隙实际为零,焊接质量比传统方法高。所以在一些用激光焊接的汽车顶壳是不用装饰条遮蔽焊接线的。在汽车制造中,激光焊接主要用于车身框架结构的焊接,例如顶盖与侧面车身的焊接,传统焊接方法的电阻点焊已经逐渐被激光焊接所取替。用激光焊接技术,既提高了工件表面的美观,又降低了板材使用量,由于零件焊接部位几乎没有变形,不需要焊后热处理,还提

高了车身的刚度。

2.激光焊接设备

激光焊接设备的关键是功率激光器,主要有两大类,一是固体激光器,又称Nd:YAG激光器

。Nd(钕)是一种稀土族元素,YAG代表钇铝柘榴石,晶体结构与红宝石相似。Nd:YAG激光

器波长为1.06μm,优点是产生的光束可以通过光纤传送,因此可以省去复杂的光束传送系统,适用于柔性制造系统,通常用于焊接精度要求比较高的工件。汽车工业常用输出功率

为3-4千瓦的Nd:YAG激光器。另一类是气体激光器,又称CO2激光器,分子气体作工作介质

,产生平均为10.6μm的红外激光,可以连续工作并输出很高的功率,激光功率在2-5千瓦

之间,目前已有2 0千瓦在实验运用。

车身焊接工艺

1. 范围

本标准规定了本公司车辆产品车身装焊应遵守的基本规则;

本标准适用于本公司车辆产品自制结构件的装焊作业。

2. 引用标准

下列文件的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后所有的修改单(不包刮勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协

议的各方研究是否可使用这些文件的最新版本。

JB/T 9186 二氧化碳气体报护焊工艺规程

《焊接手册》机械工业出版社

NES M 0109-1985 焊接接头试验方法通则

NES M 0112-1993 焊接接头拉伸剪切试验方法

NES M 0115-1993 焊接接头显微镜试验方法

3. 公司应用的焊接方法

公司应用的焊接方法见表1

表1 公司应用的焊接方法

焊接方法应用范围

电阻焊点焊悬挂式点焊车身分总成

机器人点焊车身分总成

固定点焊车身小型零部件

凸焊螺母板、小分装件(板厚比超过1:3)

螺柱焊分总成

植钉焊分总成

电弧焊CO2气保焊(弧焊机器人)仪表骨架总成、车身分总成CO2气体保护焊(半自动) 补焊车、身分总成

4. 焊接用辅料选用原则

焊接用辅料选用原则见表2

表2 焊接用辅料选用原则

焊接方法辅料名称牌号及纯度

点焊上下电极头铬锆铜等

凸焊电极头

焊接模具和夹具/

定位销绝缘体或外层渡上绝缘材料

CO2气体保护焊焊丝H08MnSiA等

CO2气体CO2纯度大于99.5%,水分含量小于1~9g/m3

5. 焊接工艺参数及要点

焊接工艺参数及要点见表3

表3 焊接工艺参数及要点

序号焊接方法工艺参数工艺要点

1 电阻焊搭接宽度见表4

2 装配间隙务必控制在(0~1)mm范围内

3 焊点间距不能小于表4中的最小间距,以免产生分流,对于多层焊,焊点距

增大(20~25)%

4 预压时间在达到压紧状态的情况下尽可能缩预压时间,提高生产效率。

5 焊接时间见8项初选工艺规范表

6 焊接压力焊接压力的大小影响接触电阻、电流密度、电极散热效果及焊接区的塑性变形,压力不足会起压痕过深、表面径向裂纹,影响焊接强度,压力大小具体见初

选工艺规范表。

7 焊接电流焊接电流影响熔核直径和焊透率,电流增大时,其熔核直径、焊透率也会增大;但电流过大,易产生飞溅,焊点强度降低,电流过小,易产生焊不透,熔核

直径小等缺陷,具体见初选工艺规范表。

8 预热电流预热时间对于淬透性较大,电导率、热导率较高的钢材,可通过调

整电流缓升或缓降以达到预热或缓冷的目的

9 冷却时间对于1~8mm的钢板,其冷却结晶时间一般为(0.1~2.5)s 5-

125CYCLE (50HZ)

10 休止时间休止时间为电极开始提起到电极第二次开始下降的时间,休止时

间的长短影响连续打点的速度。

11 电极直径电极直径的大小影响电流密度、熔核直径、散热效果,因此应根

据不同的板厚选择合适的电极直径,具体见初选工艺规范表。

12 连续打点次数电极使用寿命连续打点次数试验后确定,电极的使用寿命见

电极更换基准。

13 熔核直径熔核率压痕深度拉剪负荷(熔核直径、熔核率、压痕深度、拉剪负荷是质量特性)熔核直径的计算和判定见表5,熔核率计算:η=h/(δ-c)100%,一般熔透率为20~80%, h(熔核最大高度) ,δ(板厚),c(压痕深度)。压痕深度:不超过

15%,特殊情况可增大到20~25%。

14 CO2气保焊焊接电流(送丝速度)、对于不同的焊丝直径,焊接电流是不一

样的,电流过大,易产生组织粗大、烧穿;电流过小,易产生焊不透、咬边。

15 焊接电压对于一定的焊丝直径与焊接电流,必须选用合适的焊接电压匹配

才能获得稳定短路过渡效果,具体匹配见表11

16 空载电压一般电弧电源的空载电压为(50~80)V

17 收弧电流收弧电压控制收弧接头的质量和外观。

18 气体流量焊接过程中,CO2气体保护焊气体流量与焊丝直径、焊接电流、焊接速度、焊接周围环境、焊接位置有关,室外或仰焊时流量适当增大;气体流量过大和过

小都会产生保护不良,具体见表11。

19 气瓶使用气压气体纯度气瓶使用气压为14.5MPa,当气瓶的压力降为980KPa 时,应停止使用,因为此时的水分含量增加了3倍;CO2纯度大于99.5%,水分含量不超过

0.005%。

20 焊丝直径导电嘴直径导电嘴寿命焊丝直径的选择见表11,本公司选用的焊丝

直径为υ1.0,导电嘴的的孔径规格为υ1.00.40.1,最大不能超过υ1.4。

21 焊接速度焊接速度过快,会引起焊缝两边咬边;焊接速度过慢,易产生焊

缝组织粗大及烧穿;对于半自动焊,焊接速度不超过50Cm/min。

22 干伸长度焊丝的干伸长度与焊丝直径、焊接电流以及电弧电压有关,在焊

接过程中,导电嘴到母材间的距离一般为焊丝直径的10~15倍,约(10~20)mm;焊丝伸

出长度增加,焊接电流下降,母材熔深减小,反之熔深增大。

6. 点焊接头的最小搭边宽度和焊点的最小点距

a) 点焊接头的最小搭边宽度见图1

最小搭边宽度

b = 4δ+8 (当δ1<δ2 时,按δ2计算)

