文档库 最新最全的文档下载
当前位置:文档库 › 振动试验时传感器的安装

振动试验时传感器的安装

振动试验时传感器的安装
振动试验时传感器的安装

振动试验时传感器的安装

唐永革

随着改革开放政策的继续贯彻加之国产设备的不断完善,电动振动台将会在科研及应用领域发挥更大的作用。怎样正确使用电动振动台,已成为从事环境试的工程技术人员和操作人员不可忽视的问题。现结合实例,谈谈就怎样使用电动振动台提高振动试验再现性。

一.必须明确的概念(GB/T2423.10)

1.固定点:固定点是指试验样品和夹具或试验样品和振动台(如果振动台装有附加台面时,则指试验样品和附加台面)点接触的部分,此处在实际使用中通常定试验样品的地方,如果实际安装结构的一部分作夹具使用(诸如减震架、托架等届试验样品本身所带)则应取其和振动台点接触的那部分作固定点,而不能用试验样品和安装结构点接触那部分作固定点。

2.测量点:在GB/T2423.10中附录中规定了两种类型的测量点,主要点就是检查测量位于振动台、夹具或试验样品上所承受的实际振动量值,该点尽可能要接近固定点,在任何情况下,检测点上的传感器都要和固定点刚性连接,因为试验的要求就是通过许多检测点来保证的。

3.检测点:在振动试验中,所选择的用以监视和测量台面振动量值和试验样品(或试验样品某一薄弱环节)响应的传感器的安装点。

4.基准点:是从检测点中选定的点,为了满足GB/T2423要求,该点的信号是用来作控制试验用的.

5.控制点:在振动试验中用以控制振动量值(该量值是试验样品标准所规定的值)的传感器的安装点,该点也必须是固定点中具有代表性的点。

控制点可分单点控制和多点控制.

二.如何选择控制点、检测点、监测点的位置

1.控制点的位置:控制点必须选择在与试验样品安装点直接点接触的固定点的最近处。

(1)由于电动振动台的台面较小,加之原台面不易直接安装试验样品,一般使用者都安装了附加台面,并且在安装时充分利用了原台面上的所有安装孔,都和附加台面进行了刚性固定连结,把它看成与原台面合成了一个新的整体,这是

可以的,但在进行振动试验时,就必须注意到它和啄台面的区别,有些人缺乏仔细考虑,他们认为,由于自己使用的电动振动台只能单点控制(仅能接一个控制传感器),只有将控制传感器安装到原台体的中心位置,就能保证传递到附加台面上试验样品各固定点的振动量值是相同的,甚至个别单位试验主管部门,要求操作者在操作电动台时,必须把仅能进行单点控制的电动振动台的控制传感器固定在原台体中心位置。上述理解和规定不仅违反了控制点的确定原则,而且也忽视了由于原台体是通过附加台面,间接地把控制信号传递到试验样品上,因而带来了不可避免的传递误差。不同的附加台面引起的误差量值不等,但此类误差随着试验频率的升高而增大(一般为过载),如果我们把控制点的位置选择在与试验样品安装点直接点接触的附加台面上固定点的最近处,如图所示。从表1中栏内的数据就不难看出,仅改变了控制传感器的位置,就产生如此大的差别,我们又把控制传感器的位置做了两次变动,,从表1栏的数据,我们可得出这样的结论:只要把控制传感器安装到附加台面上A、B、C任意一位置时,附加台面另外两个位置的振动幅值相差甚微,而且各位置在整个频率范围内振动幅值与标准值之差都小于士10%,这正是因为图中各控制传感器位置的选择,均是按照了上述所介绍的选择原则,而且只有这样选择控制传感器的位置,才是正确的,也才能保证试验结果具有较高的再现性。

表l

控制、各位置加速度值(g)

