文档库 最新最全的文档下载
当前位置:文档库 › 实验1 Windows进程管理编程

实验1 Windows进程管理编程

实验1 Windows进程管理编程
实验1 Windows进程管理编程

实验一Windows进程管理和进程编程

实验内容1.1 Windows 任务管理器的进程管理

1、背景知识简介

Windows的任务管理器提供了用户计算机上正在运行的程序和进程的相关信息,也显示了最常用的度量进程性能的单位

使用任务管理器

?可以打开监视计算机性能的关键指示器,快速查看正在运行的程序的状态,或者终止已停止响应的程序

?也可以使用多个参数评估正在运行的进程的活动,以及查看CPU 和内存使用情况的图形和数据

任务管理器中

?“应用程序”选项卡:显示正在运行程序的状态,用户能够结束、切换或者启动程序?“进程”选项卡:显示正在运行的进程信息。例如,可以显示关于CPU 和内存使用情况、页面错误、句柄计数以及许多其他参数的信息

?“性能”选项卡:显示计算机动态性能,包括CPU 和内存使用情况的图表,正在运行的句柄、线程和进程的总数,物理、核心和认可的内存总数(KB) 等

2、实验目的和要求

通过在Windows 任务管理器中对程序进程进行响应的管理操作

熟悉操作系统进程管理的概念

学习观察操作系统运行的动态性能

3、实验环境

需要准备一台运行Windows XP Professional操作系统的计算机

4、实验内容与步骤

1.启动任务管理器。按Alt+Ctrl+Delete,或右键单击任务栏,选择任务管理器。

在Windows XP的任务管理器中,“进程”选项卡增加了一个“用户名”栏目,其中区分了SYSTEM、NETWORK SERVICE、LOCAL SERVICE和用户的不同进程类别。

2.使用任务管理器终止进程。选择进程名,点击右下角的“结束进程”。终止进程时要小

心,有可能导致不希望发生的结果,包括数据丢失和系统不稳定等。点击进程,右键选择“终止进程树”,会结束该进程以及它直接或间接创建的所有子进程。

3.显示其他进程记数器:任务管理器菜单栏点击查看->选择列。

4.更改正在运行的程序的优先级。点击进程,右键选择“设置优先级”。

实验内容1.2 Windows 进程编程

1、背景知识简介

.Net Framework提供Process类监视整个网络的系统进程以及启动和停止本地系统进程。除了检索运行进程列表(通过指定计算机、进程名称或进程ID)或查看有关当前可访问处理器的进程的信息之外,还可以获取有关进程线程和模块的详细信息,其方法是通过Process 类本身,以及分别通过与ProcessThread和ProcessModule类进行交互来获取。本实验用Visual Studio 开发工具在Windows操作平台下实现创建、终止进程及有关进程信息管理,掌握进一步熟悉进程的概念。

2、实验目的和要求

?通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟悉操作系统的进程概念,理解Windows进程的“一生”。

3、实验环境

需要做以下准备

?一台运行Windows XP Professional操作系统的计算机

?计算机中需安装Visual Studio 开发环境(版本不限)

4、实验内容与步骤

1、启动Visual Studio,新建一个空的控制台项目,工程名为xxProcHandle,其中“xx”为你的姓名拼音首字母+学号末两位,如张三学号末两位为21,则其工程名为ZS21ProcHandle。

2、在Program.cs中输入以下代码(边输入边理解代码):

3、增加代码,实现更改并显示当前运行进程的优先级。可以在任务管理器内查看进程优先级是否已被修改。

4、查阅MSDN或网络,学习Process类成员,使用Process类成员属性、方法获得、修改进程信息。例如进程关联的线程信息在Thread属性中。进程相关的内存使用信息在PrivateMemorySize64等属性中。

https://www.wendangku.net/doc/2b12042248.html,/zh-cn/library/vstudio/system.diagnostics.process_members(v=vs.90).as px

5、(选作)新建一个Windows窗口程序,编写一个类任务管理器(可作为课程设计)。要求:1. 显示进程列表中各进程的信息:进程ID、进程名、进程优先级、内存使用情况等等。提供更改进程优先级功能。

2. 提供新创建进程、终止进程功能。

3. 具体界面及功能自行设计。

4. 实现提示:可采用Process类的静态方法GetProcesses获得进程列表。

5、进阶:调用Windows API

Windows 这个多作业系统除了提供协调应用程式的执行、分配内存、管理系统资源等功能之外,同时也是一个很大的服务中心,调用这个服务中心的各种服务(每一种服务就是一个函数),可以帮应用程式达到开启视窗、描绘图形、使用周边设备等目的。由于这些函数服务的对象是应用程式(Application),所以便称之为Application Programming Interface,简称API 函数。当WINDOWS操作系统开始占据主导地位的时候,开发WINDOWS平台下的应用程序成为人们的需要。而在WINDOWS程序设计领域处于发展的初期,WINDOWS 程序员所能使用的编程工具唯有API函数,这些函数是WINDOWS提供给应用程序与操作系统的接口,他们犹如“积木块”一样,可以搭建出各种界面丰富,功能灵活的应用程序。所以可以认为API函数是构筑整个WINDOWS框架的基石,在它的下面是WINDOWS的操作系统核心,而它的上面则是所有的华丽的WINDOWS应用程序。程序员必须熟记一大堆常用的API函数,而且还得对WINDOWS操作系统有深入的了解。

然而随着软件技术的不断发展,在WINDOWS平台上出现了很多优秀的可视化编程环境,程序员可以采用“即见即所得”的编程方式来开发具有精美用户界面和功能强大的应用程序。这些工具中提供了大量的类库和各种控件,它们替代了API的神秘功能,事实上这些类库和控件都是构架在WIN32 API函数基础之上的,是封装了的API函数的集合。它们把常用的API函数的组合在一起成为一个控件或类库,并赋予其方便的使用方法,所以极大的加速了WINDOWS应用程序开发的过程。有了这些控件和类库,程序员便可以把主要精力放在程序整体功能的设计上,而不必过于关注技术细节。

实际上如果我们要开发出更灵活、更实用、更具效率的应用程序,必然要涉及到直接使用API函数,虽然类库和控件使应用程序的开发简单的多,但它们只提供WINDOWS的一般功能,对于比较复杂和特殊的功能来说,使用类库和控件是非常难以实现的,这时就需要采用API函数来实现。

例:调用Windows API GetProcessVersion获得进程运行所需操作系统的最低版本信息。

附:C++代码

// version项目

#include

#include

#include

using namespace std;

// 利用进程和操作系统的版本信息的简单示例

void main()

{

// 提取这个进程的ID

DWORD dwIdThis = GetCurrentProcessId();

// 获得进程运行所需系统的版本,也可以传递参数0以便指明是当前进程DWORD dwVerReq = GetProcessVersion(dwIdThis);

WORD wMajorReq=(WORD)(dwVerReq >> 16);

WORD wMinorReq=(WORD)(dwVerReq & 0xffff);

cout << "Process ID: "<< dwIdThis

<<", requires OS: " << wMajorReq << "."