其中b ——搭边宽度,mm

δ——板厚,mm

图1 搭边尺寸

b) 点焊接头的最小搭边宽度和焊点的最小点距见表4

表4 点焊接头的最小搭边宽度和焊点的最小点距单位:mm

项目参数值

最薄板件厚度0.5 0.8 1.0 1.2 1.5 2.0 2.3 3.2

单排焊点最小搭边宽度11 11 12 14 16 18 20 22

双排焊点最小搭边宽度22 22 24 28 32 36 40 42

焊点的最小距9 12 18 20 27 35 40 50

7. 点焊熔核直径的合格判定基准

点焊熔核直径合格判定基准见表5

表5 点焊熔核直径的合格判定基准单位:mm

项目参数值

板厚0.8 0.9 1.0 1.2 1.4` 1.5 1.6 1.8 2.0 2.3

2.5 2.8

3.0

最小值 3.8 4.0 4.3 4.7 5.0 5.2 5.6 5.7 6.0 6.4

6.7

7.0 7.4

平均值 4.5 4.7 5.0 5.5 5.9 6.1 6.3 6.7 7.1 7.6

7.9 8.4 8.7

注:d=(a+b)/2 d――熔核直径的平均值a――熔核直径的最短径;b――熔核直径的最长径

8. 焊接参数的初选工艺规范

8.1低碳钢点焊焊接初选工艺规范

低碳钢点焊焊接初选工艺规范见表6

表6 低碳钢点焊焊接初选工艺规范

板厚,mm 电极工作表面直径,mm 最佳规范(A类)中等规范(B类)焊接时间,周焊接压力,KN 焊接电流,KA 抗剪强度,KN,±14% 焊接

时间,周焊接压力,KN 焊接电流,KA 抗剪强度,KN,±14%

0.5 4.3~5.3 5 1.35 6.0 2.4 9 0.9 5.0 2.1

0.8 4.5~5.3 7 1.90 7.8 4.4 13 1.25 6.5 4.0

1.0 5.5~6.0 8

2.25 8.8 6.1 17 1.5 7.2 5.4

1.2 5.8~6.2 10

2.70 9.8 7.8 19 1.75 7.7 6.2

1.5 6.0~7.0 13 3.60 11.5 10.6 25

2.4 9.1 10.0

1.8 7.0~7.7 15 4.10 1

2.5 1

3.0 28 2.75 9.7 11.8

2.0 7.0~8.0 17 4.70 1

3.3 1

4.5 30 3.0 10.3 13.7

2.3 7.0~8.0 20 5.80 15.5 18.5 37

3.7 11.5 17.7

3.2 8.0~10.0 27 8.20 17.4 31.0 50 5.0 12.9 28.5

注1:首先选用最佳规范,然后再考虑试选中等规范。在生产中,可根据实际情况,对焊接规范进行调整,调整量不超过±15%。注2:对于不同厚度的零件点焊时,规范参数可先按薄件选取,再按板件厚度的平均值通过试片剥离实验修正。通常选用硬规范:大电流、短时间来改善熔核偏移。注3:多层板焊接,按外层较薄零件厚度选取规范参数,再按板件厚度的平均值通过试片剥离试验修正。当一台焊机既焊双层板又焊多层板时,优先选用能够兼顾两种情况的规范参数,当不能兼顾时,多层板焊接可采用二次点焊。注4:车身外覆盖件要求采用无痕点焊,焊接工艺规范经过工艺验证后纳入工艺文件,特殊情况除外。

注5:1 周=0.02 秒。

8.2 螺母(螺栓)凸焊焊接初选工艺规范

螺母(螺栓)凸焊焊接初选工艺规范见表7。

表7 螺母(螺栓)凸焊焊接初选工艺规范

板厚,mm 凸焊模定位销直径,mm 凸焊螺母规格焊接电流,KA 电极压

力,KN 焊接时间,周

0.9~1.2 M4 4.8 M4 9.0~12.0 5~7 4~5

M5 5.8 M5 9.5~12.5 5~7 4~5

M6 6.8 M6 10.0~13.0 5~7 5~6

0.9 M8 8.8 M8 11.0~14.5 5~7 8~10

2.2 M8 8.8 M8 11.0~15.0 5~7 8~10

3 M10 10.8 M10 12.0~15.5 5~7 8~10

3.2 M12 12.8 M12 12.5~15.5 5~7 9~11

8.3 螺柱焊焊接初选工艺规范

螺柱焊焊接初选工艺规范见表8

表8 螺柱焊焊接初选工艺规范

螺柱直径,mm 焊接时间,ms 焊接电压,V 焊接电流,A 提升高度,mm 伸出

长度,mm

M5 100 20~30 400 1.5~7 2~8

M6 120 480 1.5~7 2~8

M8 160 25~35 640 1.5~7 2~8

M10 200 30~40 800 1.5~7 2~8

M12 240 960 1.5~7 2~8

注1:电流可用下式进行估算,当d≤16mm 时,I(A)=80×d(mm);当d>16mm时,I (A

)=90×d(mm);注2:电弧电压主要取决于提升高度和焊接电流,一般控制在(20~40)

V之间;注3:对于平焊(工件焊接平面平行于地平面),其焊接时间可用下式进行估算:

tw(s)=0.02×d(mm)d≤12mm (4)tw(s)=0.04×d(mm)d >12mm (5)对于横

焊(工件焊接平面垂直于地平面),其焊接时间应该减小;注4:具体工艺参数要进行试验

确认。注5: 1s=1000ms

8.4 不锈钢点焊焊接初选工艺规范

不锈钢点焊焊接初选工艺规范见表9

表9 不锈钢点焊焊接初选工艺规范

板厚,mm 电极直径,mm 焊接时间,周焊接压力,KN 焊接电流,KA

0.5 4.0 1.5-2.0 3-4 3.5-4.5

0.8 5.0 2.4-3.6 5-7 5.0-6.5

1.0 5.0 3.6-4.2 6-8 5.8-6.5

1.2 6.0 4.0-4.5 7-9 6.0-7.0

1.5 5.5-6.5 5.0-5.6 9-12 6.5-8.0

2.0 7.0 7.5-8.5 11-13 8.0-10.0

2.5 7.5-8.0 8.5-10.0 12-16 8.0-11.0

3.0 9.0-10.0 10.0-12.0 13-17 11.0-13.0

8.5 镀锌钢板点焊焊接初选工艺规范

镀锌钢板点焊焊接初选工艺规范见表10

表10 镀锌钢板点焊焊接初选工艺规范

镀层种类镀层厚度,um 板厚,mm 最佳条件(A类)中等条件(B类)焊接时间,周焊接压力,KN 焊接电流,KA 焊接时间,周焊接压

力,KN 焊接电流KA

电镀层2~3 0.8 8 2.7 10.0 10 2.0 8.5

2~3 1.2 10 3.3 11.5 12 2.5 10.5

2~3 1.6 12 4.5 14.5 15 3.2 12.0

热镀层10~15 0.8 8 2.7 10.0 10 1.7 9.9

15~20 1.2 10 3.7 12.5 12 2.5 11.0

20~25 1.6 12 4.5 15.0 15 3.5 12.0

8.6 CO2焊焊接初选工艺规范

CO2焊焊接初选工艺规范见表11。

表11 CO2焊焊接工艺规范

板厚,mm 焊丝直径,mm 焊接电流,A 电弧电压,V 气体流量,l/min

0.9 0.8 80~115 19~23 7~12

1.0 80~115 19~23

1.2~1.5 0.8、1.0 100~130 19~23

2.0~2.5 0.8、1.0 130~160 20~26 9~15

2.5~

3.0 1.0 140~200 24~28

4 1.2 180~230 24~28

9. 试验规范

工艺参数的确定应经过工艺试验确定,报事业部主管厂长批准后执行,同时工艺试验结果

存档。

9.1 试验方法种类

表12 试验类型

试验方法试验工具焊接方法内容

拉伸试验拉伸试验机、开槽夹具点焊、凸焊、螺柱焊、植钉焊、CO2气保焊抗

汽车车身焊接工艺设计教案

浅析汽车车身的焊接工艺设计 在汽车厂中,焊接生产线相对于涂装线和总装线来说,刚性强,多品种车型的通用性差,每更新换代一种车型,均需要更新车间大量专用设备和生产工艺。焊接工艺设计可以称得上是焊接生产线的“灵魂”,涉及的专业知识较多,如机械化、电控、非标设备、建筑、结构、水道、暖通、动力、电气、计算机、环保和通讯等,从宏观上决定车间的工艺水平、物流、投资和预留发展,具体决定着生产线的工艺设备种类和数量、夹具形式、物流工位器具形式、机械化输送方式及控制模式等。因此,焊接工艺设计在焊接生产线的开发中占有举足轻重的地位,是产生高性价比焊接生产线 的关键。 1、车身焊接工艺设计的前提条件 1.1产品资料 a.产品的数学模型(简称数模)。在汽车制造行业中,一般情况下用 UG,Catia,ProE等三维软件均能打开数模(如图1),并在其中获取数据或进行深人的工作。在工艺设计过程中,将所有数模装配在一起就构成了一个整车数模,从数模中可以获得零部件的结构尺寸、位置关系。由数模还可以生成整车、分总成、冲压件的各种视图(包括轴测图),以及可以输出剖面图。 b.全套产品图纸。 c.样车、样件(包括整车车身总成、各大总成、分总成和冲压件)。

d.产品零部件明细表(包括各部件的名称、编号,冲压件的名称、编号、数量,标准件的规格、数量)。 工艺设计时,业主必须提供上述a、b、c中至少1项,d项可以从前3项中分析出来,正常状态下d项(如图2)早在汽车设计结束时就已经确定了。如果仅提供b 项,那么需要增加大量的车身拆解、分析工作。