频率加速度 1 2 3 4

Hz g A B C A B C A B C A B C

50 10.0 9.4 10.1 9.2 9.3 10.0 9.2 9.7 9.6 9.2 9.8 9.9 9.4 100 10.1 9.5 10.2 9.3 9.5 10.2 9.4 10.0 10.0 9.3 9.9 9.8 9.4 200 10.2 9.5 10.2 9.4 9.4 10.0 9.2 10.1 10.1 9.4 10.10.0 9.5 300 10.1 9.7 10.4 9.5 9.4 10.1 9.1 10.0 10.0 9.3 10.0 9.9 9.3 400 10.1 9.8 10.5 9.7 9.3 10.0 8.9 10.0 10.0 9.0 9.9 9.9 9.0 G00 10.0 10.0 10.7 9.9 9.3 9.9 8.6 9.9 9.9 8.8 9.9 9.8 8.1 700 10.1 10.8 11.5 10.7 9.3 10.0 8.0 9.9 9.9 8.2 10.0 9.8 8.0 800 10.0 11.4 12.0 11.4 9.3 9.8 7.6 9.8 9.7 7.5 9.9 9.7 7.7 1000 10.0 13.3 14.7 13.4 9.3 10.3 6.5 9.4 9.4 6.1 9.9 0.0 6.4 1200 10.0 18.8 20.2 18。3 9.3 9.8 4.5 9.9 10.0 4.5 10.4 9.4 6.4 1300 10.0 25.7 30.2 26.5 9.3 11.0 3.2 9.7 10.1 3.0 9.7 9.8 3.2

1.控制传感器安装在原台体的中心位置。0检测传感器安装在附加台面A、B、C位置

2控制传感器安装在附加台面C位置,检测传感器安装在原台体中心。和附加台面A、B位置

3 控制传感器安装在附加台面B位置,检测传感器安装在原台体中心。和附加台面A、C位置

4 控制传感器安装在附加台面A位置,检测传感器安装在原台体中心。和附加台面B、C位置

(2)水平滑台上选择控制点位置的应用

举例:由于水平滑台结构上固有的特性,一般很自然地把控制传感器安装在远离主台体的端面,这样对需在附加台面上安装的试验样品上,同样会带来不可

捉摸的传递误差,现就如何消除这一误差的方法介绍如下:试验样品外形图如图

所示。试验样品振动强度曲

试验步骤:

①因为试验样品不便于直接固定到水平滑台上,需借助附加台面和夹具固

定到水平滑台上进行试验,因此,首先对夹具进行了试验,我们把控制传感器放

在台体和夹具的不同位置,来检查指示器安装孔所得到的振动量值,从表2栏的

数据可以看出,当控制传感器位于水平滑台端面时,指示器安装孔1置在700Hz 时就超过+10% ,最大误差达+37.5%,再看看表2中各栏的数据,在整个试验频率范围内,各安装孔所承受的振动量值全部符合规定值的士l0 %之内。因此,只有把控制点选择在试验样品安装孔的最近处,才能使试验样品承受的振动量值符合试验样品标准中所规定的振动量值即6的试验曲线)。

表2

频率

Hz

75 l00 200 300 400 500 600 700 800 1000

加速度 g

1.6 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.

02 1 1.60 2。01 2.02 2.02 2.08 2.09 2.17 2.25 2.38 2.73 2 1.59 2.04 2.03 2.04 2.08 2.09 2.14 2.19 2.27 2.47 3 1.58 2.00 2.00 1.99 2.00 2.0l 2.00 2.03 2.07 2.15 1 为控制点

4

1.58 2.00 2.0l 2.00 2.02 2.02 2.02 2.05 2.09 2.17 2 1.59 2.00 2.0l 2.00 1.99 1.99 1.96 1.95 1.90 1.89 3 1.57 1.98 1.97 1.95 1.92 1.90 1.85 1.84 1.80 1.80 4 1.58 2.0l 2.00 1.99 1.96 1.94 1.89 1.86 1.84 1.82 2 为控制点

1

1.30 1.60 1.80 1.70 1.70 1.70 1.50 1.5O 1.40 1.30 2 1.57 1.99 1.99 2.00 2.02 1.99 2.00 2.0l 1.99 2.08 4 1.57 1.99 1.99 1.97 1.95 1.93 1.89 1.85 1.80 1.78 5 1.58 2.0l 2.02 2.0l 1.98 1.96 1.93 1.90 1.87 1.80

3 为控制点

1

1.30

1.60

1.70

1.80

1.70

1.60

1.60

1.50

1.40

1.30

2 1.58 2.00 2.02 2.04 2.04 2.06 2.09 2.14 2.19 2.28

3 1.58 2.02 2.02 2.0l 2.03 2.0

4 2.09 2.1l 2.13 2.20

5 1.59 2.05 2.02 2.04 2.04 2.02 2.03 2.04 2.02 2.10 4 为控制点

1

1.40 1.70 1.80 1.80 1.70 1.80 1.70 1.60 1.50 1.50 2 1.55 1.99 2.00 2.00 2.02 2.03 2.07 2.12 2.16 2.20 3 1.56 2.03 2.02 2.01 2.02 2.06 2.07 2.09 2.10 2.18 4 1.53 1.99 1.99 2.00 2.00