<< wMinorReq << endl;

// 设置版本信息的数据结构,以便保存操作系统的版本信息

OSVERSIONINFOEX osvix;

ZeroMemory(&osvix, sizeof(osvix));

osvix.dwOSVersionInfoSize=sizeof(osvix);

// 获取版本信息并输出报告

GetVersionEx((LPOSVERSIONINFO)&osvix);

cout << "Running on OS:" << osvix.dwMajorVersion <<"."

<< osvix.dwMinorVersion << endl;

getchar();

}

实验二Linux进程管理和进程编程

实验内容2.1 Linux常用命令

(注意:Linux命令区分大小写。本例子采用zsc用户登陆)

1.ls命令:按字母顺序列出当前目录中所有非隐藏文件。例如:

ls命令显示当前文件夹下有一个名为os的文件夹,和一个名为test.txt的文件。

常用参数:

ls –a:按字母顺序列出当前目录中所有文件,包括隐藏文件。例如:

ls –l:查看当前目录所有文件包括当前目录和父目录,包括长度、拥有者和权限。例如:

2.cd命令:改变当前路径。命令格式:cd [路径名]

例如:

解释:ls –la命令显示当前目录下有一个os目录。cd os进入os目录

cd .. 回到上一层目录。

3.pwd命令:显示当前目录的绝对路径。

4.mkdir命令:建立目录。命令格式:mkdir [目录名]

新创建一个目录abc

5.cat命令:创建或显示文件

创建文件:cat > [文件名],例如:

解释:执行cat > a.txt,创建文件a.txt,然后输入文件内容”Hello World”,按ctrl + d结束输入

显示文件:cat [文件名],例如显示上述创建的文件:

6.rm命令:删除文件

rm [文件名]:删除文件而不提示确认。

rm –rf [目录名]:删除目录及其子目录。

7.cp命令:复制文件。命令格式:cp [文件1] [文件2]。将文件1拷贝给文件2

8.mv命令:移动文件或目录。

解释:mv a.txt ./os/a.txt,将a.txt文件移动到(当前目录下的)os目录下,仍取名a.txt 9.more命令:分页显示内容。

解释:ps –ax显示系统进程信息。| 表示管道。more将ps –ax的输出分页显示。

实验内容2.2 使用编辑器vim编辑文件

在命令行下输入vim test.c,编辑文件test.c(c文件)。

1.进入编辑模式:当进入刚打开的文件时,不能写入信息,这时按一下键盘上的i键(i

表示insert),就可以进入编辑模式了。在编辑模式下。窗口左下方出现-INSERT-字样。

2.存盘退出:编辑完文件后,需要存盘退出,需要执行以下两个步骤:(1) 按一下Esc键

(按Esc后窗口左下方的-INSERT-字样消失);(2) 键入冒号,紧跟冒号后面是wq,即键入:wq。wq表示存盘退出。若不想存盘,则键入:q!

实验内容2.3 使用gcc编译c文件

gcc是c语言编译器。编译命令格式是:gcc [c文件名] –o [输出文件名]。-o表示输出,后面跟着输出文件名,表示生成的可执行文件名。例如:

键入./test执行

实验内容2.4 进程管理

[背景知识]

1.进程

Linux中,进程既是一个独立拥有资源的基本单位,又是一个独立调度的基本单位。一个进程实体由若干个区(段)组成,包括程序区、数据区、栈区、共享存储区等。每个区又分为若干页,每个进程配置有唯一的进程控制块PCB,用于控制和管理进程。

2.进程映像

Linux系统中,进程是进程映像的执行过程,也就是正在执行的进程实体。它由三部分组成:

(1)用户级上、下文。主要成分是用户程序;

(2)寄存器上、下文。由CPU中的一些寄存器的内容组成,如PC,PSW,SP及通用寄

存器等;

(3)系统级上、下文。包括OS为管理进程所用的信息,有静态和动态之分。

实验一、使用ps命令查看系统进程

ps命令可以显示系统正在运行的进程、其他用户正在运行的进程或者目前在系统上运行的所有进程。下面是ps命令的输出样本部分截图。

这个命令显示了许多进程的相关信息。例如,TTY一列显示了进程是从哪一个终端启动的,TIME一列是进程目前为止所占用的CPU时间,CMD一列显示启动进程所使用的命令。

我们在这里看到了一个非常重要的进程init(上图红框所示)。一般而言,每个进程都是由另一个我们称之为父进程的进程启动的,被父进程启动的进程叫做子进程。Linux系统启动时,它将运行一个名为init的进程,该进程是系统运行的第一个进程,它的进程号为1。你可以把init进程看作为操作系统的进程管理器,它是其它所有进程的祖先进程。其它系统进程要么是由init启动的,要么是由被init进程启动的其它进程启动的。

实验二、使用exec系列函数替换进程映像

1.exec系列函数介绍

exec系列函数可以把当前进程替换为一个新进程,新进程由path或file参数指定。你可以在使用exec函数将程序的执行从一个程序切换到另外一个程序。新的程序启动后,原来的程序就不再运行了。

#include

int execl(const char *path, const char *arg0, …, (char*) 0);

int execlp(const char *file, const char *arg0, …, (char*) 0);

……

2.参考代码

在vim下编辑execlp.c

#include

#include

#include

int main()

{

printf("Running ps with ecelp\n");

execlp("ps", "ps", "ax", 0);

printf("Done.\n");

exit(0);

