文档库 最新最全的文档下载
当前位置:文档库 › 巧求三角形板状物体的转动惯量

巧求三角形板状物体的转动惯量

巧求三角形板状物体的转动惯量
巧求三角形板状物体的转动惯量

实验4 用三线摆测定物体的转动惯量

实验4 用三线摆测定物体的转动惯量 [摘要] 转动惯量是表征刚体转动特性的物理量,是刚体转动惯性大小的量度,它与刚体质量的大小、转轴的位置和质量对于转轴的分布等有关。对于形状简单的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量。但对于形状复杂的刚体,用数学方法计算它的转动惯量就非常困难,有时甚至不可能,所以常用实验方法测定。因此,学会测定刚体转动惯量的方法,具有实用意义。测定刚体转动惯量的方法有多种,本实验采用三线扭摆法。 [实验目的、要求] 学会用三线扭摆法测定物体的转动惯量。 [实验原理] 1、定悬盘绕中心轮的转动惯量I。三线摆如 图一所示,有一均匀圆盘,在小于其周界的同心圆 周上作一内接等边三角形,然后从三角形的三个顶 点引出三条金属线,三条金属线同样对称地连接在 置于上部的一个水平小圆盘的下面,小圆盘可以绕 自身的垂直轴转动。当均匀圆盘(以下简称悬盘) 水平,三线等长时,轻轻转动上部小圆盘,由于悬 线的张力作用,悬盘即绕上下圆盘的中心连线轴 00‘周期地反复扭转运动。当悬盘离开平衡位置向 某一方向转动到最大角位移时,整个悬盘的位置也 随着升高h。若取平衡位置的位能为零,则悬盘升 高h时的动能等于零,而位能为: 式中m是悬盘的质量,g是重力加速度。转动的悬盘在达到最大角位移后将向相反的方向转动,当它通过平衡位置时,其位能和平衡动能为零,而转动动能为: 式中I。为悬盘的转动惯量,ω 为悬盘通过平衡位置时的角速度。如果略去摩擦力的影 响,根据机械能守衡定律,E 1=E 2 ,即 mgh(1)若悬盘转动角度很小,可以证明悬盘的角位移与时间的关系可写成: 式中θ是悬盘在时刻t的位移,θ 是悬盘的最大角位移即角振幅,T是周期。

扭摆法测定物体转动惯量.(优选)

《扭摆法测定物体转动惯量》实验报告 一、实验目的 1. 熟悉扭摆的构造、使用方法和转动惯量测试仪的使用; 2. 利用塑料圆柱体和扭摆测定不同形状物体的转动惯量I 和扭摆弹簧的扭摆常数K ; 3. 验证转动惯量平行轴定理。 二、实验原理 1. 不规则物体的转动惯量 测量载物盘的摆动周期T 0,得到它的转动惯量: 2002 4T K J π= 塑料圆柱体放在载物盘上测出摆动周期T 1,得到总的转动惯量: 21012 4T K J J π += 塑料圆柱体的转动惯量为 ()221 0'21 2 1 48 T T K J mD π-= = 即可得到K ,再将K 代回第一式和第三式可以得到载物盘的转动惯量为 '2 1002 2 10J T J T T =- 只需测得其它的摆动周期,即可算出该物体绕转动轴的转动惯量: 22 4T K J π= 2. 转动惯量的平行轴定理 若质量为m 的物体绕质心轴的转动惯量为J c 时,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量: '2c J J mx =+ 3. 实验中用到的规则物体的转动惯量理论计算公式 圆柱体的转动惯量: 2222 1 28 D m J r h rdr mD h r ππ=?=?

金属圆筒的转动惯量: ()22 18 J J J m D D =+=+外外内内 木球的转动惯量: ()()22 223 211sin cos 42103 m J R R Rd mD R π π π???π-==? 金属细杆的转动惯量: 2220 1 2212 L m J r dr mL L ==? 三、实验步骤 1. 用游标卡尺、钢尺和高度尺分别测定各物体外形尺寸,用电子天平测出相应质量; 2. 根据扭摆上水泡调整扭摆的底座螺钉使顶面水平; 3. 将金属载物盘卡紧在扭摆垂直轴上,调整挡光杆位置和测试仪光电接收探头中间小 孔,测出其摆动周期T ; 4. 将塑料圆柱体放在载物盘上测出摆动周期T 1。已知塑料圆柱体的转动惯量理论值为 J 1’,根据T 0、T 1可求出K 及金属载物盘的转动惯量J 0。 5. 取下塑料圆柱体,在载物盘上放上金属筒测出摆动周期T 2。 6. 取下载物盘,测定木球及支架的摆动周期T 3。 7. 取下木球,将金属细杆和支架中心固定,测定其摆动周期T 4,外加两滑块卡在细杆 上的凹槽内,在对称时测出各自摆动周期,验证平行轴定理。由于此时周期较长,可将摆动次数减少。 四、注意事项 1. 由于弹簧的扭摆常数K 不是固定常数,与摆角有关,所以实验中测周期时使摆角在 90度左右。 2. 光电门和挡光杆不要接触,以免加大摩擦力。 3. 安装支架要全部套入扭摆主轴,并将止动螺丝锁紧,否则记时会出现错误。 4. 取下支架测量物体质量。处理时支架近似为圆柱体。