2.00

2.00 2.00 1.94 1.92 5 为控制点

1

1.30

1.70

1.80

1.70

1.7'0 1.70

1.70

1.60

1.50

1.40

②把试验样品安装在夹具上,并按照图7所选择的控制点和检测点固定好控制传感器和检测传感器(当然也在试验样品上粘接了监测传感器)正式进行了试验,并测得了控制点和检测点实际振动量值.部数据证实了选择的控制点和检测点都是正确的,从而保证了较高的再现性。

2.检测点位置:由于试验的要求就是要通过许多检测点来保证的,因此检测点必须尽可能的立于固定点的最近处。虽然振动台面或夹具上各固定点振动壁值差异很小,但由于试验样品各安装点的刚性和距离试验样品重心远近的差异,因此把试验样品安装到振动台面或夹具上后.再来检测各固定点的振动量位是否有较大差异,一般来说,频率愈高,差异愈大。不论是检测夹具上还是检测振动台上的振动量值,都应把检测点尽可能选择在固定点的最近处。如果各检测点的振动量值超过有关标准的规定,则应检查夹具安装部位固定点的刚性连 结是否有问题,直到使各检测点的振动量值 符合有关标准规定为止。

3.监测点位置应选择在离试验样品安装点尽可能近的试验样品上。 由于试验样品各部位刚性有差异,特别是较大产品某一局部频率响应点和试验样品本身的频率响应点是不完全一致的,因此监测点也应选在离固定点最近的试验样品上。为了保证初始谐振检查与最终谐振检查状态完全一致,在进行最终谐振检查时,监视传感器一定要放在初始谐振检查时传感器所固定的位置上。也就是说,不论你使用几个监测传感器,在对最初与最终谐振检查进行比较时,必须是同一位置上的传感器进行比较。另外,当试验样品设计人员为了检查试验样品某一薄弱环节的频率响应对产品性能所产生的影响时,就在某处固定一监测传感

器,以便监视频率响应的振动量值,进而确定该部分需采取什么样的措施,因此,监视点的部位也可根据试验意图随意确定,即根据试验目的可任意确定。

2008.12.17

振动检测传感器的应用

振动检测传感器的应用 加速度传感器的应用: 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。加速度传感器可以测量牵引力产生的加速度。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 激光多普勒传感器的应用: 本测试仪特别适用于测量那些质轻,微小的物 体(如声学喇叭,电脑硬盘,其他微机电系统等) 或者远距离不可接触到的物体(如高高的钢架,风 洞试验设备等)。广泛应用于航空,汽车,国防和民 用工程领域。

2016年《振动测试实验》综合练习题 (2)

2016年《振动测试实验》综合练习题 1、关于振动传感器,请回答以下问题: 1)振动传感器主要有那些类型?哪种传感器目前使用最广泛? 答:①振动传感器按所测机械量分为位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。 ②目前使用最广泛的是加速度传感器。 2)加速度传感器安装方式有哪些?对于飞机空中振动环境测试,你认为哪几种安装方式较合适? 答:①加速度传感器安装方式:刚螺栓连接、胶合螺栓、石蜡粘接、双面胶、永久磁铁。 ②对于飞机空中振动环境测试,用刚螺栓连接、胶合螺栓较合适。 3)加速度传感器和力传感器的主要技术指标? 答:(1)灵敏度:电信号输出与被测运动输入之比。加速度传感器的灵敏度通常为V/g或PC/ms-2、V/ms-2。力传感器的灵敏度通常为V/N。(2)频率响应特性(包括幅频特性和相频特性)。(3)动态范围:可测量的最大振动量与最小振动量之比。下限取决于连接电缆和测量电路的电噪声,上限取决于传感器的结构强度。(4)横向灵敏度:垂直于主轴的横向振动也会使传感器产山输出信号。该信号与主轴灵敏度的百分比为横向灵敏度。(5)幅值线性度:实际传感器的输出信号只在一定幅值范围内与被测振动成正比(即保持线性特性)。在规定线性度内可测幅值范围称为线性范围。 4)一般振动数据采集设备最大输入电压为10伏。测量一结构加速度响应,加速度最大值预估约为20g,现有加速度传感器甲(灵敏度:50mv/g)、乙(灵敏度:500mv/g)各一只,选用哪一个传感器?请说明理由。 答:灵敏度等于输入电压除以加速度为10V/20g = 500 mv/g,所以选择乙传感器。 2、关于激振器,请回答以下问题: 1)常用的激振器安装方式有哪两种?两种安装方式的分别有何技术要求? 答:①常用的激振器安装方式:刚性支承、柔性悬挂。 ②刚性支承安装要求:垂直向、横向、纵向支承刚度足够大。 支承系统(激振器+支架)的最低阶固有频率>试验件最高阶固有频率。 柔性悬挂安装要求:垂直向、横向、纵向支承刚度足够小。