}

采用gcc execlp.c –o execlp 编译文件,执行。

……

运行这个程序是,你会看到正常的ps输出,但字符串Done却根本没有出现。程序首先打印出它的第一条信息,接着调用execlp,这个函数搜索程序ps,然后用ps程序替换当前程序,就好像直接使用shell 命令“ps ax”一样。ps命令结束时,我们看到一个新的shell提示符,因为我们并没有再返回到原程序中,所以信息Done.不会输出。事实上,这里放生的一切就是,运行中的程序开始执行exec调用中指定的新的可执行文件中的代码。

实验三、使用系统调用fork()创建一个子进程。

1.fork( ) 的作用

fork()系统调用用来创建一个新进程。这个系统调用复制当前进程,在进程表中创建一个新的表项,新表项中的许多属性与当前进程是相同的。新进程几乎与原进程一模一样,执行的代码也完全相同,但新进程有自己的数据空间、环境和文件描述符。

参数定义:pid_t fork( ); // pid_t为进程标识符类型

系统调用格式:pid_t pid = fork();

fork( )返回值意义如下:

=0:在子进程中,pid变量保存的fork( )返回值为0,表示当前进程是子进程。

>0:在父进程中,pid变量保存的fork( )返回值为子进程的id值(进程唯一标识符)。

-1:创建失败。

如果fork( )调用成功,它向父进程返回子进程的PID,并向子进程返回0,即fork( )被调用了一次,但返回了两次。此时OS在内存中建立一个新进程,所建的新进程是调用fork( )父进程(parent process)的副本,称为子进程(child process)。子进程继承了父进程的许多特性,并具有与父进程完全相同的用户级上下文。父进程与子进程并发执行。上述过程如上图所示:

父子进程可以通过fork()调用的返回值判断谁是父进程,谁是子进程。

一个典型的使用fork的代码片段如下所示:

pid_t new_pid = fork();

switch(new_pid)

{

case -1:

/* error*/

break;

case 0:

/*子进程*/

break;

default:

/*父进程*/

break;

}

虽然父进程与子进程程序完全相同,但每个进程都有自己的程序计数器PC(注意子进程的PC开始位置),然后根据fork( )返回值的不同,执行了不同的分支语句。

2.参考代码

以下程序运行时,在系统中有一个父进程和一个子进程活动。父进程输出消息三次,子进程输出消息五次。试观察记录屏幕上的显示结果,并分析原因。

#include

#include

#include

#include

int main()

{

pid_t pid;

char* message;

int n;

printf("fork program starting\n");

pid = fork();

switch(pid)

{

case -1:

perror("fork failed"); // 创建进程失败

exit(EXIT_FAILURE);

case 0:

message = "This is the child"; // 返回0,该进程是子进程

n = 5;

break;

default:

message = "This is the parent"; // 返回非0的值,该进程是父进程

n = 3;

break;

}

for (; n > 0; n--)

{

puts(message); // 输出message

sleep(1);

}

exit(EXIT_SUCCESS);

}

解释:程序在调用fork时被分成两个独立进程。程序通过fork调用的返回值确定父、子进程。父子并发执行。子进程被创建并且输出五次消息,每次输出之间相隔一秒。父进程(即原进程)输出完它的所有消息就结束了,因此我们将看到输出结果中有一个shell提示符”zsc@ubuntu:~$”。

计算机操作系统进程调度实验研究报告

计算机操作系统进程调度实验研究报告

————————————————————————————————作者:————————————————————————————————日期:

操作系统实验题:设计一若干并发进程的进程调度程序 一、实验目的 无论是批处理系统、分时系统还是实时系统,用户进程数一般都大于处理机数,这将导致用户进程互相争夺处理机。这就要求进程调度程序按一定的策略,动态地把处理及分配给处于就绪队列中的某一进程,以使之执行。进程调度是处理机管理的核心内容。本实验要求采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法编写和调试一个简单的进程调度程序。通过本实验可以加深理解有关进程控制块、进程队列的概念。并体会了优先数和先来先服务调度算法的具体实施办法。 二、实验要求 用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解. 三、实验内容 进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法(将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理)。 每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输入的时间。 进程的运行时间以时间片为单位进行计算。 每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。 就绪进程获得CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。 如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。重复以上过程,直到所要进程都完成为止。 四、实验算法流程

嵌入式操作系统实验报告

中南大学信息科学与工程学院实验报告 姓名:安磊 班级:计科0901 学号: 0909090310

指导老师:宋虹

目录 课程设计内容 ----------------------------------- 3 uC/OS操作系统简介 ------------------------------------ 3 uC/OS操作系统的组成 ------------------------------ 3 uC/OS操作系统功能作用 ---------------------------- 4 uC/OS文件系统的建立 ---------------------------- 6 文件系统设计的原则 ------------------------------6 文件系统的层次结构和功能模块 ---------------------6 文件系统的详细设计 -------------------------------- 8 文件系统核心代码 --------------------------------- 9 课程设计感想 ------------------------------------- 11 附录-------------------------------------------------- 12

课程设计内容 在uC/OS操作系统中增加一个简单的文件系统。 要求如下: (1)熟悉并分析uc/os操作系统 (2)设计并实现一个简单的文件系统 (3)可以是存放在内存的虚拟文件系统,也可以是存放在磁盘的实际文件系统 (4)编写测试代码,测试对文件的相关操作:建立,读写等 课程设计目的 操作系统课程主要讲述的内容是多道操作系统的原理与技术,与其它计算机原理、编译原理、汇编语言、计算机网络、程序设计等专业课程关系十分密切。 本课程设计的目的综合应用学生所学知识,建立系统和完整的计算机系统概念,理解和巩固操作系统基本理论、原理和方法,掌握操作系统开发的基本技能。 I.uC/OS操作系统简介 μC/OS-II是一种可移植的,可植入ROM的,可裁剪的,抢占式的,实时多任务操作系统内核。它被广泛应用于微处理器、微控制器和数字信号处理器。 μC/OS 和μC/OS-II 是专门为计算机的嵌入式应用设计的,绝大部分代码是用C语言编写的。CPU 硬件相关部分是用汇编语言编写的、总量约200行的汇编语言部分被压缩到最低限度,为的是便于移植到任何一种其它的CPU 上。用户只要有标准的ANSI 的C交叉编译器,有汇编器、连接器等软件工具,就可以将μC/OS-II嵌入到开发的产品中。μC/OS-II 具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点,最小内核可编译至2KB 。μC/OS-II 已经移植到了几乎所有知名的CPU 上。 严格地说uC/OS-II只是一个实时操作系统内核,它仅仅包含了任务调度,任务管理,时间管理,内存管理和任务间的通信和同步等基本功能。没有提供输入输出管理,文件系统,网络等额外的服务。但由于uC/OS-II良好的可扩展性和源码开放,这些非必须的功能完全 可以由用户自己根据需要分别实现。 uC/OS-II目标是实现一个基于优先级调度的抢占式的实时内核,并在这个内核之上提供最基本的系统服务,如信号量,邮箱,消息队列,内存管理,中断管理等。 uC/OS操作系统的组成 μC/OS-II可以大致分成核心、任务处理、时间处理、任务同步与通信,CPU的移植等5个部分。如下图:

操作系统实验-进程控制

实验一、进程控制实验 1.1 实验目的 加深对于进程并发执行概念的理解。实践并发进程的创建和控制方法。观察和体验进程的动态特性。进一步理解进程生命期期间创建、变换、撤销状态变换的过程。掌握进程控制的方法,了解父子进程间的控制和协作关系。练习Linux 系统中进程创建与控制有关的系统调用的编程和调试技术。 1.2 实验说明 1)与进程创建、执行有关的系统调用说明进程可以通过系统调用fork()创建子进程并和其子进程并发执行.子进程初始的执行映像是父进程的一个复本.子进程可以通过exec()系统调用族装入一个新的执行程序。父进程可以使用wait()或waitpid()系统调用等待子进程的结束并负责收集和清理子进程的退出状态。 fork()系统调用语法: #include pid_t fork(void); fork 成功创建子进程后将返回子进程的进程号,不成功会返回-1. exec 系统调用有一组6 个函数,其中示例实验中引用了execve 系统调用语法: #include int execve(const char *path, const char *argv[], const char * envp[]); path 要装入 的新的执行文件的绝对路径名字符串. argv[] 要传递给新执行程序的完整的命令参数列表(可以为空). envp[] 要传递给新执行程序的完整的环境变量参数列表(可以为空).

Exec 执行成功后将用一个新的程序代替原进程,但进程号不变,它绝不会再返回到调用进程了。如果exec 调用失败,它会返回-1。 wait() 系统调用语法: #include #include pid_t wait(int *status); pid_t waitpid(pid_t pid,int *status,int option); status 用 于保留子进程的退出状态 pid 可以为以下可能值: -1 等待所有PGID 等于PID 的绝对值的子进程 1 等待所有子进程 0 等待所有PGID 等于调用进程的子进程 >0 等待PID 等于pid 的子进程option 规 定了调用waitpid 进程的行为: WNOHANG 没有子进程时立即返回 WUNTRACED 没有报告状态的进程时返回 wait 和waitpid 执行成功将返回终止的子进程的进程号,不成功返回-1。 getpid()系统调用语法: #include #include pid_t getpid(void); pid_t getppid(void); getpid 返回当前进程的进程号,getppid 返回当前进程父进程的进程号 2)与进程控制有关的系统调用说明可以通过信号向一个进程发送消息以控制进程的 行为。信号是由中断或异常事件引发的,如:键盘中断、定时器中断、非法内存引

进程管理实验报告

实验2过程管理实验报告学生号姓名班级电气工程系过程、过程控制块等基本原理过程的含义:过程是程序运行过程中对数据集的处理,以及由独立单元对系统资源的分配和调度。在不同的数据集上运行程序,甚至在同一数据集上运行多个程序,是一个不同的过程。(2)程序状态:一般来说,一个程序必须有三种基本状态:就绪、执行和阻塞。然而,在许多系统中,过程的状态变化可以更好地描述,并且增加了两种状态:新状态和终端状态。1)就绪状态,当一个进程被分配了除处理器(CPU)以外的所有必要资源时,只要获得了处理器,进程就可以立即执行。此时,进程状态称为就绪状态。在系统中,多个进程可以同时处于就绪状态。通常,这些就绪进程被安排在一个或多个队列中,这些队列称为就绪队列。2)一旦处于就绪状态的进程得到处理器,它就可以运行了。进程的状态称为执行状态。在单处理器系统中,只有一个进程在执行。在多处理器系统中,可能有多个进程在执行中。3)阻塞状态由于某些事件(如请求输入和输出、额外空间等),执行进程被挂起。这称为阻塞状态,也称为等待状态。通常,处于阻塞状态的进程被调度为-?这个队列称为阻塞队列。4)新状态当一个新进程刚刚建立并且还没有放入就绪队列中时,它被称为新状态。5)终止状态是

什么时候-?进程已正常或异常终止,操作系统已将其从系统队列中删除,但尚未取消。这就是所谓的终结状态。(3)过程控制块是过程实体的重要组成部分,是操作系统中最重要的记录数据。控制块PCB记录操作系统描述过程和控制过程操作所需的所有信息。通过PCB,一个不能独立运行的程序可以成为一个可以独立运行的基本单元,并且可以同时执行一个进程。换句话说,在进程的整个生命周期中,操作系统通过进程PCB管理和控制并发进程。过程控制块是系统用于过程控制的数据结构。系统根据进程的PCB来检测进程是否存在。因此,进程控制块是进程存在的唯一标志。当系统创建一个进程时,它需要为它创建一个PCB;当进程结束时,系统回收其PCB,进程结束。过程控制块的内容过程控制块主要包括以下四个方面的信息。过程标识信息过程标识用于对过程进行标识,通常有外部标识和内部标识。外部标识符由流程的创建者命名。通常是一串字母和数字。当用户访问进程时使用。外部标识符很容易记住。内部标识符是为了方便系统而设置的。操作系统为每个进程分配一个唯一的整数作为内部标识符。通常是进程的序列号。描述性信息(process scheduling message)描述性信息是与流程调度相关的一些有关流程状态的信息,包括以下几个方面。流程状态:表