转动惯量公式表

常见几何体]转动惯量公式表

对于细杆 当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。

对于圆柱体 当回转轴是圆柱体轴线时;J=m(r^2)/2 其中m是圆柱体的质量,r是圆柱体的半径。 对于细圆环 当回转轴通过中心与环面垂直时,J=mR^2; 当回转轴通过边缘与环面垂直时,J=2mR^2; R为其半径 对于薄圆盘 当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2; 当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2; R为其半径 对于空心圆柱 当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2]; R1和R2分别为其内外半径。 对于球壳 当回转轴为中心轴时,J=﹙2/3﹚mR^2; 当回转轴为球壳的切线时,J=﹙5/3﹚mR^2; R为球壳半径。 对于实心球体 当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2; 当回转轴为球体的切线时,J=﹙7/5﹚mR^2; R为球体半径 对于立方体 当回转轴为其中心轴时,J=﹙1/6﹚mL^2; 当回转轴为其棱边时,J=﹙2/3﹚mL^2; 当回转轴为其体对角线时,J=(3/16)mL^2; L为立方体边长。 只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。 角加速度与合外力矩的关系:

角加速度与合外力矩 式中M为合外力矩,β为角加速度。可以看出这个式子与牛顿第二定律是对应的。 角动量: 角动量 刚体的定轴转动动能: 转动动能 注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。 只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v 只代表刚体的质心运动情况。由这一公式,可以从能量的角度分析刚体动力学的问题。 转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。其量值取决于物体的形状、质量分布及转轴的位置。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量的表达式为I=∑ mi*ri^2,若刚体的质量是连续分布的,则转动惯量的计算公式可写成I=∫r^2dm=∫r^2ρdV(式中mi表示刚体的某个质元的质量,ri表示该质元到转轴的垂直距离,ρ表示该处的密度,求和号(或积分号)遍及整个刚体。)转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 平行轴定理 平行轴定理:设刚体质量为m,绕通过质心转轴的转动惯量为Ic,将此轴朝任何方向平行移动一个距离d,则绕新轴的转动惯量I为: I=Ic+md^2 这个定理称为平行轴定理。 一个物体以角速度ω绕固定轴z轴的转动同样可以视为以同样的角速度绕平行于z轴且通过质心的固定轴的转动。也就是说,绕z轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加

扭摆法测定物体的转动惯量实验报告

扭摆法测定物体的转动惯量 一、实验目的 1.测定扭摆的仪器常数(弹簧的扭转常数)K 。 2.测定熟料圆柱体、金属圆筒、木球与金属细长杆的转动惯量。 3.验证转动惯量的平行轴定理。 二、实验器材 扭摆、转动惯量测试仪、金属圆筒、实心塑料圆柱体、木球、验证转动惯量平行轴定理用的金属细杆(杆上有两块可以自由移动的金属滑块)、游标卡尺、米尺 托盘天平。 三、实验原理 1.测量物体转动惯量的构思与原理 将物体在水平面内转过以角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。更具胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 式中K 为弹簧的扭转常数。 若使I 为物体绕转轴的转动惯量,β为角加速度,由转动定律M I β=可得 令2K I ω= ,忽略轴承的磨察阻力距,得 上式表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。方程的解为 式中A 为简谐振动的角振幅,?为初相位角,ω为角速度。谐振动的周期为 由上式可知,只要通过实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另外一个量。 本实验使用一个几何形状规则的小塑料圆柱,它的转动惯量可以根据质量和几何尺寸用理论公式直接计算得到,将其放在扭摆的金属载物盘上,通过测定其在扭摆仪上摆动时的周期,可算出仪器弹簧的K 值。若要测定其他形状物体的转动惯量,只需将待测物体安放在同一扭摆仪顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。 假设扭摆上只放置金属载物圆盘时的转动惯量为0I ,周期为0T ,则 若在载物圆盘上放置已知转动惯量为'1I 的小塑料圆柱后,周期为1T ,由转动惯量的可加性,总的转动惯量为'01I I +,则 解得 以及 若要测量任何一种物体的转动惯量,可将其放在金属载物盘上,测出摆动周期T ,就可算出其转动惯量I ,即

转动惯量(指导书)

转动惯量指导书 力学实验室 2016年3月

转动惯量的测量 【预习思考】 1.转动惯量的定义式是什么? 2.转动惯量的单位是什么? 3.转动惯量与质量分布的关系? 4.了解单摆中摆长与周期的关系? 5.摆角对周期的影响。 【仪器照片】 【原理简述】 1、转动惯量的定义 构件中各质点或质量单元的质量与其到给定轴线的距离平方乘积的总和,即