振动试验时传感器的安装

振动试验时传感器的安装 唐永革 随着改革开放政策的继续贯彻加之国产设备的不断完善,电动振动台将会在科研及应用领域发挥更大的作用。怎样正确使用电动振动台,已成为从事环境试的工程技术人员和操作人员不可忽视的问题。现结合实例,谈谈就怎样使用电动振动台提高振动试验再现性。 一.必须明确的概念(GB/T2423.10) 1.固定点:固定点是指试验样品和夹具或试验样品和振动台(如果振动台装有附加台面时,则指试验样品和附加台面)点接触的部分,此处在实际使用中通常定试验样品的地方,如果实际安装结构的一部分作夹具使用(诸如减震架、托架等届试验样品本身所带)则应取其和振动台点接触的那部分作固定点,而不能用试验样品和安装结构点接触那部分作固定点。 2.测量点:在GB/T2423.10中附录中规定了两种类型的测量点,主要点就是检查测量位于振动台、夹具或试验样品上所承受的实际振动量值,该点尽可能要接近固定点,在任何情况下,检测点上的传感器都要和固定点刚性连接,因为试验的要求就是通过许多检测点来保证的。 3.检测点:在振动试验中,所选择的用以监视和测量台面振动量值和试验样品(或试验样品某一薄弱环节)响应的传感器的安装点。 4.基准点:是从检测点中选定的点,为了满足GB/T2423要求,该点的信号是用来作控制试验用的. 5.控制点:在振动试验中用以控制振动量值(该量值是试验样品标准所规定的值)的传感器的安装点,该点也必须是固定点中具有代表性的点。 控制点可分单点控制和多点控制. 二.如何选择控制点、检测点、监测点的位置 1.控制点的位置:控制点必须选择在与试验样品安装点直接点接触的固定点的最近处。 (1)由于电动振动台的台面较小,加之原台面不易直接安装试验样品,一般使用者都安装了附加台面,并且在安装时充分利用了原台面上的所有安装孔,都和附加台面进行了刚性固定连结,把它看成与原台面合成了一个新的整体,这是

振动检测

3.水泵振动监测及研究 3.1振动测量简介 振动测量时对振动量和系统振动特性进行的测量。振动量包括振动幅值、振动频率和相位;振动特性指系统的刚度、阻尼系数、固有系数、固有频率、振型和动态响应等。 泵的振动测量,通常只测量振动幅值及振动频率,并由此给出烈度级,需要时还可进行频谱分析。对泵的振动特性常用振动位移幅值、振动峰值、振动频率和振动烈度级作出评价。 振动测量的方法:按力学原理分为相对式测量法和惯性式测量法;按振动信号转换方式分为电测法、光测法和机械测振法。对泵通常采用电测法。 振动的电测法 3.1.1振动电测法的基本测试系统,其各部分仪器种类繁多,性能也有差别,应根据不同的测试要求合理选择配套。 3.1.2工程常用测振仪简介 工程常用测振仪由振动传感器、测振仪和记录分析仪器组成。 a)振动传感器又称拾振器,工程商常用的有位移传感器、惯性式速度型传感 器和惯性式加速度型传感器。速度型传感器除直接测量振动速度外,在把其输出电压经过积分线路与微积分线路后,还可以测量振动位移和加速度。此外,拾振器和用于噪声测量的声级计可以配套使用,测量振动。 b)测振仪也称放大器,具有显示和输出两种功能。 c)记录分析仪器常用的记录分析仪器有光线示波器、磁带记录仪、电平记录 仪和X-Y记录仪等。 3.1.3参数测量 参数测量包括振动基本参数测量和振动特性参数测量。前者测量的参数为振动频率、振动幅值和相位;后者测量的参数为固有频率、阻尼系数和振型等。泵主要测量基本参数。 (1)振动频率的测量有以下几种方法: a、用数字式频率计直接测读频率。这种方法简便,精确度高,稳定性也较好,还可以对简谐波型以外的振动进行测量。 b、用录波比较法测频率。它是把振动波形的时程曲线记录在记录纸上,同时记录时标信号,如果时标信号为1s(即两条时标线的时间间隔为1s),则两条时标线间的完整波个数为振动频率。波形的时程曲线常用光线示波器记录。 c、用声级计和光线示波器联合测量频率,并进行频谱分析。 (2)振动幅值的测量振动幅值指位移幅值、速度值和加速度值。通常也把位移幅值称为振幅。 a、位移幅值测量:以下三种情况都要测量位移幅值。振动幅值较低,速度和加速度值大,不便使用速度和加速度传感器时,则用位移传感器测量位移幅值;某些设备或结构物需限定其振幅不超过允许值,此时就要直接测量位移幅值;需要通过测量位移进行应力计算时,则必须测量位移幅值,如水工闸门的振动问题就是如此。 b、速度值测量:如果振动频率处于中频段,且位移较小时,可用速度传感器测