1.2工厂设计的参数 工厂设计的参数包括以下几方面: a.生产纲领即年产量; b.年时基数即生产班次、生产线的利用率等; c.生产线的自动化程度(机器人+自动焊钳焊点数/全车身焊点数x 100%=自动化率); d.生产线的工艺水平要求(如主要设备选用原则、生产线的输送方式,电气控制水平等); e.各种材料、外购件的选用原则(如型材、控制元件、气动元件、电机、减速器); f.各种公用动力介质的供应方式、能力、品质等参数,建厂所在地的环境状况如温度、湿度等; g.当生产线布置在原有厂房内时,应收集原有房的土建、公用有关资料,如厂房柱顶标高、屋架承载能力、电力和动力介质的余富程度等。 2、工艺分析 2.1工艺线路分析 根据业主提供的产品资料进行产品工艺线路分析(如业主仅提供样车及样件则需经过样车分析→样车拆解→样车测量→样车再装配过程),完成装焊工艺线路图或爆炸图设计。 2.1.1产品分块 同类型车身的分块基本相同(一般车身均由地板、侧围、前/后围、门、顶盖等大总成组成),但各总成之间的连接方式及顺序往往有较大区别,合理的分块才能保

车身焊接工艺1

车身焊接工艺 一、车身装焊工艺的特点 汽车车身壳体是一个复杂的结构件,它是由百余种、甚至数百种薄板冲压件经焊接、铆接、机械联结及粘接等方法联结而成的。由于车身冲压件的材料大都是具有良好焊接性能的低碳钢,所以焊接是现代车身制造中应用最广泛的联结方式。表1列举了车身制造中常用的焊接方法: 几乎全部采用电阻焊。除此之外就是二氧化碳碳气体保护焊,它主要用于车身骨

架和车身总成的焊接中。 由于车身零件大都是薄壁板件或薄壁杆件,其刚性很差,所以在装焊过程中必须使用多点定位夹紧的专用装焊夹具,以保证各零件或合件在焊接处的贴合和相互位置,特别是门窗等孔洞的尺寸等。这也是车身装焊工艺的特点之一。 为便于制造,车身设计时,通常将车身划分为若干个分总成,各分总成. 又划分为若干个合件,合件由若干个零件组成。车身装焊的顺序则是上述过程的逆过程,即先将最后将分总若干个零件装焊成合件,再将若干个合件和零件装焊成分总成, 1成和合件、零件装焊成车身总成。轿车白车身装焊大致的程序图为如图所示:前底板分总成 前内挡泥板总成 前轮胎挡泥板总成前端分总成 前围板总成 散热器罩总成底板分总成 中底板分总成 后底板分总成 门框总成 后轮胎挡泥板总成 后翼子板总成侧围分总成 车身总成 顶盖侧流水槽 门锁加强板 前风挡下盖板总成 后围上盖板总成 后围下盖板总成 仪表板总成 白车身 顶盖总成 发动机盖总成 前翼子板总成 行李箱盖总成 车门总成 图1 轿车白车身装焊程序图 二、电阻焊 1.电阻焊及其特点 将置于两电极之间的工件加压,并在焊接处通以电流,利用电流通过工件本身产的的热量来加热而形成局部熔化,断电冷却时,在压力继续作用下而形成牢固接头。这种工艺过程称为电阻焊。电阻焊的种类很多,按接头形式可分为搭接电阻焊和对接电阻焊两种。结合工艺方法,搭接电阻焊又可分为点焊、缝焊和凸焊三种,对接电阻焊一般有电阻对焊和闪光对焊两种。 特点: (1)利用电流通过工件焊接处的电阻而产生的热量对工件加热。即热量不是来源于工件之外,而是内部热源。 (2)整个焊接过程都是在压力作用校完成的,即必须施加压力。

汽车制造中的焊接工艺..

汽车制造中的焊接工艺 汽车制造四大工艺中,焊装尤其重要,而在焊装的前期规划中,车身焊接夹具的设计又是关键环节。工装夹具的设计是一门经验性很强的综合性技术,在设计时首先应考虑的是生产纲领,同时还必须熟悉产品结构,了解钣金件变形特点,把握零部件装配精度及容差分配,通晓工艺要求。只有做到这些,才能对焊接夹具进行全方位的设计,满足生产制造要求。汽车焊接生产线也是是汽车制造中的关键,焊接生产线中的各种工装夹具又是焊装线的重中之重,焊接夹具的设计则是前提和基础。设计工装夹具时,不仅要考虑生产纲领,还必须要熟悉产品结构,了解钣金件变形特点,通晓工艺要求等诸多内容。 生产纲领即合格产品的年产量,它决定了焊接夹具的自动化水平及焊接工位的配置,是通过生产节拍体现的,是焊接夹具设计首先应考虑的问题。生产节拍由夹具动作时间、装配时间、焊接时间、搬运时间等组成。夹具动作时间主要取决于夹具的自动化程度;装配时间主要取决于冲压件精度、工序件精度、操作者的熟练程度;焊接时间主要取决于焊接工艺水平、焊接设备的自动化程度、焊钳选型的合理化程度等;搬运时间主要取决于搬运的自动化程度、物流的合理化程度及生产现场管理水平等。只要把握以上几点,就能合理地解决焊接夹具的自动化水平与制造成本的矛盾。 汽车车身的结构特点与焊接的关系 汽车车身一般由外覆盖件、内覆盖件和骨架件组成,覆盖件的钢板厚度一般为0.8~1.2mm,有的车型外覆盖件钣金厚度仅有0.6mm、0.7mm,骨架件的钢板厚度多为1.2~2.5mm,也就是说它们大都为薄板件。对焊接夹具设计来说,应考虑如下特点: 1. 刚性差、易变形 经过成型的薄板冲压件有一定的刚性,但与机械加工件相比,刚性要差得多,而且单个大型冲压件容易变形,只有焊接成车身壳体后,才具有较强的刚性。以轿车车身大侧围外板为例,一

汽车制造实用工艺——焊装

编辑此次参观了第二工厂的焊装车间、总装车间、试车场,以及襄樊动力总成厂的发动机生产车间。值得一提的是,后续我们还探访了位于襄樊的国家汽车质量监督检验中心,这里是国众多汽车厂商对车辆性能进行试验、路试的重要基地,在后续报道中我们会为大家带来该检验中心的详细信息。 『在后续的报道中我们还将带来总成车间和襄樊工厂的更多容』 汽车制造基本工艺: 介绍焊装工厂之前,我们先来简单叙述一下汽车的基本制造流程。汽车制造流程中主要有四大工艺,即车身冲压、车身焊装、车身涂装、整车总装。这四大工艺流程一般都是在整车厂完成,但发动机、变速器、车桥、车身附件、饰件等部件一般都是在整车厂外完成制造,然后运输到整车厂与车身一起组装成整车。 『此图为神龙公司第一冲压车间,东风雪铁龙C5的冲压在这里完成』

需要说明的是,在神龙第二工厂没有冲压车间,东风雪铁龙C5的钢板的冲压是在第一工厂完成后运送到第二工厂来的,在第二工厂东风雪铁龙C5要进行的第一个步骤就是焊接工艺。通过了解,从目前的生产状况来看,第二工厂焊装车间的柔性化成型技术、在线激光三座标检测是较为先进的技术,不过在机器人的使用率等方面并没有明显的优势。话不多说了,我们来看看东风雪铁龙C5的焊接工艺吧。 ●神龙公司第二工厂焊装分厂介绍: 焊装分厂厂房面积4.66万平米,有ALW航空激光焊接、柔性化车身成型工艺、激光在线三座标测量等焊接和检测工艺,目的是为了打造东风雪铁龙C5的“救生舱式高强度车身”。其供应商与欧洲新雪铁龙C5相同,属于PSA集团下的设备供应商CFER。

在神龙第二工厂的焊装车间,基本的工艺流程是先将各个冲压好的零部件分别焊装,其中包括了车身前后端等部件;然后是地板线的焊装,这里完成了车身前后侧围等部分的焊装过程;地板部分焊装好后,就进入了车身成型线的焊装,经过这个工序之后,我们可以看