∑=2J mr (1) 转动惯量是刚体转动时惯性的量度,其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。 图1 电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形 设计上,精确地测定转动惯量,都是十分必要的。 2、转动惯量的公式推导 测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。本实验采用的是三线摆,是通过扭转运动测定物体的转动惯量,其特点是无力图像清楚、操作简便易行、适合各种形状的物体,如机械零件、电机转子、枪炮弹丸、电风扇的风叶等的转动惯量都可用三线摆测定。这种实验方法在理论和技术上有一定的实际意义本实验的目的就是要求学生掌握用三线摆测定物体转动惯量的方法,并验证转动惯量的平行轴定理。 两半径分别为r '和R '(R '>r ')的刚性均匀圆盘,用均匀分布的三条等长l 的无弹性、无质量的细线相连,半径为r '的圆盘在上,作为启动盘,其悬点到盘心的距离为r ;半径为 R '的圆盘在下,作为悬盘,其悬点到盘心的距离为R 。将启动盘固定,则构成一振动系统, 称为三线摆(图2)。当施加力矩使悬盘转过角0θ后,悬盘将绕中心轴O O ''做角简谐振动。 A 振动法测转动惯量——三线摆

《用三线摆法测定物体的转动惯量》简明实验报告

《用三线摆法测定物体的转动惯量》的示范报告 一、教学目的: 1、学会用三线摆测定物体圆环的转动惯量; 2、学会用累积放大法测量周期运动的周期; 4、学习运用表格法处理原始数据,进一步学习和巩固完整地表示测量结果; 5、学会定量的分析误差和讨论实验结果。 二、实验仪器: 1.FB210型三线摆转动惯量测定仪 2.米尺、游标卡尺、水平仪、小纸片、胶带 3.物理天平、砝码块、各种形状的待铁块 三、实验原理 通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 四、实验内容 1.用三线摆测定圆环对通过其质心且垂直于环面轴的转动惯量。 2.用三线摆验证平行轴定理。实验步骤要点如下: (1)调整下盘水平:将水准仪置于下盘任意两悬线之间,调整小圆盘上的三个旋钮,改变三悬线的长度,直至下盘水平。 (2)测量空盘绕中心轴OO?转动的运动周期T0:设定计时次数,方法为按“置数”键后,再按“下调”或“上调”键至所需的次数,再按“置数”键确定。轻轻转动上盘,带动下盘转动,这样可以避免三线摆在作扭摆运动时发生晃动。注意扭摆的转角控制在5o左右,摆动数次后,按测试仪上的“执行”键,光电门开始计数(灯闪)到给定的次数后,灯停止闪烁,此时测试仪显示的计数为总的时间,从而摆动周期为总时间除以摆动次数。进行下一次测量时,测试仪先按“返回”键。 (3)测出待测圆环与下盘共同转动的周期T1:将待测圆环置于下盘上,注意使两者中心重合,按同样的方法测出它们一起运动的周期T 1。 (4)测出上下圆盘三悬点之间的距离a和b,然后算出悬点到中心的距离r和R(等边三角形外接圆半径) (5)其它物理量的测量:用米尺测出两圆盘之间的垂直距离H0和放置两小圆柱体小孔间距2x;用游标卡尺测出待测圆环的内、外直径2R1、2R2。 (6)用物理天平测量圆环的质量。 五、实验数据记录与处理: 1.实验数据记录

刚体转动惯量计算方法

刚体绕轴转动惯性的度量。其数值为J=∑ mi*ri^2, 式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 ;求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2 (v^2为v的2次方) 把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。 为什么变换一下公式就可以从能量角度分析转动问题呢? 1、E=(1/2)Kw^2本身代表研究对象的运动能量 2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。 3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质 心运动情况。 4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积 分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样) 所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。 若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV 其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。 补充转动惯量的计算公式 转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。 对于杆: 当回转轴过杆的中点并垂直于轴时;J=mL^2/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于轴时:J=mL^2/3 其中m是杆的质量,L是杆的长度。 对与圆柱体: 当回转轴是圆柱体轴线时;J=mr^2/2 其中m是圆柱体的质量,r是圆柱体的半径。 转动惯量定理:M=Jβ