压电式传感器测振动实验.

实验二十一压电式传感器测振动实验 一、实验目的:了解压电传感器的原理和测量振动的方法。 二、基本原理:压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。 1、压电效应: 具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。 压电材料受到外力作用时,在发生变形的同时内部产生极化现象,它表面会产生符号相反的电荷。当外力去掉时,又重新回复到原不带电状态,当作用力的方向改变后电荷的极性也随之改变,如图21—1 (a) 、(b) 、(c)所示。这种现象称为压电效应。 (a) (b) (c) 图21—1 压电效应 2、压电晶片及其等效电路 多晶体压电陶瓷的灵敏度比压电单晶体要高很多,压电传感器的压电元件是在两个工作面上蒸镀有金属膜的压电晶片,金属膜构成两个电极,如图21—2(a)所示。当压电晶片受到力的作用时,便有电荷聚集在两极上,一面为正电荷,一面为等量的负电荷。这种情况和电容器十分相似,所不同的是晶片表面上的电荷会随着时间的推移逐渐漏掉,因为压电晶片材料的绝缘电阻(也称漏电阻)虽然很大,但毕竟不是无穷大,从信号变换角度来看,压电元件相当于一个电荷发生器。从结构上看,它又是一个电容器。因此通常将压电元件等效为一个电荷源与电容相并联的电路如21—2(b)所示。其中e a=Q/C a。式中,e a为压电晶片受力后所呈现的电压,也称为极板上的开路电压;Q为压电晶片表面上的电荷;C a为压电晶片的电容。 实际的压电传感器中,往往用两片或两片以上的压电晶片进行并联或串联。压电晶片并联时如图21—2(c)所示,两晶片正极集中在中间极板上,负电极在两侧的电极上,因而电容

振动传感器种类、原理及发展趋势

振动传感器种类、原理及发展趋势 【摘要】振动传感器是一种能感受机械运动振动的参量(振动速度、频率,加速度等)并转换成可用输出信号的传感器。 在高度发展的现代工业中,现代测试技术向数字化、信息化方向发展已成必然发展趋势,而测试系统的最前端是传感器,它是整个测试系统的灵魂,被世界各国列为尖端技术,特别是近几年快速发展的IC技术和计算机技术,为传感器的发展提供了良好与可靠的科学技术基础。使传感器的发展日新月益,且数字化、多功能与智能化是现代传感器发展的重要特征。 【关键词】种类;原理;发展趋势 【Abstract】:Vibration transducer is atransducer that can feel the vibration of a mechanical movement parameters (frequency of the vibration velocity, acceleration, etc.) and converted into usable output signal of the sensor. At the height of the development of modern industry, modern testing technology to digitization, information management has become an inevitable trend of development, and testing system for the front end is the sensor, it is the soul of an entire test system, is listed as a leading-edge technology around the world, particularly in recent years, the rapid development of IC technology and computer technology, the development of a sensor provides a good and reliable scientific and technology base. Place the sensor development, Crescent IK, and multipurpose digital, is a modern and intelligent sensor development, an important feature. 【Keywords】:type , principle , inevitable trend of development 振动传感器的分类