汽车车身焊装工艺技术(DOCX 51页)

汽车车身焊装工艺技术(DOCX 51页)

汽车车身焊装工艺 汽车车身装配主要采用焊接方式,在汽车车身结构设计时就必须考虑零部件的装配工艺性。焊装工艺设计与车身产品设计及冲压工艺设计是互相联系、互相制约的,必须进行综合考虑,它是影响车身制造质量的重要因素。 第一节焊装工艺分析 工艺性好坏的客观评价标准就是在一定的生产条件和规模下,能否保证以最少的原材料和加工劳动量,最经济地获得高质量的产品。影响车身焊装工艺性的主要因素有生产批量、车身产品分块、焊接结构、焊点布置等。 一.生产批量 车身的焊装工艺主要由生产批量的大小确定的。一般来说,批量越小,夹具的数量越少,自动化程度越低,每台夹具上所焊的车身产品件数量越多;反之,批量越大,焊装工位越多,夹具数量越多,自动化程度越高,每台夹具上所焊的车身产品件数量越少。 1.生产节拍的计算 生产节拍是指设备正常运行过程中,单位产品生产所需要的时间。 假设某车年生产纲领是30000辆份 / 年 工作制:双班,250个工作日,每个工作日时间为8小时

设备开工率:85% 则生产节拍的计算为: 2.时序图设计 时序图(TIME CHART)是指一个工位从零部件上料到焊好后合件取料的整个过程中所有动作顺序、时间分配以及相互间互锁关系,这些动作包括上下料(手动或自动),夹具夹紧松开,自动焊枪到位、焊接、退回以及传送装置的运动等。生产线上每个工位的时序图设计总时间以满足生产节拍为依据,同时时序图也是焊装线电气控制设计的技术文件和依据,是机电的交互接口。 如图4-1所示为一张时序图,它的内容包括: (1)设备名称,它是以完成动作的单元来划分。例如移动装置,夹具单元1,焊接,车身零部件名称等。其中车身零件名称表示上料动作,组件名称表示取料动作。 2)相应设备的动作名称,它是以动力源的动作来划分的。例如移动装置是由气缸驱动上下运动和电机驱动工位间前后运动组成,它的动作名称分别为上升,下降,前进,后退;再例如夹具是由夹紧气缸驱动夹紧,它的动作名称分为夹紧,打开等。 (3)各动作顺序及时间分配,动作时间表分配是以坐标网格的形式标记,每格单位为5秒,一个循环总时间为生产节拍,各动作之间的前后顺序关系图用箭头线标识。一般气缸

车身焊接汽车焊接车间工艺流程

车身焊接汽车焊接车间工艺流程 (接上期) 十一、二氧化碳保护焊常见焊接缺陷及原因分析1 咬边咬边是指焊接部位两侧的母材由于过热而形成轻微的沟槽(图38),使钢板的横截面减小。咬边部位通常会产生应力集中,加之母材由于过热变薄将严重降低焊接区域的强度。 产生咬边的原因有:焊枪倾角不合适;电弧过长;焊枪保持不稳定;焊接速度太快或电流设置太大等。 2 焊瘤 焊接过程中金属流溢到加热不足的母材或焊缝上,这种未能和母材熔合在一起而堆积的金属叫焊瘤(图39),也称飞边。角焊接比对接焊更容易产生焊瘤,通常会由于应力集中而出现过早腐蚀。 产生焊瘤的原因有:焊接速度太慢;电弧太短;焊枪进给太慢;电流太小等。 3 金属扭曲 由于热量输入太高,导致平直的钢板金属表面起伏不平,产生金属扭曲现象。在车身上,由于受两侧钢板挤压,这种情况会转变为

变形,通常情况下这种变形为凹陷变形(图40)。可以采取以下方法避免金属扭曲:焊接时将焊接参数设置调小一些:焊接期间让焊接部位充分冷却;采用跳焊法或增加焊枪移动的速度。 4 飞溅过多 飞溅过多表现为在焊接区域两侧的金属表面上堆积有很多熔化的焊丝斑点(图41)。飞溅物的破坏性很强,落在车内座椅、内饰板、仪表台等部位会造成烫伤,落在玻璃上会造成玻璃烧蚀后出现凹坑,所以,焊接前一定要使用防火毯将相应部位进行防护(图42)。 导致飞溅过多的原因有:使用了错误的焊接气体;电弧太长;焊枪倾角不正确;母材表面生锈等。 5 气孔 气孔是指在焊接过程中,焊缝区域内存在很多小孔(图43)。 产生气孔的主要原因有:焊丝上粘有油污、脏物或焊丝生锈;焊缝冷却太快;电弧太长;保护气体密封不良;使用了错误的焊接气体;气体喷嘴破损;焊接气流产生扰动;使用了不正确型号的焊丝;金属表面受到锈迹、水分、油漆等污染。

汽车车身的焊接工艺设计

汽车车身的焊接工艺设计 焊接是汽车车身制造四大工艺之一,焊接白车身的质量在很大程度上决定着整车质量。因此,在我国汽车行业不断发展的过程中,要想提升汽车车身的整体质量和使用性能,应当对汽车车身的焊接工艺进行全面的了解和掌握,也只有这样才能在最大程度上提升汽车车身焊接质量,提升汽车的整体性能。焊接质量既与前期工艺设计开发过程相关,也跟量产后的质量控制密不可分。设计开发的好的焊接工艺性是焊接质量保证的前提。文章主要是对汽车车身的焊接工艺设计开发为主,对其相关的工艺设计要点进行了简要的分析和阐述,希望对我国汽车行业的发展,给予一定程度上的指导。 标签:汽车车身;焊接工艺;设计形式 1 汽车车身的焊接工艺的设计要素 (1)汽车模型设计。一般情况下,汽车制造行业在汽车模型构建的过程中,经常采用UG、CATIA、Pro-E等三维软件进行构建,从而获得相关的数据。在汽车车身的焊接过程中,整车模型主要是利用数模装配组成的,在软件中可以获得汽车车身结构的大小,以及各个零件之间的相关参数。(2)样件、样车。在汽车车身的焊接过程中,试制人员应当对汽车车身的生产工艺进行全面的了解,其中包括了汽车车身分总成、冲压件等各个方面的内容。(3)设计图纸。开发人员应当编制完善的焊接工艺方案,这样可以为汽车车身的焊接工艺的实现提供了重要的技术支持。(4)零件明细。在汽车车身的焊接过程中,工作人员应当对各个部分的零部件,进行全面的记录,其中包括有:汽车车身各个部件的编号、名称、标准件的数量、规格等个方面,这样在零件查找和制造过程中,可以提供了重要的参考依据。 2 汽车车身的焊接工艺设计分析 2.1 车身部件的拆解 汽车车身部件的拆解是汽车车身的焊接工艺设计中非常重要的组成部分,主要是对侧围、后围、顶盖等各个总成零件,进行合理的工艺划分。但是,在划分的过程中,由于形状和大小的不一致,所以在连接工艺实现的过程中,也会存在着一定程度上的差异性。因此,在汽车车身划分的过程中,就是要针对其差异性,制定合理的连接形式,这样才能在最大程度上保证了汽车车身的焊接质量、尺寸精度及生产节拍。例如:在汽车车身焊接的过程中,应当按照其顺序、大小、形状等的差异性,进行全面的划分:由纵梁、地板组成下车身;由轮罩、侧围内板骨架组成主车身;由A柱、B柱、C柱、门槛及侧围外板组成左右侧围;然后进行整车合车,最后安装四门两盖。之后,再根据生产节拍要求和尺寸控制有利原则将各部分总成进行进一步的拆解。 2.2 凸焊工艺