实时操作系统报告

实时操作系统课程实验报告 专业:通信1001 学号:3100601025 姓名:陈治州 完成时间:2013年6月11日

实验简易电饭煲的模拟 一.实验目的: 掌握在基于嵌入式实时操作系统μC/OS-II的应用中,基于多任务的模式的编程方法。锻炼综合应用多任务机制,任务间的通信机制,内存管理等的能力。 二.实验要求: 1.按“S”开机,系统进入待机状态,时间区域显示当前北京时间,默认模式“煮饭”; 2.按“C”选择模式,即在“煮饭”、“煮粥”和“煮面”模式中循环选择; 3.按“B”开始执行模式命令,“开始”状态选中,时间区域开始倒计时,倒计时完成后进入“保温”状态,同时该状态显示选中,时间区域显示保温时间; 4.按“Q”取消当前工作状态,系统进入待机状态,时间区域显示北京时间,模式为当前模式; 5.按“X”退出系统,时间区域不显示。 6.煮饭时长为30,煮粥时长为50,煮面时长为40. 三.实验设计: 1.设计思路: 以老师所给的五个程序为基础,看懂每个实验之后,对borlandc的操作有了大概的认识,重点以第五个实验Task_EX为框架,利用其中界面显示与按键扫描以及做出相应的响应,对应实现此次实验所需要的功能。 本次实验分为界面显示、按键查询与响应、切换功能、时钟显示与倒计时模块,综合在一起实验所需功能。 2.模块划分图: (1)界面显示: Main() Taskstart() Taskstartdispinit() 在TaskStartDispInit()函数中,使用PC_DispStr()函数画出界面。

(2)按键查询与响应: Main() Taskstart() 在TaskStart()函数中,用if (PC_GetKey(&key) == TRUE)判断是否有按键输入。然后根据key 的值,判断输入的按键是哪一个;在响应中用switch语句来执行对应按键的响应。 (3)切换功能: l计数“C”按 键的次数 M=l%3 Switch(m) M=0,1,2对应于煮饭,煮粥,煮面,然后使用PC_DispStr()函数在选择的选项前画上“@”指示,同时,在其余两项钱画上“”以“擦出”之前画下的“@”,注意l自增。 四.主要代码: #include "stdio.h" #include "includes.h" #include "time.h" #include "dos.h" #include "sys/types.h" #include "stdlib.h" #define TASK_STK_SIZE 512 #define N_TASKS 2 OS_STK TaskStk[N_TASKS][TASK_STK_SIZE]; OS_STK TaskStartStk[TASK_STK_SIZE]; INT8U TaskData[N_TASKS];

操作系统实验报告--实验一--进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5)); jincheng.rtime = 0;

第二章 操作系统进程(练习题标准答案)

第二章操作系统进程(练习题答案)

————————————————————————————————作者:————————————————————————————————日期: 2

第二章进程管理 1.操作系统主要是对计算机系统全部 (1) 进行管理,以方便用户、提高计算机使 用效率的一种系统软件。它的主要功能有:处理机管理、存储管理、文件管理、 (2) 管 理和设备管理等。Windows和Unix是最常用的两类操作系统。前者是一个具有图形界面的 窗口式的 (3) 系统软件,后者是一个基本上采用 (4) 语言编制而成的 的系统软件。在 (5) 操作系统控制下,计算机能及时处理由过程控制反馈的信息 并作出响应。 供选答案: (1): A. 应用软件 B. 系统软硬件 C. 资源 D. 设备 (2): A. 数据 B. 作业 C. 中断 D. I/O (3): A. 分时 B. 多任务 C. 多用户 D. 实时 (4): A. PASCAL B. 宏 C. 汇编 D. C (5): A. 网络 B. 分时 C. 批处理 D. 实时 答案:CBBDD 2.操作系统是对计算机资源进行的 (1) 系统软件,是 (2) 的接口。 在处理机管理中,进程是一个重要的概念,它由程序块、 (3) 和数据块三部 分组成,它有3种基本状态,不可能发生的状态转换是 (4) 。 虚拟存储器的作用是允许程序直接访问比内存更大的地址空间,它通常使用 (5) 作为它的一个主要组成部分。 供选答案: (1): A. 输入和输出 B. 键盘操作 C. 管理和控制 D. 汇编和执行 (2): A. 软件和硬件 B. 主机和外设 C. 高级语言和机器语言 D. 用户和计算机 (3): A. 进程控制块 B. 作业控制块 C. 文件控制块 D. 设备控制块 (4): A. 运行态转换为就绪态 B. 就绪态转换为运行态 C. 运行态转换为等待态 D. 等待态转换为运行态 (5): A. 软盘 B. 硬盘 C. CDROM D. 寄存器 答案:CDADB 3.在计算机系统中,允许多个程序同时进入内存并运行,这种方法称为 D。 A. Spodling技术 B. 虚拟存储技术 C. 缓冲技术 D. 多道程序设计技术 4.分时系统追求的目标是 C。 A. 高吞吐率 B. 充分利用内存 C. 快速响应 D. 减少系统开销 5.引入多道程序的目的是 D。

实验二进程管理

实验二进程管理 (一)实验目的或实验原理 1.加深对进程概念的理解,明确进程和程序的区别。 2.进一步认识并发执行的实质。 3.分析进程竞争资源现象,学习解决进程互斥的方法。 4.了解Linux系统中进程通信的基本原理。 (二)实验内容 1.进程的创建。 2.进程的控制。 3.①编写一段程序,使其现实进程的软中断通信。 要求:使用系统调用fork()创建两个子进程,再用系统调用signal()让父进程捕捉键盘上来的中断信号(即按DEL键);当捕捉到中断信号后,父进程用系统调用Kill()向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child Processll is Killed by Parent! Child Processl2 is Killed by Parent! 父进程等待两个子进程终止后,输出如下的信息后终止 Parent Process is Killed! ②在上面的程序中增加语句signal (SIGNAL, SIG-IGN) 和signal (SIGQUIT, SIG-IGN), 观察执行结果,并分析原因。 4.进程的管道通信。 编制一段程序,实现进程的管理通信。 使用系统调用pipe()建立一条管道线;两个子进程P1和P2分别向管道中写一句话: Child 1 is sending a message! Child 2 is sending a message! 而父进程则从管道中读出来自于两个子进程的信息,显示在屏幕上。 要求父进程先接收子进程P1发来的消息,然后再接收子进程P2发来的消息。 实验2 指导 [实验内容] 1.进程的创建 〈任务〉 编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符;父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 〈程序〉 #include<> main() { int p1,p2; if(p1=fork()) /*子进程创建成功*/ p utchar('b'); else { if(p2=fork()) /*子进程创建成功*/

嵌入式实时操作系统vxworks实验教程[1]