实验2 刚体转动惯量的测定

实验2 刚体转动惯量的测量 [预习思考题] 1.实验中的刚体转动惯量实验仪是由哪几部分组成的? 2.实验中可以通过什么方法改变转动力矩? 3.实验中刚体转动过程的角加速度如何测得? 转动惯量是描述刚体转动中惯性大小的物理量,对于绕定轴转动的刚体,它为一恒量,以J表示,即 ∑= i i i r m J2 式中,m i为刚体上各个质点的质量,r i为各个质点至转轴的距离。由此可见,物体的转动惯量J与刚体的总质量、质量分布及转轴的位置有关。对于几何形状规则、对称和质量分布均匀的刚体,可以通过积分直接计算出它绕某定轴的转动惯量。对于形状复杂或非匀质的任意物体,则一般要通过实验来测定,例如,机械零件、电机的转子、炮弹等。 测定物体的转动惯量有多种实验方法,主要分为扭摆法和恒力矩转动法两类。本实验介绍用塔轮式转动惯量仪测定的方法,是使塔轮以一定形式旋转,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。该方法属于恒力矩转动法。 转动惯量是研究、设计、控制转动物体运动规律的重要参数,实验测定刚体的转动惯量具有十分重要的意义,是高校理工科物理实验教学大纲中的一个重要基本实验。 一、实验目的 1.学习用转动惯量仪测定刚体的转动惯量。 2.研究作用于刚体上的外力矩与角加速度的关系。 3.验证转动定律及平行轴定理。 二、实验仪器 IM-2刚体转动惯量实验仪及其附件(霍尔开关传感器、砝码等)和MS-1型多功能数字毫秒仪。 三、仪器介绍

1.滑轮 2.滑轮高度和方向调节组件 3.挂线 4.塔轮组 5.铝质圆盘承物台 6.样品固定螺母 7.砝码 8.磁钢 9.霍尔开关传感器 10.传感器固定架 11.实验样品水平调节旋钮(共3个) 12.毫秒仪次数预置拨码开关,可预设1-64次 13.次数显示屏 14.时间显示屏 l5.次数+1查阅键 16.毫秒仪复位键 17.+5V 电源接线柱 18.电源GND (地)接线柱 19.INPUT 输入接线柱 20.输入低电平指示 21.次数-1查阅键 图4-3-1 IM-2刚体转动惯量实验仪和MS -1型多功能数字毫秒仪结构示意图 IM-2刚体转动惯量实验仪主要由绕竖直轴转动的铝质圆盘承物台、绕线塔轮、霍尔开关传感器、磁钢、滑轮组件、砝码等组成。 样品放置在铝质圆盘承物台上,承物台上有许多圆孔,可用于改变样品的转轴位置。绕线塔轮是倒置的塔式轮,分为四层,自上往下半径分别为3cm 、2.5cm 、2cm 、1.5cm 。磁钢随转动系统转动,每半圈经过霍尔开关传感器一次,传感器输出低电平,通过连线送到多功能数字毫秒仪。传感器红线接毫秒仪+5V 电源接线柱,黑线接电源GND (地)接线柱,黄线接INPUT 输入接线柱。 MS -1型多功能数字毫秒仪通过预置拨码开关预置实验所需感应次数。每轮实验开始前通过复位键清0,直到输入低电平信号触发计时开始,次数显示屏从0次开始计时,直至达到预置次数停止。计时停止后,方能查阅各次感应时间。 四、实验原理 1. 任意样品的转动惯量测定 设转动惯量仪空载(不加任何样品)时的转动惯量为J 1,称为系统的本底转动惯量,转动惯量仪负载(加上样品)时的转动惯量为J 2,根据转动惯量的可加性,则样品的转动惯量J x 为 21x J J J =- 2. 系统的转动惯量测定 1)刚体的转动定律 刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比,这个关系称为刚体的转动定律。 M J β= 利用转动定律,测得刚体转动时的合外力矩及该力矩作用下的角加速度,则可计算

转动惯量的测定

转动惯量的测定 【实验目的】 (1)学习用恒力矩转动法测定刚体转动惯量的原理和方法。 (2)观测刚体的转动惯量随其质量、质量分布及转轴不同而改变的情况,验证平行轴定理。 (3)学会使用通用电脑计时器来测量时间。 【实验原理】 1. 恒力矩转动法测定转动惯量的原理 根据刚体的定轴转动定律有 M =J β (3.3.1) 只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。 假设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M 的作用下,实验台将以角加速度β1作匀减速运动,即: -M =J 1β1 (3.3.2) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a ,则细线所受张力为()T m g a =-。若此时实验台的角加速度为β2,则有a =R β2,细线施加给实验台的力矩为2()TR m g R R β=-,此时有: 2μ12()m g R R M J ββ--= (3.3.3) 将式(3.3.2)、(3.3.3)两式联立消去M 后,可得: 2121 ()mR g R J βββ-=- (3.3.4) 同理,若在实验台上加上被测物件后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有