【车身焊接】汽车焊接车间工艺流程

【车身焊接】汽车焊接车间工艺流程 (接上期) 第四节钎焊一、钎焊原理及种类钎焊是指使用熔点比母材低的钎料,在高于钎料熔点,低于母材熔点的温度下,利用液态钎料在母材表面湿润、铺展和母材间隙中填缝,与母材相互溶解与扩散,从而实现工件之间相互连接的方法。车身上钎焊常用于立柱与前围板结合处、后围板与后翼子板结合处(图60)、车顶与车身侧围的结合处、挡泥板等部位。 根据钎料熔点不同,钎焊可分为软钎焊和硬钎焊。 1 软钎焊:钎料熔点低于450%的称为软钎焊。软钎焊的钎料有铅基、铅锡基等合金,主要用于焊接受力不大及工作温度较低的工件,如各种导线的连接、电器元件等,焊接强度通常低于70MPa。软钎焊在车辆上的使用比较常见,如传统的焊接水箱、线束的锡焊。车身钢板修复时的软钎焊,使用范围主要为指针对凹陷与焊口部位的补锡工艺。 2 硬钎焊:钎料熔点高于450%的称为硬钎焊。硬钎焊的钎料有银基、铜基、铝基等合金,主要用于焊接受力较大、工作温度较高的工件,焊接强度通常高于200MPa。车身修复时硬钎焊一般特指使用氧乙炔焊作为加热源的铜焊。

二、钎焊与其它焊接种类的区别 与熔焊相比,钎焊时只熔化钎料,母材并不熔化,熔焊时母材与焊料完全熔化;与压焊相比,焊接部位不需要施加压力。 与其它常用焊接方式焊接时母材的状态相比,二氧化碳保护焊焊接部位母材的状态是完全融化;电阻点焊的焊接部位母材是半熔融状态;硬钎焊焊接部位的母材为表皮熔化,软钎焊焊接部位的母材则为表皮活化。 三、钎焊特性 1 熔化后流动性、气密性好,能够顺利进入到狭窄的间隙中,可以作为金属密封容器的修补用途。由于流动性好,熔化后使用潮湿

整车焊装工艺认识(1)

整车焊装工艺认识 汽车制造中的焊接工艺汽车制造四大工艺中,焊装尤其重要,而在焊装的前期规划中,车身焊接夹具的设计又是关键环节。工装夹具的设计是一门经验性很强的综合性技术,在设计时首先应考虑的是生产纲领,同时还必须熟悉产品结构,了解钣金件变形特点,把握零部件装配精度及容差分配,通晓工艺要求。只有做到这些,才能对焊接夹具进行全方位的设计,满足生产制造要求。汽车焊接生产线也是是汽车制造中的关键,焊接生产线中的各种工装夹具又是焊装线的重中之重,焊接夹具的设计则是前提和基础。设计工装夹具时,不仅要考虑生产纲领,还必须要熟悉产品结构,了解钣金件变形特点,通晓工艺要求等诸多内容。 生产纲领即合格产品的年产量,它决定了焊接夹具的自动化水平及焊接工位的配置,是通过生产节拍体现的,是焊接夹具设计首先应考虑的问题。生产节拍由夹具动作时间、装配时间、焊接时间、搬运时间等组成。夹具动作时间主要取决于夹具的自动化程度;装配时间主要取决于冲压件精度、工序件精度、操作者的熟练程度;焊接时间主要取决于焊接工艺水平、焊接设备的自动化程度、焊钳选型的合理化程度等;搬运时间主要取决于搬运的自动化程度、物流的合理化程度及生产现场管理水平等。只要把握以上几点,就能合理地解决焊接夹具的自动化水平与制造成本的矛盾。 汽车车身的结构特点与焊接的关系汽车车身一般由外覆盖件、内覆盖件和骨架件组成,覆盖件的钢板厚度一般为0.8~1.2mm,有的车型外覆盖件钣金厚度仅有0.6mm、0.7mm,骨架件的钢板厚度多为1.2~2.5mm,也就是说它们大都为薄板件。 对焊接夹具设计来说,应考虑如下特点: 1. 刚性差、易变形经过成型的薄板冲压件有一定的刚性,但与机械加工件相比,刚性要差得多,而且单个大型冲压件容易变形,只有焊接成车身壳体后,才具有较强的刚性。以轿车车身大侧围外板为例,一般材料厚度为0.7~0.8mm,绝大多数是0.8mm,拉延形成空腔后,刚性非常差,当和内板件焊接形成侧围焊接总成后才具有较强的刚性。 2. 结构形状复杂汽车车身都是由薄板冲压件装焊而成的空间壳体,为了造型美观,并使壳体具有一定的刚性,组成车身的零件通常是经过拉延成型的空间曲面体,结构形状较为复杂。特别是随着现代汽车技术的发展和消费者对汽车品质和外观时尚的要求越来越高,车身结构设计也越来越复杂。 3. 以空间三维坐标标注尺寸汽车车身产品图以空间三维坐标来标注尺寸。为了表示覆盖件在汽车上的位置和便于标注尺寸,汽车车身一般每隔200mm或400mm划一坐标网线,而整车坐标系各有不同,这里举轿车为例,一般定义整车坐标系坐标原点是:X轴:车身的对称平面与主地板的下平面之间的交线,向车身后方为正,前方为负。Y轴:过前轮的中心连线且垂直于车身地板下平面的平面与车身对称平面之间的交线,向车身右侧为正,左侧为负。Z轴:过两前轮中心且与主地板平面垂直的直线,向上为正,向下为负。装配精度装配精度包括两方面:外观精度与骨架精度,外观精度指门盖等开闭件装配后的间隙面差;骨架精度指三维坐标值。货车车身的装配精度一般控制在2mm内,轿车控制在1mm内。焊接夹具的设计既要保证工序件之间的焊装要求,又要保证总体的焊接精度,通过调整工序件之间的匹配状态及容差分配来满足整体的装配要求。车身焊装夹具设计方法6点定则是汽车车身焊装夹具设计的主要方法,其含义是指限制6 个方向运动的自由度。在设计车身焊装夹具时,常有两种误解:一是认为6点定位原则对薄板焊装夹具不适用;二是看到薄板焊装夹具上有超定位现象。产生这种误解的原因是,把限制6个方向运动的自由度理解为限制6个方向的自由度。焊接夹具设计的宗旨是限制6个方向运动的自由度,这种限制不仅依靠夹具的定位夹紧装置,而且依靠制件之间的相互制约关系。只有正确认识了薄板冲压件焊装生产的特点,同时又正确理解了6点定则,才能正确应用这个原则。 1. 保证门洞的装配尺寸门洞的装配尺寸是整车外观间隙阶差的基础,当总成焊接无