???VxWorks 偠 ? Laboratory Tutorial for Embedded Real ˉtime Operating System VxWorks ?? ? ? ? ? ? ? 2003 10

???VxWorks 偠 ? ? 1 ???? (1) 1.1 ?? (1) 1.2 ??? (7) 2 ? MPC860 (16) 3 ???VxWorks ? ? Tornado (25) 3.1 ???VxWorks (25) 3.2 Tornado? ? (43) 4 VxWorks?BootRom (48) 5 偠 (55) 5.1 偠??Tornado??? (55) 5.2 偠?? ??? ? ? (74) 5.3 偠?? ? ? ?? (78) 5.4 偠 ?? ??? (101) 5.5 偠?? ?????? ?? (110) 5.6 偠 ? ?????? ?? (116) ? A hwa-xpc860 偠 (120)

1 ???? ?? ?? 催? ?? ??? ?? ? ? ?? ??Ё?????? ? ?? ?? ? ? ?? ?? (Embebdded computer) Ё??? ?? ? ??? ⑤?20??60 ?? ????? ? ????? ? 1.1.1 ???? ??? ?? ? Н? ??? ????? ?? ?? ???? ???? ?? ?? ?? ?? ???? ??? ????? ? ?????BIOS? ? ? ???? ?催 ? ? ? ㄝ???? ? ??? ? ? ? ?????????? ???? ?? ? ? ? ? ???? ?? ? ? ???? ?ㄝ???? ???? ??? ? ? ??? ? ???? ? ? ?? ㄝ ?? ? ??? ? ?? ? (control)???Mointer) ??(Managemet)ㄝ ?? 1.1.2 ? ?????? ? ? 1.1. 2.1 ? ?? ? ?? ??4?? ? 1? ? ? ? ?? ? ? ???Ё ????? ???? ?? ? ? ?? ?2? ? ??? ?? ?????? ? ????? ??? П? ??? ??????? ? ?? ???? ? 3? ? ? ? ????? ?? ? 催 ? ? ? 4? ? 乏 ? ?? ?? ? ? ? ??? ? ? Ё??∴??? ?? ?? ?? ? mW??uW??1.1.2.2 ? ???? ???? ?? ?? ? ? ?? ? ??? ?? ? ? ? ? ???1000 ??????? 30 ?? ?

第二章-操作系统进程(练习题答案)

第二章进程管理 1.操作系统主要是对计算机系统全部 (1) 进行管理,以方便用户、提高计算机使 用效率的一种系统软件。它的主要功能有:处理机管理、存储管理、文件管理、 (2) 管 理和设备管理等。Windows和Unix是最常用的两类操作系统。前者是一个具有图形界面的 窗口式的 (3) 系统软件,后者是一个基本上采用 (4) 语言编制而成的 的系统软件。在 (5) 操作系统控制下,计算机能及时处理由过程控制反馈的信息 并作出响应。 供选答案: (1): A. 应用软件 B. 系统软硬件 C. 资源 D. 设备 (2): A. 数据 B. 作业 C. 中断 D. I/O (3): A. 分时 B. 多任务 C. 多用户 D. 实时 (4): A. PASCAL B. 宏 C. 汇编 D. C (5): A. 网络 B. 分时 C. 批处理 D. 实时 答案:CBBDD 2.操作系统是对计算机资源进行的 (1) 系统软件,是 (2) 的接口。 在处理机管理中,进程是一个重要的概念,它由程序块、 (3) 和数据块三部 分组成,它有3种基本状态,不可能发生的状态转换是 (4) 。 虚拟存储器的作用是允许程序直接访问比内存更大的地址空间,它通常使用 (5) 作为它的一个主要组成部分。 供选答案: (1): A. 输入和输出 B. 键盘操作 C. 管理和控制 D. 汇编和执行 (2): A. 软件和硬件 B. 主机和外设 C. 高级语言和机器语言 D. 用户和计算机 (3): A. 进程控制块 B. 作业控制块 C. 文件控制块 D. 设备控制块 (4): A. 运行态转换为就绪态 B. 就绪态转换为运行态 C. 运行态转换为等待态 D. 等待态转换为运行态 (5): A. 软盘 B. 硬盘 C. CDROM D. 寄存器 答案:CDADB 3.在计算机系统中,允许多个程序同时进入内存并运行,这种方法称为 D。 A. Spodling技术 B. 虚拟存储技术 C. 缓冲技术 D. 多道程序设计技术 4.分时系统追求的目标是 C。 A. 高吞吐率 B. 充分利用内存 C. 快速响应 D. 减少系统开销 5.引入多道程序的目的是 D。

操作系统实验心得(精选多篇)

操作系统实验心得 每一次课程设计度让我学到了在平时课堂不可能学到的东西。所以我对每一次课程设计的机会都非常珍惜。不一定我的课程设计能够完成得有多么完美,但是我总是很投入的去研究去学习。所以在这两周的课设中,熬了2个通宵,生物钟也严重错乱了。但是每完成一个任务我都兴奋不已。一开始任务是任务,到后面任务就成了自己的作品了。总体而言我的课设算是达到了老师的基本要求。总结一下有以下体会。 1、网络真的很强大,用在学习上将是一个非常高效的助手。几乎所有的资料都能够在网上找到。从linux虚拟机的安装,到linux的各种基本命令操作,再到gtk的图形函数,最后到文件系统的详细解析。这些都能在网上找到。也因为这样,整个课程设计下来,我浏览的相关网页已经超过了100个(不完全统计)。当然网上的东西很乱很杂,自己要能够学会筛选。不能决定对或错的,有个很简单的方法就是去尝试。就拿第二个实验来说,编译内核有很多项小操作,这些小操作错了一项就可能会导致编译的失败,而这又是非常要花时间的,我用的虚拟机,编译一次接近3小时。所以要非常的谨慎,尽量少出差错,节省时间。多找个几个参照资料,相互比较,慢慢研究,最后才能事半功倍。 2、同学间的讨论,这是很重要的。老师毕竟比较忙。对于课程设计最大的讨论伴侣应该是同学了。能和学长学姐讨论当然再好不过了,没有这个机会的话,和自己班上同学讨论也是能够受益匪浅的。