实验 压电式传感器实验

实验压电式传感器实验 实验项目编码: 实验项目时数:2 实验项目类型:综合性()设计性()验证性(√) 一、实验目的 本实验的主要目的是了压电式传感器的结构特点;熟悉压电传感器的工作原理;掌握压电传感器进行振动和加速度测量的方法。 二、实验内容及基本原理 (一)实验内容 1.压电传感器进行振动和加速度测量的方法 (二)实验原理 压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。 1.压电效应: 具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。 压电材料受到外力作用时,在发生变形的同时内部产生极化现象,它表面会产生符号相反的电荷。当外力去掉时,又重新回复到原不带电状态,当作用力的方向改变后电荷的极性也随之改变,如图1 (a) 、(b) 、(c)所示。这种现象称为压电效应。 (a) (b) (c) 图1 压电效应 2.压电晶片及其等效电路 多晶体压电陶瓷的灵敏度比压电单晶体要高很多,压电传感器的压电元件是在两个工作面上蒸镀有金属膜的压电晶片,金属膜构成两个电极,如图2(a)所示。当压电晶片受到力的作用时,便有电荷聚集在两极上,一面为正电荷,一面为等量的负电荷。这种情况和电容器十分相似,所不同的是晶片表面上的电荷会随着时间的推移逐渐漏掉,因为压电晶片材料的绝缘电阻(也称漏电阻)虽然很大,但毕竟不是无穷大,从信号变换角度来看,压电元件相当于一个电荷发生器。从结构上看,它又是一个电容器。因此通常将压电元件等效为一个电荷源与电容相并联的电路如2(b)所示。其中ea=Q/Ca 。式中,ea为压电晶片受力后所呈现的

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加 速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器 波形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

震动探测器原理

全向振动传感器 它是一种全方位固态振动控制器件,传感部分采用目前最先进的固态加速度检测器件,既对振动有很高的检测灵敏度,也对周围环境的声音信号抑制,具有很强的抗干扰能力。 目前所出现的振动传感器为一弹簧振子,通过碰撞实现振动感应,主要缺点是有方向性,可靠性差。针对这一缺陷,本方案使用的传感器, 克服了这一弱点。敏感器件采用压电陶瓷片,置于一密闭腔中,两侧为金属小球,空腔设计为球形, 以利用小球滚动。在三维空间中,无论传感器在什么方位,始终有小球与压电陶瓷片接触。在振动时,小球对压电陶瓷片压力变化,产生脉动电压, 从而实现振动感应。因为本振动传感器的输出电压幅度主要取决于振动强度,在不同方向上振动, 输出电压太小差别不大,故为全方向性。 (1) 全向振动传感器工作原理 全向振动传感器,是一种目前广泛应用的报警检测传感器,它内部用压电陶瓷片加弹簧重锤结构检测振动信号,并通过LM358等运放放大并输出控制信号。如图2-8所示为全向振动传感器电路图。 ND-2采用特别设计的低功耗检测控制芯片,静态耗电小于1μA ,是目前振动传感器中耗电最小的器件。为了方便使用,采用引线方式。引线连接方式:红线为电源正极,绿线为输出端,黑线为地。如图2-9所示为ND-2引线图。 当检测到振动大于一定幅度时,动作指示灯点亮,并发出报警。振动检测的灵敏度可以通过灵敏度调节旋钮调节,顺时针灵敏度增加,逆时针灵敏度降低。 3V 图2-8 全向振动传感器电路图 红 绿 黑 图2-9 ND-2引线图 如图2-10所示,ND-2采用集电极开路输出方式,其内部三极管的控制电流不小于10mA 。受内部定时器的控制,每检测出一次振动信号,三极管导通5秒,

压电式传感器测振动实验报告

压电式传感器测振动实验报告篇一:压电式传感器实验报告 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端Vo1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。 3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。 4、改变低频振荡器的频率,观察输出波形变化。 光纤式传感器测量振动实验 一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤

1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。 5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。保持振动幅度不变,改变振动频率,观察示波器波形及锋-峰值。保持频率振动不变,改变振动幅度,观察示波器波形及锋-峰值。 篇二:实验六压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电陶瓷片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在压电陶瓷片上,由于压电效应,压电陶瓷片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双线示波器。 四、实验步骤: 1、压电传感器已装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的低频输入源插孔。 压电式传感器性能实验接线图 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,见图7-1,屏蔽线接地。将压电传感器实验模板电路输出端V01(如增益不够大则V01接入IC2,V02接入低通滤波器)接入低通滤波器输入端VI,低通滤波器输出V0与示波器相连。 4、合上主控箱电源开关,调节低频振荡器的频率与幅度旋扭使振动台振动,观察示波器波形。 5、改变低频振荡器频率,观察输出波形变化。