汽车车身的焊接工艺设计

汽车车身的焊接工艺设计 发表时间:2019-08-14T10:24:57.910Z 来源:《防护工程》2019年10期作者:唐琼华 [导读] 汽车生产企业提高汽车制造工艺水平,就必须重视汽车焊装工艺设计与工装设计水平,通过提高客户对汽车产品满意度,增加产品市场竞争力。 柳州柳新汽车冲压件有限公司广西柳州 545006 摘要:当今汽车作为主要交通工具的同时进一步发展为代步工具,其发展形势日益迅猛。汽车车身是由数百件冲压件组成,这些组件通过焊接、铆接或机械联接等方式的加工,最后成为完整车体。在汽车加工技术中,焊装是主要加工方法,其工艺质量的高低直接影响到汽车的外形以及整体美观。合理的焊装工装,可有效地提升汽车整体产品质量,进一步提高装焊工艺水平,同时,也可以大大降低生产者劳动强度,提升企业劳动生产率。所以,汽车生产企业提高汽车制造工艺水平,就必须重视汽车焊装工艺设计与工装设计水平,通过提高客户对汽车产品满意度,增加产品市场竞争力。 关键词:汽车车身;焊接工艺;设计 1设计车身焊接工艺 1.1焊接工艺设计原则 在正常情况下,车体主要通过点焊焊接,并且对电阻点焊的接头优选固定电焊机。如果是较长的车身,则需要选择固定电焊机来焊接它的大平焊板、小零件和螺母等零件。此外,如果它是一个小件,它可以定位焊接在夹具上,固定时只需要用手动夹具或用夹子夹紧,对它焊接时可以通过定点焊机进行,以防止在夹具上过度焊接定位,导致整个空间的密度过大,这增加了工作强度并降低了生产率。 1.2焊接过程的设计内容 在汽车车身焊接过程中,组装和焊接零件以形成部件或组件,并且各种部件和组件被组合在一起。在车身的焊接部件中,存在多个部件,并且可能存在数百个部件,并且焊接过程复杂。在焊接之前,有必要制定详细的焊接工艺计划,以确保焊接结构的质量,并提高焊接工作的效率。还需要为每个组成部件焊接准备流程图,以制定特定的焊接过程并根据所需的时间确定焊接所需的设备和工艺过程,便指定工艺过程设备的数量,自动化程度和输送线的长度,同时,编制物流计划和相应的项目手册。 1.3技术灵活的生产线 智能和自动化生产技术属于灵活生产线技术,其系统与微电子,计算机,控制技术和信息技术相结合,允许在汽车生产过程中通过系统管理和规划生产以达到自动化生产,有效的提高了生产效率。该系统由多台机器或一台机器组成,在发生故障的情况下,相关物料的运输系统可以自动避开故障机器并确保物料的正常运输。最近,许多汽车制造商已开始应用这种灵活的生产技术,从装载零件到切削材料,所有这些都由物流系统控制,并将提高物流运输的效率,并在机床控制面板上设置排空,单机以及联机这三种生产状态。在系统操作期间,当加工或运输零件时,可以显示各种操作状态。例如,机器是联机状态还是单机工作,有无零件等,然后根据系统状态设置程序指令,这不仅降低工人的劳动强度,还有效的提高生产率。 2车体的焊接设计 2.1车身焊接工具设计关键点 在正常情况下,车身焊接工具的关键点主要有以下几点:①车身的相关尺寸大小,如顶盖、前后风门和车窗组件等;②车身相关配件的尺寸大小和位置,如发动机、后灯和悬架等;③车内饰装配的尺寸大小,如仪表板,座椅和控制系统的内部组件等;④对手的元件和搭接位置的配合、位置和形状必须高度一致;⑤汽车车身的轮廓和大小必须符合生产要求;⑥控制车身总成和车门总成的尺寸。 2.2车身工具设计的原理 在设计车身工具的过程中,有必要注意以下原则。在汽车单个零件的情况下,应用二孔二型的夹紧定位的原理;如果是较大部件,则在加工过程中,弹性变形的可能性增加,因此根据图案一致性原则需要额外的夹具定位和定位销的固定。确保定位尺寸标准和车身组件标准与车身结构设计标准一致,以防止发生初始误差,并且不同工序和安装位置尺寸也应保持一致。首先,设计相对复杂和较大的零件,然后设计相关配件和小零件,并将这些零件放在夹具夹紧定位。焊接夹具的定位夹具具有开放功能,可以满足空间操作的要求,各部件的操作不会相互影响,提高了生产效率。每个夹紧机构和定位应具有三维和二维的可调功能,便于及时调整。 2.3车身焊接工具 通常,车身焊接工具是焊接夹具,焊接夹具指的是夹紧元件,定位块,支撑件和引导支架等构成的平台,通常用于夹紧和定位零部件。当整个车身焊接过程中,结构元件的机械部件都需要焊接夹具来固定。目前,随着国内汽车工业的快速发展,各种类型和型号的汽车的生产,也出现了各种用于组装汽车装配件的夹具。因此,为了确保生产夹具适合汽车模型,许多汽车制造商需要根据汽车类型设计来制造焊接夹具。此外,由于汽车市场上焊接夹具没有统一的标准,这只是一种非标准的设计和生产技术。随着不断进步和改进的汽车行业,也在不断的改进和发展标准化的汽车焊接夹具。在设计夹具机械传动装置时,必须结合产品的特性,设计简单、易于操作的夹具定位和夹紧结构。同时,在设计工具时,还需要对常用的翻转架,轮胎工具和包边模的设计要加强重视。 3车身焊装的工装设计 汽车车身焊接工作的顺利开展,离不开焊接所需要的工装设备。一般主要指导向支架和定位块、夹具以及支架等加工部件组成的焊装工作台。其主要作用是保证车身焊装时不同结构件机械部分的牢固固定与精确定位,与汽车焊装工艺质量关系密切,也是汽车生产的基础工艺设备之一。焊接工位排布、焊点位置分布和冲压件的形状尺寸是焊装夹具设计必须考虑的因素,焊装夹具设计应遵循的基本原则如下:一是夹具设计的首要原则应保证加工产品加工精度与形状和尺寸精度符合与设计图纸、技术要求相一致。特别是零部件在夹具定位必须准确,才能保证加工精度。同时应压紧可靠,在焊接时应尽可能防止焊接变形。二是定位基准一致性原则。依据机械加工基准一致原则,为避免焊装时出现原始误差,定位尺寸基准必须与车身设计基准、汽车车身装配的基准相互保持一致,焊装工序中定位尺寸也应该保持一致。三是对于单个工件,应采用二孔、二型面的“定位—夹紧”原则。对外形尺寸较大的工件,考虑到钣金件的弹性,为了使工件局部定

汽车车身焊接工艺设计

汽车车身焊接工艺设计

————————————————————————————————作者: ————————————————————————————————日期:

浅析汽车车身的焊接工艺设计 在汽车厂中,焊接生产线相对于涂装线和总装线来说,刚性强,多品种车型的通用性差,每更新换代一种车型,均需要更新车间大量专用设备和生产工艺。焊接工艺设计可以称得上是焊接生产线的“灵魂”,涉及的专业知识较多,如机械化、电控、非标设备、建筑、结构、水道、暖通、动力、电气、计算机、环保和通讯等,从宏观上决定车间的工艺水平、物流、投资和预留发展,具体决定着生产线的工艺设备种类和数量、夹具形式、物流工位器具形式、机械化输送方式及控制模式等。因此,焊接工艺设计在焊接生产线的开发中占有举足轻重的地位,是产生高性价比焊接生产线的 关键。 1、车身焊接工艺设计的前提条件 1.1产品资料 a.产品的数学模型(简称数模)。在汽车制造行业中,一般情况下用UG,Catia,ProE等三维软件均能打开数模(如图1),并在其中获取数据或进行深人的工作。在工艺设计过程中,将所有数模装配在一起就构成了一个整车数模,从数模中可以获得零部件的结构尺寸、位置关系。由数模还可以生成整车、分总成、冲压件的各种视图(包括轴测图),以及可以输出剖面图。 b.全套产品图纸。 c.样车、样件(包括整车车身总成、各大总成、分总成和冲压件)。

d.产品零部件明细表(包括各部件的名称、编号,冲压件的名称、编号、数量,标准件的规格、数量)。 工艺设计时,业主必须提供上述a、b、c中至少1项,d项可以从前3项中分析出来,正常状态下d项(如图2)早在汽车设计结束时就已经确定了。如果仅提供b项,那么需要增加大量的车身拆解、分析工作。

汽车车身焊接工艺分析及工装设计

汽车车身焊接工艺分析及工装设计 【摘要】車身焊接是汽车生产中的重要工艺环节,相对于汽车总装与涂装工作而言,车身焊接具有较强的刚性,一旦车型更换,便需要同时更新焊接工艺。因此,为了促进汽车行业的发展,则应深入研究焊接工艺设计方面的问题。本文主要阐述了汽车车身焊装工艺设计的实质、设计内容、遵循原则以及柔性生产技术,以及汽车车身焊装的工装设计。 【关键词】汽车车身;焊装技术;工艺设计;工装设计 前言 焊装是汽车四大工艺之一,焊装工艺的质量直接影响到汽车的外形以及整体美观,近年来,随着汽车行业的快速发展,对汽车车身工艺有了更高的要求。因此,生产厂家必须引起重视,不断提高汽车车身焊装工艺的设计水平和焊装水平,以满足人们的需求。 1、汽车车身焊装的工艺设计 1.1 工艺设计的实质 工艺设计,是产品生产的指导性文件,是为了整个车身焊装工艺的科学性、合理性,让生产效率达到最高。工艺设计必须在确保产品质量的前提下,让产品符合生产客观规律,让企业用较小的投资获取最大的经济效益。汽车车身焊装工艺,首先要了解材料和设备的特点,并在这个基础上进行设计。这就要求我们的设计者必须具备足够的理论知识和实践经验,掌握焊装工艺的规律,在这个基础上,才能设计出好的工艺流程。其次,设计者在设计过程中,尽量要用客观、全面的观点去看待问题,避免个人意识的主观性和片面性。还要及时与车身设计人员、生产人员以及内饰设计人员进行沟通,了解车身的特性,探讨汽车车身焊装设计的可行性方案,从而确保工艺设计的先进性、合理性。