大家都在研究同样的问题,讨论起来,更能够把思路理清楚,相互帮助,可以大大提高效率。 3、敢于攻坚,越是难的问题,越是要有挑战的心理。这样就能够达到废寝忘食的境界。当然这也是不提倡熬夜的,毕竟有了精力才能够打持久战。但是做课设一定要有状态,能够在吃饭,睡觉,上厕所都想着要解决的问题,这样你不成功都难。 4、最好在做课设的过程中能够有记录的习惯,这样在写实验报告时能够比较完整的回忆起中间遇到的各种问题。比如当时我遇到我以前从未遇到的段错误的问题,让我都不知道从何下手。在经过大量的资料查阅之后,我对段错误有了一定的了解,并且能够用相应的办法来解决。 在编程中以下几类做法容易导致段错误,基本是是错误地使用指针引起的 1)访问系统数据区,尤其是往系统保护的内存地址写数据,最常见就是给一个指针以0地址 2)内存越界(数组越界,变量类型不一致等) 访问到不属于你的内存区域 3)其他 例如: <1>定义了指针后记得初始化,在使用的时候记得判断是否为 null <2>在使用数组的时候是否被初始化,数组下标是否越界,数组元素是否存在等 <3>在变量处理的时候变量的格式控制是否合理等

操作系统实验二(进程管理)

操作系统进程管理实验 实验题目: (1)进程的创建编写一段程序,使用系统调用fork( )创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。试观察记录屏幕上的显示结果,并分析原因。 (2)进程的控制修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,在观察程序执行时屏幕上出现的现象,并分析原因。 (3)编制一段程序,使其实现进程的软中断通信。要求:使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按Del键);当捕捉到中断信号后,父进程调用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止:Child process 1 is killed by parent! Child process 2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止:Parent process is killed! 在上面的程序中增加语句signal(SIGINT, SIG_IGN)和signal(SIGQUIT, SIG_IGN),观察执行结果,并分析原因。 (4)进程的管道通信编制一段程序,实现进程的管道通信。使用系统调用pipe( )建立一条管道线;两个进程P1和P2分别向管道各写一句话:Child 1 is sending a message! Child 2 is sending a message! 而父进程则从管道中读出来自于两个子进程的信息,显示在屏幕上。要求父进程先接收子进程P1发来的消息,然后再接收子进程P2发来的消息。 实验源程序及报告: (1)、进程的创建 #include int main(int argc, char *argv[]) { int pid1,pid2; /*fork first child process*/ if ( ( pid1=fork() ) < 0 ) { printf( "ProcessCreate Failed!"); exit(-1); }

操作系统-进程管理实验报告

实验一进程管理 1.实验目的: (1)加深对进程概念的理解,明确进程和程序的区别; (2)进一步认识并发执行的实质; (3)分析进程争用资源的现象,学习解决进程互斥的方法; (4)了解Linux系统中进程通信的基本原理。 2.实验预备内容 (1)阅读Linux的sched.h源码文件,加深对进程管理概念的理解; (2)阅读Linux的fork()源码文件,分析进程的创建过程。 3.实验内容 (1)进程的创建: 编写一段程序,使用系统调用fork() 创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 源代码如下: #include #include #include #include #include int main(int argc,char* argv[]) { pid_t pid1,pid2; pid1 = fork(); if(pid1<0){ fprintf(stderr,"childprocess1 failed"); exit(-1); } else if(pid1 == 0){ printf("b\n"); } 1/11

else{ pid2 = fork(); if(pid2<0){ fprintf(stderr,"childprocess1 failed"); exit(-1); } else if(pid2 == 0){ printf("c\n"); } else{ printf("a\n"); sleep(2); exit(0); } } return 0; } 结果如下: 分析原因: pid=fork(); 操作系统创建一个新的进程(子进程),并且在进程表中相应为它建立一个新的表项。新进程和原有进程的可执行程序是同一个程序;上下文和数据,绝大部分就是原进程(父进程)的拷贝,但它们是两个相互独立的进程!因此,这三个进程哪个先执行,哪个后执行,完全取决于操作系统的调度,没有固定的顺序。 (2)进程的控制 修改已经编写的程序,将每个进程输出一个字符改为每个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。 将父进程的输出改为father process completed 2/11

操作系统实验二

操作系统实验实验二进程管理 学号 1215108019 姓名克帆 学院信息学院 班级 12电子2

实验目的 1、理解进程的概念,明确进程和程序的区别。 2、理解并发执行的实质。 3、掌握进程的创建、睡眠、撤销等进程控制方法。 实验容与要求 基本要求:用C语言编写程序,模拟实现创建新的进程;查看运行进程;换出某个进程;杀死进程等功能。 实验报告容 1、进程、进程控制块等的基本原理。 进程是现代操作系统中的一个最基本也是最重要的概念,掌握这个概念对于理解操作系统实质,分析、设计操作系统都有其非常重要的意义。为了强调进程的并发性和动态性,可以给进程作如下定义:进程是可并发执行的程序在一个数据集合上的运行过程,是系统进行资源分配和调度的一个独立单位。 进程又就绪、执行、阻塞三种基本状态,三者的变迁图如下: 由于多个程序并发执行,各程序需要轮流使用CPU,当某程序不在CPU上运行时,必须保留其被中断的程序的现场,包括:断点地址、程序状态字、通用寄存器的容、堆栈容、程序当前状态、程序的大小、运行时间等信息,以便程序再次获得CPU时,能够正确执行。为了保存这些容,需要建立—个专用数据结构,我们称这个数据结构为进程控制块PCB (Process Control Block)。 进程控制块是进程存在的惟一标志,它跟踪程序执行的情况,表明了进程在当前时刻的状态以及与其它进程和资源的关系。当创建一个进程时,实际上就是为其建立一个进程控制块。 在通常的操作系统中,PCB应包含如下一些信息: ①进程标识信息。为了标识系统中的各个进程,每个进程必须有惟一的标识名或标 识数。 ②位置信息。指出进程的程序和数据部分在存或外存中的物理位置。 ③状态信息。指出进程当前所处的状态,作为进程调度、分配CPU的依据。 ④进程的优先级。一般根据进程的轻重缓急其它信息。 这里给出的只是一般操作系统中PCB所应具有的容,不同操作系统的PCB结构是不同的,我们将在2.8节介绍Linux系统的PCB结构。