4243()mR g R J βββ-=- (3.3.5) 由转动惯量的叠加原理可知,被测试件的转动惯量J 3为: 321J J J =- (3.3.6) 测得R 及β1、β2、β3、β4,由式(3.3.4),(3.3.5),(3.3.6)即可计算被测试件的转动惯量。 2. 刚体转动角加速度β的测量 实验中采用XD-GLY 通用电脑计时器,记录下遮挡次数和相应的时间。固定在载物台圆周边缘的两遮光片,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲。计数器记录下遮挡次数和从第一次遮挡光到其后各次扫光所经历的时间,即是第二次扫光时,计时器计下的时间t 1是从第一次挡光开始载物台转动了π弧度所经历的时间;即第三次扫光时,计时器计下的时间t 2是从第一次挡光开始载物台转动了2π弧度所经历的时间…;第k+1次扫光,计时器计下的时间t k 是从第一次挡光开始载物台转动了k π弧度所经历的时间。初始角速度为0,则对匀变速运动,测量得到任意两组数据(k m ,t m ) 、(k n ,t n ),相应的角位移m , n 分别为: 201 π2 m m m m k t t θωβ==+? (3.3.7) 201 π2 n n n n k t t θωβ==+? (3.3.8) 从式(3.3.7)、(3.3.8)两式中消去0,可得: 222π()n m m n n m m n k t k t t t t t β-=- (3.3.9) 由式(3.3.9)即可计算角加速度。 3. 平行轴定理 理论分析表明,质量为m 的物体围绕通过质心O 的转轴转动时,其转动惯量J 0最小。当转轴平行移动距离d 后,围绕新转轴转动的转动惯量为

用三线摆法测定物体的转动惯量

用三线摆法测定物体的转动惯量 --实验报告 实验目的 1、了解三线摆原理,并会用它测定圆盘、圆环绕对称轴的转动惯量; 2、学会秒表、游标卡尺等测量工具的正确使用方法,掌握测周期的方法; 3、加深对转动惯量概念的理解。 4、验证转动惯量的平行轴定理 5、研究物体的转动惯量与其质量、形状(密度均匀时)及转轴位置的关系 实验器材 三线摆、米尺、游标卡尺、天平、数字毫秒计、待测物、三线摆仪 实验原理 1、测悬盘绕中心轴转动时的转动惯量 当三线摆下盘扭转振动,其转角θ 很小时,其扭动是一个简谐振 动,其运动方程为: t T 0 0π2sin θθ= (1) 当摆离开平衡位置最远时,其重心升高h ,根据机械能守恒定律有: mgh I =2 02 1ω (2) 即 2 2ωmgh I = (3) 而 t T T dt d π 2cos π20θθ ω= = (4) 0 0π2T θω= (5) 将(4-5)式代入(4-2)式得 图1 原理图

2 22π2θmghT I = (6) 从图1中的几何关系中可得 222022)(cos 2)(r R H l Rr R h H -+==θ-+- 简化得 )cos 1(2 02 θ-=-Rr h Hh 略去2 2 h ,且取2/cos 1200θθ≈-,则有: H Rr h 220θ= 代入(6)式得 224T H gRr m I π= (7) 即得公式 2 00 2 004T H gRr m I π= (8) (7)式的适用条件为: 1、摆角很小,一般要求o 5<θ; 2、摆线l 很长,三条线要求等长,张力相同; 3、大小圆盘水平; 4、转动轴线是两圆盘中心线。 实验时,测出0m 、H r R 、、及0T ,由(8)式求出圆盘的转动惯量0I 。 2、测圆环绕中心轴转动的转动惯量 (1)若在下圆盘上放一质量为m ,转动惯量为I (对O 1O 2轴)的物体时,测出周期T 整个扭转系统的转动惯量为 I ’=()02020 4m m gRr I I T d π++= (9) 那么,被测物体的转动惯量为I=I ’-I 0 实验时,测出0m 、m 、H r R 、、及T ,由(8)式求出物体的转动惯量I 。

用扭摆法测定物体转动惯量

用扭摆法测定物体转动惯量 (一)教学基本要求 学会用扭摆法测量物体转动惯量的原理和方法。 了解转动惯量的平行轴定理,理解“对称法”验证平行轴定理的实验思想,学会验证平行轴定理的实验方法。 掌握定标测量思想方法。 学会转动惯量测试仪的使用方法。 学会测量时间的累积放大法。 掌握不确定度的估算方法。 (二)讲课提纲 1.实验简介 转动惯量是表征转动物体惯性大小的物理量,是研究、设计、控制转动物体运动规律的重要工程技术参数。如钟表摆轮、精密电表动圈的体形设计、枪炮的弹丸、电机的转子、机器零件、导弹和卫星的发射等,都不能忽视转动惯量的大小。因此测定物体的转动惯量具有重要的实际意义。刚体的转动惯量与刚体的质量分布、形状和转轴的位置都有关系。对于形状较简单的刚体,可以通过计算求出它绕定轴的转动惯量,但形状较复杂的刚体计算起来非常困难,通常采用实验方法来测定。 2.实验设计思想和实现方法 (1)基本原理 转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。