1.2 焊装工艺设计的内容 汽车车身焊接过程,其实就是将零件拼装焊接成组合件或者部件,然后,若干个零件组合件和部件组成一个总结构。汽车车身焊接构件少则几个,多则成百上千个零件,焊装的过程很复杂。在焊装之前,必须制定详细的焊装工艺文件,以保证焊接结构和较高的工作效率。然后,编制各个部件的装配—焊接工艺卡,制定相应的衔接工序,按照所需时间,确定焊接工艺以及所需设备,制定工艺设备的自动化程度、输送线的长短、设备数量,并在此基础上制定设备设计书以及物流运输方案。 1.3 焊装工艺设计遵循的原则 汽车车身一般都是点焊焊接,电阻点焊接头优先选择固定电焊机,车身组件相对比较长且平坦的大件焊接小件、螺母板以及加强板等零件选择固定电焊机。此外一些小件,不便在夹具上定位焊接,只需要用大力钳或手持夹具夹紧固定就可用固定点焊机焊接,以免造成焊接夹具上定位太多,让整个操作空间看起来太密集,增加了作业强度,降低了劳动效率。由于汽车车身结构复杂,所以大部分都是会用“夹具+悬挂电焊机”。 1.4 柔性生产线技术 柔性生产线技术是一种高度自动化、智能化的生产技术,它结合了计算机、信息技术、控制技术以及微电子学等众多学科,汽车生产过程中,系统对生产过程的规划、动作、生产、管理等环节实现自动化,极大地提高了生产效率,自动加工系统由1台或者多台机床组成,一旦发生故障,物料传输系统能够自动绕过故障机床,从而确保物料运转持续运转。国内的不少生产汽车厂家已经开始使用柔性生产技术。零件从上料到下料,各个工位传输,都是由物流系统统一控制,为了提高物流运输效率,在机床控制面板上设置了单机、联机和排空三种状态。系统在运行过程中,零件在传输或者加工过程中,会显示不同的工作状态,如机床是单机还是联机,是否有零件等,然后,根据系统状态,发布下一道程序的指令。降低工

汽车车身焊装工艺技术

汽车车身焊装工艺 汽车车身装配主要采用焊接方式,在汽车车身结构设计时就必须考虑零部件的装配工艺性。焊装工艺设计与车身产品设计及冲压工艺设计是互相联系、互相制约的,必须进行综合考虑,它是影响车身制造质量的重要因素。 第一节焊装工艺分析 工艺性好坏的客观评价标准就是在一定的生产条件和规模下,能否保证以最少的原材料和加工劳动量,最经济地获得高质量的产品。影响车身焊装工艺性的主要因素有生产批量、车身产品分块、焊接结构、焊点布置等。 一.生产批量 车身的焊装工艺主要由生产批量的大小确定的。一般来说,批量越小,夹具的数量越少,自动化程度越低,每台夹具上所焊的车身产品件数量越多;反之,批量越大,焊装工位越多,夹具数量越多,自动化程度越高,每台夹具上所焊的车身产品件数量越少。 1.生产节拍的计算 生产节拍是指设备正常运行过程中,单位产品生产所需要的时间。 假设某车年生产纲领是30000辆份/ 年 工作制:双班,250个工作日,每个工作日时间为8小时

设备开工率:85% 则生产节拍的计算为: 2.时序图设计 时序图(TIME CHART)是指一个工位从零部件上料到焊好后合件取料的整个过程中所有动作顺序、时间分配以及相互间互锁关系,这些动作包括上下料(手动或自动),夹具夹紧松开,自动焊枪到位、焊接、退回以及传送装置的运动等。生产线上每个工位的时序图设计总时间以满足生产节拍为依据,同时时序图也是焊装线电气控制设计的技术文件和依据,是机电的交互接口。 如图4-1所示为一张时序图,它的内容包括: (1)设备名称,它是以完成动作的单元来划分。例如移动装置,夹具单元1,焊接,车身零部件名称等。其中车身零件名称表示上料动作,组件名称表示取料动作。 2)相应设备的动作名称,它是以动力源的动作来划分的。例如移动装置是由气缸驱动上下运动和电机驱动工位间前后运动组成,它的动作名称分别为上升,下降,前进,后退;再例如夹具是由夹紧气缸驱动夹紧,它的动作名称分为夹紧,打开等。 (3)各动作顺序及时间分配,动作时间表分配是以坐标网格的形式标记,每格单位为5秒,一个循环总时间为生产节拍,各动作之间的前后顺序关系图用箭头线标识。一般气缸

汽车车身的焊接工艺及其措施

龙源期刊网 https://www.wendangku.net/doc/2913300929.html, 汽车车身的焊接工艺及其措施 作者:孙海 来源:《西部论丛》2017年第04期 摘要:汽车结构中的壳体是属于一种繁杂的组合体,其基本是由百余样薄板冲压式工件 利用粘合、铆钉、焊制、机械式紧固等连接方式进行组合和构置而成。一般情况下,由于汽车车体冲压件本身所用的材料都是一些低碳型钢材,此类钢材具备很好的焊接品质。故此,在实施车体焊制活动时其时常显示出操作方便、节省钢料、密封性强等品质特点。同时又因为汽车本身壳体具有很强的结构复杂性,故针对车体焊制程序的设计内容彰显出了其自身独有的重要性,其是实现汽车制造品质改进的必要性条件,故本文在此针对汽车车体焊制程序设计做出粗浅分析。 关键词:汽车车身焊接工艺措施 1汽车车身焊接工艺概况 汽车制造中必须高度重视焊接工艺,关乎到汽车整体性能的发挥,也是汽车在制造的过程中必须经历的环节之一。汽车车身的焊接是复杂的过程,由于车身壳体是经过百余种及数百种薄板冲压而成,需要将其通过焊接、铆接、机械联结及粘接等工艺方法,联合成一个有机的统一体,是艰巨而复杂的过程,期间针对车身的材料焊接需要选取技术含量高的技术。这样即可以节省材料又便于操作,特别是焊接技术的选取,其密封性较好,具有众多的优势性能,是现代汽车制造中运用最为广泛的方法。 2焊接工艺技术在汽车行业的应用现状分析 如今我国处于交通行业迅猛发展的时代,人均汽车占有量猛增,汽车成为很多中国家庭必备的出行工具,而汽车生产工艺也在不断进行升级,与之相关的汽车维修与保养行业地位也有着提升,可以说,汽车使用率的增长给汽车服务业带来了发展的春天。汽车焊接工艺在汽车生产行业发展前期主要应用在汽车车身的焊接与调整方面,但在汽车生产工艺技术不断发展的当下,汽车车身制造已经不再需要焊接工艺的参与,而是采用了模具制造的技术方式,这样可以提高汽车车身生产的标准性,而当前汽车行业对于焊接工艺的应用主要是在汽车车身细节配件的安装焊接和汽车后期维修与改 装中。 1)在汽车维修领域,汽车焊接工艺的应用主要是解决一些由于汽车碰撞而产生的损伤,是保证汽车车身与其相应配件使用性能的一种方式,汽车维修工作人员利用汽车焊接工艺技术来调整发生位移的车身配件等,使车身与其配件的位置更加精准,连接更加牢固。