嵌入式实时操作系统实验报告

嵌入式实时操作系统实验报告 任务间通信机制的建立 系别计算机与电子系 专业班级***** 学生姓名****** 指导教师 ****** 提交日期 2012 年 4 月 1 日

一、实验目的 掌握在基于嵌入式实时操作系统μC/OS-II的应用中,任务使用信号量的一般原理。掌握在基于优先级的可抢占嵌入式实时操作系统的应用中,出现优先级反转现象的原理及解决优先级反转的策略——优先级继承的原理。 二、实验内容 1.建立并熟悉Borland C 编译及调试环境。 2.使用课本配套光盘中第五章的例程运行(例5-4,例5-5,例5-6),观察运行结果,掌握信号量的基本原理及使用方法,理解出现优先级反转现象的根本原因并提出解决方案。 3.试编写一个应用程序,采用计数器型信号量(初值为2),有3个用户任务需要此信号量,它们轮流使用此信号量,在同一时刻只有两个任务能使用信号量,当其中一个任务获得信号量时向屏幕打印“TASK N get the signal”。观察程序运行结果并记录。 4. 试编写一个应用程序实现例5-7的内容,即用优先级继承的方法解决优先级反转的问题,观察程序运行结果并记录。 5.在例5-8基础上修改程序增加一个任务HerTask,它和YouTask一样从邮箱Str_Box里取消息并打印出来,打印信息中增加任务标识,即由哪个任务打印的;MyTask发送消息改为当Times为5的倍数时才发送,HerTask接收消息采用无等待方式,如果邮箱为空,则输出“The mailbox is empty”, 观察程序运行结果并记录。 三、实验原理 1. 信号量 μC/OS-II中的信号量由两部分组成:一个是信号量的计数值,它是一个16位的无符号整数(0 到65,535之间);另一个是由等待该信号量的任务组成的等待任务表。用户要在OS_CFG.H中将OS_SEM_EN开关量常数置成1,这样μC/OS-II 才能支持信号量。

操作系统实验报告

操作系统教程 实 验 指 导 书 姓名: 学号: 班级:软124班 指导老师:郭玉华 2014年12月10日

实验一WINDOWS进程初识 1、实验目的 (1)学会使用VC编写基本的Win32 Consol Application(控制台应用程序)。 (2)掌握WINDOWS API的使用方法。 (3)编写测试程序,理解用户态运行和核心态运行。 2、实验内容和步骤 (1)编写基本的Win32 Consol Application 步骤1:登录进入Windows,启动VC++ 6.0。 步骤2:在“FILE”菜单中单击“NEW”子菜单,在“projects”选项卡中选择“Win32 Consol Application”,然后在“Project name”处输入工程名,在“Location”处输入工程目录。创建一个新的控制台应用程序工程。 步骤3:在“FILE”菜单中单击“NEW”子菜单,在“Files”选项卡中选择“C++ Source File”, 然后在“File”处输入C/C++源程序的文件名。 步骤4:将清单1-1所示的程序清单复制到新创建的C/C++源程序中。编译成可执行文件。 步骤5:在“开始”菜单中单击“程序”-“附件”-“命令提示符”命令,进入Windows“命令提示符”窗口,然后进入工程目录中的debug子目录,执行编译好的可执行程序: E:\课程\os课\os实验\程序\os11\debug>hello.exe 运行结果 (如果运行不成功,则可能的原因是什么?) : 有可能是因为DOS下路径的问题 (2)计算进程在核心态运行和用户态运行的时间 步骤1:按照(1)中的步骤创建一个新的“Win32 Consol Application”工程,然后将清单1-2中的程序拷贝过来,编译成可执行文件。 步骤2:在创建一个新的“Win32 Consol Application”工程,程序的参考程序如清单1-3所示,编译成可执行文件并执行。 步骤3:在“命令提示符”窗口中运行步骤1中生成的可执行文件,测试步骤2中可执行文件在核心态运行和用户态运行的时间。 E:\课程\os课\os实验\程序\os12\debug>time TEST.exe 步骤4:运行结果 (如果运行不成功,则可能的原因是什么?) : 因为程序是个死循环程序 步骤5:分别屏蔽While循环中的两个for循环,或调整两个for循环的次数,写出运行结果。 屏蔽i循环: 屏蔽j循环: _______________________________________________________________________________调整循环变量i的循环次数:

操作系统习题集------进程管理

习题集 - 2 - 进程管理 1. 在优先级调度中,__________类进程可能被“饿死”,即长时间得不到调度。 A.短进程 B.长进程 C.低优先级进程 D.大内存进程 解: C。优先级调度算法(PRI)的基本思想是:内核为每个进程赋予一个优先级,进程按照优先级的大小顺序在就绪队列中排队,内核将CPU分配给就绪队列头部的第一个进程——优先级最大的进程。因此,进程的优先级越低,在就绪队列中的排队位置就越靠近队列尾,获得运行之前的等待时间就越长。低优先级的进程必须等待所有高优先级进程运行结束后才会被调度运行。如果不断有高优先级的进程加入就绪队列,那么低优先级进程就会一直等待下去。这就是所谓的“饿死”现象。 2. 在下面的系统调用中,__________不会导致进程阻塞。 A.读/写文件 B.获得进程PID C.申请内存 D.发送消息 解: B。当正在执行的进程需要使用某种资源或等待某个事件时,如果资源已被其他进程占用或事件尚未出现,该进程不能获得所需的资源而无法继续运行,于是,进程将被阻塞。进程在阻塞状态中等待资源被释放,或等待事件的发生。所以,进程在执行系统调用时,如果需要使用某种资源,就可能导致进程阻塞。“读/写文件”需要使用设备和文件缓冲区;“申请内存”需要分配内存资源;“发送消息”需要使用消息缓冲区。 3. 下面关于临界区的叙述中,正确的是__________ A.临界区可以允许规定数目的多个进程同时执行 B.临界区只包含一个程序段 C.临界区是必须互斥地执行的程序段 D.临界区的执行不能被中断 解: C。临界段(临界区)的概念包括两个部分:①临界资源:必须互斥访问的资源。例如,需要独占使用的硬件资源,多个进程共享的变量、结构、队列、栈、文件等软件资源。②临界区:访问临界资源的、必须互斥地执行的程序段。即,当一个进程在某个临界段中执行时,其他进程不能进入相同临界资源的任何临界段。

相关文档
相关文档 最新文档