实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动, 测量摆动周期,通过物体摆动周期T 与转动惯量I 的关系k I T π 2=来 测量转动惯量。 (2)间接比较法测量,确定扭转常数K 已知标准物体的转动惯量I 1,被测物体的转动惯量I 0;被测物体的摆动周期T 0,标准物体被测物体的摆动周期T 1。通过间接比较法可测得 202 12 010T T T I I -= 也可以确定出扭转常数K 20211 2 4T T I k -=π 定出仪器的扭转常数k 值,测出物体的摆动周期T ,就可计算出转动惯量I 。 (3)“对称法”验证平行轴定理 平行轴定理:若质量为m 的物体(小金属滑块)绕通过质心轴的转动惯量为I 0时,当转轴平行移动距离x 时,则此物体的转动惯量变为I 0+mx 2。为了避免相对转轴出现非对称情况,由于重力矩的作用使摆轴不垂直而增大测量误差。实验中采用两个金属滑块辅助金属杆的对称测量法,验证金属滑块的平行轴定理。这样,I 0为两个金属滑块绕通过质心轴的转动惯量,m 为两个金属滑块的质量,杆绕摆轴的转动惯量I 杆,当转轴平行移动距离x 时(实际上移动的是通过质心的轴),测得的转动惯量 I =I 杆+I 0+mx 2 两个金属滑块的转动惯量 I x =I -I 杆=I 0+mx 2 扭摆的构造 1-垂直轴,2-蜗簧,3-水平仪

实验七 用三线摆法测定物体的转动惯量

实验七 用三线摆法测定物体的转动惯量 转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。转动惯量的大小除与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。如果刚体形状简单,且质量分布均匀,可直接计算出它绕特定轴的转动惯量。但在工程实践中,我们常碰到大量形状复杂、且质量分布不均匀刚体,理论计算将极为复杂,通常采用实验方法来测定。 转动惯量的测量,一般都是使刚体以一定的形式运动。通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。测量刚体转动惯量的方法有多种,三线摆法是具有较好物理思想的实验方法,它具有设备简单、直观、测试方便等优点。 一 实 验 目 的 (1)学会用三线摆测定物体的转动惯量。 (2)学会用秒表测量周期运动的周期。 (3)验证转动惯量的平行轴定理。 二 实 验 原 理 图1是三线摆实验装置的示意图。上、下圆盘均处于水平,悬挂在横梁上。三个对称分布的等长悬线将两圆盘相连。上圆盘固定,下圆盘可绕中心轴O O '作扭摆运动。当下盘转动角度很小,且略去空气阻力时,扭摆的运动可近似看作简谐运动。根据能量守恒定律和刚体转动定律均可以导出物体绕中心轴O O '的转动惯量(推导过程见本实验附录)。 2 2 004T H gRr m I π= (1) 式中各物理量的意义如下:0m 为下盘的质量;r 、R 分别为上下悬点离各自圆盘中心的距离;0 H 为平衡时上下盘间的垂直距离;T 0为下盘作简谐运动的周期,g 为重力加速度(在杭州地区g =9.793m/s 2 )。 将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与O O '轴重合。测出此时下盘运动周期1T 和上下圆盘间的垂直距离H 。同理可求得待测刚体和下圆盘对中心转轴O O '轴的总转动惯量为: 2 1 2 014)(T H gRr m m I π+= (2) 如不计因重量变化而引起的悬线伸长, 则有0 H H ≈。那么,待测物体绕中心轴O O '的转动惯量为: ])[(42 002 102 01T m T m m H gRr I I I -+π= -= (3) 因此,通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。 用三线摆法还可以验证平行轴定理。若质量为m 的物体绕过其质心轴的转动惯量为c I ,当转轴平行移动距离x 时(如图2所示),则此物体对新轴O O '的转动惯量为2 ' mx I I c oo +=。这一结论称为转动惯量的平行轴定理。 实验时将质量均为m',形状和质量分布完全相同的两个圆柱体对称地放置在下圆盘上(下盘有对称的两排小孔)。按同样的方法,测出两小圆柱体和下盘绕中心轴O O '的转动周期x T ,则可求出每个柱体对中心转轴O O '的转动惯量: ?? ? ???-π+= 022 04)'2(21I T H gRr m m I x x (4) 如果测出小圆柱中心与下圆盘中心之间的距离x 以及小圆柱体的半径x R ,则由平行轴定理可求得 2 2 2 1x x m'R m'x I'+ = (5) 比较x I 与x I'的大小,可验证平行轴定理。 三 实 验 仪 器 三线摆(包含米尺、游标卡尺、物理天平以及待测物体)和秒表。 四 实 验 内 容 1.测定圆环对通过其质心且垂直于环面轴的转动惯量 (1)调整底座水平:调整底座上的三个螺钉旋钮,直至底板上水准仪中的水泡位于正中间。 (2)调整下盘水平:调整上圆盘上的三个旋钮(调整悬线的长度),改变三悬线的长度,直至下盘水 图1 三线摆实验装置图