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理与方法。 二、基本原理:压电式传感器由惯性质量块与受压的压电片等组成。(观察实验用压电加速 度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率与幅度旋钮使振动台振动,观察示波器波 形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的: 了解光纤传感器动态位移性能。 二、实训仪器: 光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件) 。 三、相关原理:利用光纤位移传感器的位移特性与其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

振动传感器

振动传感器 振动传感器分为压电式,磁电式,微型振动传感器。 常用振动传感器有以下几种: 1.压电片谐振式:使用压电片接收振动信号,压电片的谐振频率较高,为了降低谐振频率,使用加大压电片振动体的质量来实现,并使用弹簧球代替附加物,降低两谐振频率,增强了振动效果。其优点是灵敏度较高,结构简单。但是需要信号放大后送到TTL电路或者单片机电路中,不过使用一个三极管单级放大即可 2.机械振动式:传统的振动检测方式,受到振动以后,弹簧球在较长的时间内进行减幅振动,这种振动便于被检测电路检测到。振动输出开关信号,输出阻抗与配合输出的电阻阻值所决定,根据检测电路的输入阻抗,可以做成高阻抗输出方式。 3.微型振动传感器:将机械式振动传感器微型化,将振动体碳化并进行密封处理,其工作性能更可靠。输出开关信号直接与TTL电路和或者单片机输入电路相连接,电路结构简单。输出阻抗高,静态工作电流小。 振动传感器按其功能可有以下几种分类方法: 按机械接收原理分:相对式、惯性式;按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式; 按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。 以上分类法中的传感器是相容的。

1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器

【实验报告】压电式传感器测振动实验报告

压电式传感器测振动实验报告 篇一:压电式传感器实验报告 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端 Vo1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。 3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。 4、改变低频振荡器的频率,观察输出波形变化。 光纤式传感器测量振动实验

一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。 5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。保持振动幅度不变,改变振动频率,观察示波器波形及锋-峰值。保持频率振动不变,改变振动幅度,观察示波器波形及锋-峰值。 篇二:实验六压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。

电涡流位移传感器原理与应用-(38003)

电涡流位移(振动)传感器原理与应用电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一、电涡流传感器的基本原理 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。 前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流

电容式传感器的结构及工作原理

电容式传感器——将被测非电量的变化转换为电容量变化的传感器。把被测的机械量,如位移、压力等转换为电容量变化的传感器。它的敏感部分就是具有可变参数的电容器。其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器。下面就让艾驰商城小编对电容式传感器的结构及工作原理来一一为大家做介绍吧。 若忽略边缘效应,平板电容器的电容为εS/d,式中ε为极间介质的介电常数,S为两极板互相覆盖的有效面积,d为两电极之间的距离。d、s、ε 三个参数中任一个的变化都将引起电容量变化,并可用于测量。 因此电容式传感器可分为极距变化型、面积变化型、介质变化型三类,即变极距型电容传感器、变面积型电容传感器和变介质型电容传感器。极距变化型一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化。面积变化型一般用于测量角位移或较大的线位移。介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。 典型的电容式传感器由上下电极、绝缘体和衬底构成。当薄膜受压力作用时,薄膜会发生一定的变形,因此,上下电极之间的距离发生一定的变化,从而使电容发生变化。但电容式压力传感器的电容与上下电极之间的距离的关系是非线性关系,因此,要用具有补偿功能的测量电路对输出电容进行非线性补偿。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.wendangku.net/doc/2913395833.html,/