白车身焊接工艺

白车身焊接工艺 目前公司运用的焊接方法有:点焊,凸焊,螺柱焊,二氧化碳保护焊,手工电弧焊。 点焊: 电弧焊:将被焊工件压紧于两电极之间,并通以电流,利用电流流经工件接触面及领近区域产生的电阻热将其加热到熔化或塑性状态,使之形成金属结合的一种方法。包括点焊,缝焊,凸焊,对焊。 优点:1.熔核形成时,始终被塑性环包围,融化金属与空气隔绝,冶金过程简单。 2.加热时间短,热量集中,故热影响区小,变形应力小。 3.焊接成本低 缺点:无可靠无损检测方法,点,缝焊的搭接头不仅增加了构件的质量,且因在两板间熔核周围形成夹角,使接头处的抗拉强度和疲劳强度均较低。 金属电阻焊时的焊接性(主要指标): 1.材料的导电性和导热性 2.材料的高温强度(越高焊接性越差) 3.材料对热循环的敏感性 熔点高,线膨胀系数大,易形成致密的氧化膜的金属,其焊接性能差。 点焊:工件只在有限的接触面上,即所谓“点”上被焊接起来,并形成扁球形的熔核。 焊接电极:是保证电焊质量的重要零件,其主要功能:向工件传导电流,向工件传递压力,迅速到山焊接区的热量。主要构成:端部,主体,尾部和冷却水孔。 电焊方法:双面焊和单面焊 双面焊时,电极由工件的两侧向焊接处溃点。 单面焊时,电极由工件的一侧向焊接处溃点。不形成焊点的电极采用大直径和大接触面积以减少电流密度。 点焊工艺参数:焊接电流,焊接压力,焊接时间 当进行不等厚度或不同材料电焊时,熔核将不对称于其交界面,而是向厚板或导电,导热性差的一边偏倚,结果使薄件或导电,导热性好的工件焊透率低,焊接强度小。熔核偏移的原因是有两工减产热和散热条件不相同引起的。 焊接接头:通常采用搭接街头和折边接头。接头可以由两个或两个以上等厚或不等厚度的工件组成。设计点焊结构时,必须考虑电极的可达性。同时,还应考虑如边距(取决被焊金属种类,厚度和焊接条件),搭边量(是边距的两倍),点距(最小值考虑分流),装配间隙(尽量小)和焊点强度(以正拉强度和抗剪强度之比作为判断接头延性的指标。值越大越好)等因数。 凸焊:凸焊是电焊的变型,在一个工件上有预制的凸点,凸焊时,一次在接头处形成一个或多个熔核。 应用场合:低碳钢和低合金钢,板件,螺帽,螺钉类零件等,厚度一般为0.5-4mm。 焊接模具是用于保持和夹紧工件于适当位置,同时也可用于电极。 夹具是不导电的辅助装置。对于小的工件,电极和夹具通常是合为一体。 凸焊工艺特点:由于电流集中,克服点焊时熔核偏移的缺点。凸焊时,电极必须随凸点被压溃而快速下降,否则会应失压而产生飞溅。 凸焊工艺参数:电极压力,焊接时间,焊接电流。

现代汽车车身的焊接工艺设计分析

现代汽车车身的焊接工艺设计分析 摘要本文首先对汽车车身焊接工艺设计的基础条件,即产品相关资料以及工厂设计主要参数进行了阐述,然后结合目前汽车车身焊接工艺设计的实际状况,从产品拆分等四个方面,对其进行了具体的分析,以期能够促使汽车车身焊接工艺设计水平的进一步提升,提高汽车车身的整体质量。 关键词汽车车身;焊接工艺;工艺设计 经济和社会的迅速发展,促使汽车成为人们生产生活中最主要的交通工具之一。而汽车车身的焊接工艺水平直接影响着汽车车身以及汽车的整体质量。为了获得更好的汽车车身焊接工艺效果,提高汽车的质量,重点关注汽车车身的焊接工艺设计,并对其进行深入的分析和研究就尤为重要。 1 汽车車身焊接工艺设计的基础条件 1.1 产品相关资料 产品相关资料主要包括四个方面。第一,数模,即产品的数字模型。只有利用专业的三维软件,从产品的数字模型中整理出所需的数据,才能够进行下一步的设计工作。通常来说,在汽车车身焊接工艺设计的时候,把相关的产品数字模型进行整合和装配,不仅能够获得整车模型,进而了解汽车车身所需零部件的规格以及装配部位,而且还能够得出包括冲压件以及分总成在内的视图或者剖面图等,从而为汽车车身焊接工艺设计水平的提升提供基础性保障。第二,完整的产品设计图纸。结合图纸,对焊接工艺方案进行认真、详细、具体的设计和构建,才能够保证焊接工艺设计效果更好的实现。第三,样车以及样件。在对汽车车身焊接工艺进行具体设计之前,必须明确汽车车身的实际生产情况,比如整车车身总成以及冲压件等。第四,产品零部件的明细表。该明细表中,除了应该涵盖部件和冲压件的名称以及相应编号之外,还要具体包括冲压件的数量以及标准件的尺寸等详细信息。在汽车车身焊接工艺设计的过程中,必须拥有上述四项产品资料中前三项的一种,然后从中推测出所需的第四项内容。若仅拥有第四项产品零部件明细表,就必须在车身的拆解和研究工作中,投入更多的精力。 1.2 工厂设计主要参数 工厂设计参数主要有七点。一是年产量。二是年时基数。其中具体包括生产的班次以及生产线的效率等。三是自动化水平。四是生产线的工艺水平要求。五是以设备和材料为代表的相关选用原则。六是公用动力介质的具体参数以及周边的环境信息。七是生产线所在厂房的主要资料,具体包括柱顶标高和电力供应情况等[1]。 2 汽车车身焊接工艺设计的具体分析

现代汽车白车身焊接夹具结构设计概述

现代汽车白车身焊接夹具结构设计概述汽车工业装备是最近兴起并迅猛发展的一个新兴行业。其实在这之前它也存在着,但由于汽车制造厂的车型更换没有现在这么的频繁,种类这么的多样化,且车型更换时变化最大的就是白车身。这就要求其对应的焊装线能跟上汽车车型和种类的变换。在这种情况下突出了焊装线在汽车生产和制造中的作用,使得人们越来越重视它。在汽车焊接流水线上,真正用于焊接操作的工作量仅占30%~40%,而60%~70%为工件的辅助和装夹工作。因为工件的装夹是在焊接夹具上完成的,所以夹具在整个焊接流程中起着重要作用。 在焊接过程中,合理的夹具结构,有利于合理安排流水线生产,便于平衡工位时间,降低非生产用时节降低生产成本。对于具有多种车型的企业,比如说一汽、沈汽、上汽等。如能科学地考虑共用或混型夹具,还有利于建造混型流水线,提高生产效率。 为提高我们汽车焊接夹具的设计水平,对汽车焊接夹具原理、结构及设计方法、原则有一个更深入的了解,在此把我自己的一些见解和经验与大家一起探讨。 一、汽车焊接工艺特点 (一)白车身的材料与结构 汽车焊接材料主要是低碳钢的冷轧钢板,镀锌钢板等。它们可焊性好,适宜大多数的焊接方法,但由于是薄板件,因而刚性差、易变形。在结构上,焊接散件大多数是具有空间曲面的冲压成形件,形状、结构复杂。有些型腔很深的冲压件,除存在因刚性差而引起的变形外,还存在回弹变形。这都是在夹具设计构成中应该考虑的问题。

(二)焊接方法 汽车焊接方法主要有CO2气体保护焊和电阻焊。CO2气体保护焊应用范围较广,且对夹具结构要求不十分严格。主要注意防止焊接产生的飞溅。相应采取的措施有主要有夹具表面镀铜、主要夹紧定位部件包铜皮、加装保护盖板等措施。 电阻焊是在汽车白车身焊接中主要采用的一种焊接方法。对夹具要求严格,尤其是多点焊和机器人点焊。要求焊接夹具对工件定位准确,操作方便且焊接牢固可靠。 (三)焊接工艺流程 汽车焊接的基本特征就是单个零件到部件再到总成的一个组合再组合的过程。从零件到白车身焊接总成的每一个过程,既相互独立,又相互联系,因此组件的焊接精度决定着部件总成的焊接精度,最后影响和决定着车身焊接总成的焊接精度与质量,这就要求相互关联的组件、部件及车身焊接总成夹具的定位基准应具有统一性和继承性,只有这样才能保证最终产品质量,即使出现质量问题也易于分析原因,便于纠正和控制。 白车身的焊接过程以流水线生产为主,所以夹具设计应有利于流水线的布置和设计,同时也考虑给生产管理提供方便。 (四)可操作性 我们这里讲的科操作性就是指焊接夹具的使用操作是否方便灵活。一台焊接夹具不仅要保证工件的定位准确,夹紧牢固可靠。还要保证操作者能方便的把零件摆放到夹具上定位夹紧,方便的操作焊枪进行焊接,方便的取出工件。我总结为“三个方便”。要实现这三个方便就要从整体去考

相关文档