转动惯量的测定实验报告

理论力学转动惯量 实验报告

【实验目的】 1. 了解多功能计数计时毫秒仪实时测量(时间)的基本方法 2. 用刚体转动法测定物体的转动惯量 3. 验证刚体转动的平行轴定理 4. 验证刚体的转动惯量与外力矩无关 【实验原理】 1.转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程 T×r+Mμ=Jβ2(1) 由牛顿第二定律可知,砝码下落时的运动方程为:mg-T=ma 即绳子的张力T=m(g-rβ2) 砝码与系统脱离后的运动方程 Mμ=Jβ1(2) 由方程(1)(2)可得 J=mr(g-rβ2)/(β2-β1) (3) 2.角加速度的测量 θ=ω0t+?βt2(4) 若在t1、t2时刻测得角位移θ1、θ 2 则θ1=ω0 t1+?βt2(5) θ2=ω0 t2+?βt2(6) 所以,由方程(5)、(6)可得 β=2(θ2 t1-θ1 t2)/ t1 t2(t2- t1) 【实验仪器】 1、IM-2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个

质量为100g的砝码等,塔轮直径从下至上分别为30mm、40mm、50mm、60mm,载物台上的孔中心与圆盘中心的距离分别为40mm、80mm、120mm) 2、一个钢质圆环(内径为175mm,外径为215mm,质量为995g) 3、两个钢质圆柱(直径为38mm,质量为400g) 【实验步骤】 1. 实验准备 在桌面上放置IM-2转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直。 通用电脑计时器上光电门的开关应接通,另一路断开作备用。当用于本实验时,设置1个光电脉冲记数1次,1次测量记录大约20组数。 2. 测量并计算实验台的转动惯量 1) 放置仪器,滑轮置于实验台外3-4cm处,调节仪器水平。设置毫秒仪计数次数为20。 2) 连接传感器与计数计时毫秒仪,调节霍尔开关与磁钢间距为0.4-0.6cm,转离磁钢,复位毫秒仪,转动到磁钢与霍尔开关相对时,毫秒仪低电平指示灯亮,开始计时和计数。 3) 将质量为m=100g的砝码的一端打结,沿塔轮上开的细缝塞入,并整齐地绕于半径为r的塔轮。 4) 调节滑轮的方向和高度,使挂线与绕线塔轮相切,挂线与绕线轮的中间呈水平。 5) 释放砝码,砝码在重力作用下带动转动体系做加速度转动。 6) 计数计时毫秒仪自动记录系统从0π开始作1π,2π……角位移相对应的时刻。 3. 测量并计算实验台放上试样后的转动惯量 将待测试样放上载物台并使试样几何中心轴与转动轴中心重合,按与测量空实验台转动惯量同样的方法可分别测量砝码作用下的角加速度β2与砝码脱离后的角加速度β1,由(3)式可计算实验台放上试样后的转动惯量J,再减去实验步骤2中算得的空实验台转动惯量即可得到所测试样的转动惯量。将该测量值与理论值比较,计算测量值的相对误差。 4. 验证平行轴定理 将两圆柱体对称插入载物台上与中心距离为d的圆孔中,测量并计算两圆柱体在此位置的转动惯量,将测量值与理论计算值比较,计算测量值的相对误差。 5. 验证刚体定轴转动惯量与外力矩无关 通过改变塔轮直径对转盘施加不同的外力矩,测定在不同外力矩下转盘的转动惯量,与理论值进行比较,在一定允许的误差范围内验证结论。 【实验数据与处理】 1.测量空盘的转动惯量 塔轮半径r=40mm 砝码100g

测量刚体的转动惯量实验报告及数据处理

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且部各点的相对 位置不变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量, 质量分布、形状大小和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少 3个塔轮半径,3组砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8 个值; 8.泡沫垫板 9.重力加速度:9.794m/s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环外半径,塔轮半径,转盘上孔的外半径 (求平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量16.6g,故有效数字为3位 2.游标卡尺:0.02mm,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:(注意:直接测量的是直径) 质量m=485.9g±0.1000g;(保留4位有效数字) um=0.1000/485.9*100%=0.02058% 半径R=11.99mm±0.02000/1.05mm 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的1.05

,我们处理为0 C=1.05,仪器允差0.02mm,δB=0.01905mm 总误差:,ux=0.01905m m ,u rx=0.01905/11.99=0.1589% R=11.99mm±0.01905mm urx=0.1589% 计算转动惯量的结果表示: ,总误差:uJ=,相对不确定=uJ/J 圆环:,同上. (2)实验测量计算的误差: 根据,,对R(塔轮半径),m(砝码质量),β2和β1 求导,

刚体转动惯量的测定

刚体转动惯量的测定 转动惯量是描述刚体转动惯性大小的物理量,是研究和描述刚体转动规律的一个重要物理量,它不仅取决于刚体的总质量,而且与刚体的形状、质量分布以及转轴位置有关。对于质量分布均匀、具有规则几何形状的刚体,可以通过数学方法计算出它绕给定转动轴的转动惯量。对于质量分布不均匀、没有规则几何形状的刚体,用数学方法计算其转动惯量是相当困难的,通常要用实验的方法来测定其转动惯量。因此,学会用实验的方法测定刚体的转动惯量具有重要的实际意义。 【实验目的】 学习用转动惯量仪测定物体的转动惯量。 【实验仪器】 JM-3转动惯量实验仪及其附件(砝码,金属圆柱、圆盘及圆柱), JM-3通用电脑计时器. 【实验原理】 根据刚体的定轴转动定律 dt d J J M ω β==, 只要测定刚体转动时所受的合外力矩及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量,这是恒力矩转动法测定转动惯量的基本原理和设计思路。 一、转动惯量J 的测量原理 砝码盘及其砝码是系统转动的动力。分析转动系统受力如图2所示: 当砝码钩上放置一定的砝码时,若松开手,则在重力的作用下,砝码就会通过细绳带动塔轮加速转动。当砝码绳脱离塔轮后,系统将只在摩擦力矩的作用下转动。 图1 转动系统受力图 本实验中待测试件放在实验台上,随同实验台一起做定轴转动。设空实验台(未加试件)转动时,其转动惯量为 0J , 加上被测刚体后的转动惯量为J ,由转动惯量的叠加原理可知,则被测试件的转动惯量 被测 J 为 0J J J -=被测 或 被测物J J J +=0 实验时,先测出系统支架(空实验台)的转动惯量 0J ,然后将待测物放在支架上,测 量出转动惯量为J ,利用上式可计算出待测物的转动惯量。 未加试件及外力时(0=m ,0=T ),即外力矩为零时,若使系统以某一初角速度开

实验报告-用扭摆法测定物体的转动惯量.docx

扭摆法测定物体的转动惯量 实验原理: 1?扭摆运动一一角简谐振动 此角谐振动的周期为 式中,一」:为弹簧的扭转常数式中,一为物体绕转轴的转动惯量。 2?弹簧的扭转系数匚的测定: 实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到, 再由实验数据算出本仪器弹簧的丿:值。方法如下: (1)测载物盘摆动周期I ,由(2)式其转动惯量为 (2)塑料圆柱体放在载物盘上,测岀摆动周期 '」,由(2)式其总转动惯量为 (3)塑料圆柱体的转动惯量理论值为 则由!,得

Ti- TQ(周期我们采用多次测量求平均值来计算) 3?测任意物体的转动惯量: 若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即 可算出该物体绕转动轴的转动惯量。 根据2内容,载物盘的转动惯量为 待测物体的转动惯量为 4?转动惯量的平行轴定理 I = I c +加x' 实验内容与要求: 必做内容: 1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。调整扭摆基座底脚螺丝,使水平仪的气 泡位于中心。(认真阅读仪器使用方法和实验注意事项) 2.测定扭摆的弹簧的扭转常数匚,写出匸--1 — 3.测定塑料圆柱(金属圆筒)的转动惯量‘」。并与理论值比较,求相对误差 4.测定金属细杆+夹具的过质心轴的转动惯量

5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。 数据记录: 一、测定弹簧的扭转系数匚及各种物体的转动惯量: 表格一:?.-→ ■- ~ 0.01s K = KiIhK=Nm 、验证平行轴定理:

常用物体转动惯量-与扭矩计算

附录1.常用物体转动惯量的计算 角加速度的公式a = (2n /60) /t 转矩 T=J* a =J*n*2 n /60) /t a -弧度/秒 t-秒 T -Nm n-r/min 图i 矩形结构定义 以a-a 为轴运动的惯量: m = VxS V =Lxhxw 公式中: 以b-b 为轴运动的惯量: 圆柱体的惯量 惯量的计算: / W I ■ b m 3 为 为为 位 位位 单单单 量积度 质体密12 (4L 2 + w 2 ) 矩形体的计算 Ja - a

图2圆柱体定义 m = Vx§ TTD12 V = ------ XL 4 Di r =— 2 mx[> (Dt2 空心柱体惯量

摆臂的惯量 m = Vx3 4 m / (P O 2 +D 2 ')+ L 2> ~4 \ 4 +_ 1 > 图3空心柱体定义 Jx = m x (Do 2 + DF) 8

曲柄连杆的惯量 图4-1摆臂1结构定义 图4-2摆臂2结构定义 J = m.R 2

J = m R? + rm n2 图5曲柄连杆结构定义 带减速机结构的惯量

齿形带传动的惯量 J M :电机惯量 J L :负載惯量 J L

相关文档
相关文档 最新文档