震动传感器安装使用全解实施方案{项目}

震动传感器安装使用全解方案 原文:史新华 振动传感器(YT-JB3、YT-SHK)系统主要用于探测入侵者对企图穿过周界栅栏,切割和攀爬金属围栏网、破墙,而入等多种情况引起的防撬、防砸、防破坏振动,这些振动通过电子处理器单元进行监视和分析。通过比对振动特征信号,判断真正的入侵企图事件,通过模拟分析转变为报警信号。 前言: 随着通信ATM及基站、金库、保险柜、博物馆等不断增多和分布日趋广泛,防盗监控已成为移动通信基站的重要保障。近年来手机用户数量的持续增长,基站的数量、分布区域不断扩大,身处城乡结合部或偏远山区的移动基站因常年无人值守成为盗窃分子的光顾之地,基站的各种附属设备如蓄电池、铁塔角钢、空调外机、铜地线(排)、馈线等设备也成了盗贼的主要偷盗目标,如果基站的附属设备发生被盗,将使基站通信设备处于高危运行状态,既严重影响通信设备的正常运行,又给运行维护部门增加大量的额外开支 纵观历年来特别是近年来的被盗案件,基站偷盗呈现以下特点: 1、被盗物品基本作为废品处理,因此,多以金属为主,如铜、铅、铁等,具体集中在室外变压器、空调室外机、蓄电池、电力电缆(含地线)等。 2、被盗基站普遍发生在偏远山区或高速公路附近,这些地区路途偏远,工作人员难以短时间内赶到现场,或者在公路附近,作案后迅速撤离,难以抓到现行。 3、盗窃人员以本地居民为主,且了解基站情况的人员比例比较高,特别是一些曾经从事过基站内设备的安装、维护工作的各种协作单位的临时工作人员,利用基站钥匙进行复制等手段伺机进行偷盗。 4、偷盗手段越来越五花八门,从锯断室外电缆,翻墙,撬门、气体割烧门、墙体开洞、钻馈线窗、手法专业。 针对上述特点,采取传统的某一项或两项防盗措施,已难以起到效果,这些说明振动探测器在基站周界防护中起着比较重要的作用,采取震动探测器技防措施,才能起到有效的防盗作用。 根据设备安全性能的高低来配置产品,有人非法进入基站区域或者进行破坏时,震动探测器在探测到非法侵入信息后,通过主机拨号的形式,将警情在第一时间将信息传达给电信基站接警中心,基站人员在接到信息后及时处理警情或驱动电子监控系统来记录非法侵入者的影像,起到全方位的防护作用! 二、振动探测器系统设计要求 基站的振动防盗报警系统要求达到如下的要求: 1、实用性: 振动探测器(YT-JB3、YT-SHK)系统方案设计无人值守自助设备特殊环境管理工作需要,如墙体防范、区域保护、门窗保护、ATM保护等。除具备以上功能外,还有视频录像、报警系统和监控系统的联动等实用功能。由于基站是无人职守,因此在报警系统设置的过程中考虑到现场报警、语音吓退,等多重防范,最大程度的赶走或恐吓侵入者,达到保护财产的作用。 2.可靠性: 在偏远的无人值守的特殊环境中,震动探测器系统必须保证较强的稳定性和可靠性,前端振动产品选用先进、成熟、可靠的产品,是已在类似工程中使用过许多的,证明能适应室外环境的硬件,并且在系统故障或事故造成中断后,能确保数据的准确性、完整性和一致性,并具备迅速恢复的功能,同时系统具有一整套完成的系统管理策略,可以保证系统的运行安全。 4.经济性: 高集成在最大程度上减少了单一组合式的各种设备,减少了联动模块等外接设备,大大降低了系统集成的成本。在组建系统的过程中,由于集成性比较高,大大减少人力费用、节省了耗材、中间设备的费用更加经济性。

压电式传感器测振动实验报告文档

2020 压电式传感器测振动实验报告文 档 Contract Template

压电式传感器测振动实验报告文档 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 篇一:压电式传感器实验报告 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插

孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端Vo1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端 Vi,低通滤波器输出V0与示波器相连。 3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。 4、改变低频振荡器的频率,观察输出波形变化。 光纤式传感器测量振动实验 一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。

VSC-1型振动传感器校准仪使用说明书

VSC-1型振动传感器校准仪 使用说明书

一、开机须知 1、在仪器通电前,首先要拧掉面板上的三个螺钉(在激振器上方,压圈的外侧,呈倒三角形)。它们是用来固定悬浮的激振器的。 2、激振器的头部用来安装被校准的传感器,称为激振器的台面。台面和激振器是通过连接杆用锣钉的方式固定的。为确保台面和连接杆的牢固连接,在安装或拆卸传感器时,必须用扳手夹住台面以防止它和传感器一起转动而脱落。 3、本机可用于垂直,水平两个方向的测量。在需要校准水平方向的传感器时,可将仪器水平放置。为方便测试,可向左推动机箱上盖,将其摘下: 二、概述 VSC-1振动校准仪内部包括一个正弦信号源,功率放大器,振动台体,内部基准加速度传感器及测量和显示电路。可用于校准加速度传感器,速度传感器及涡流位移传感器。 液晶屏显示振动的频率,加速度,速度及位移值。 校准仪可用于垂直,水平两个方向的测量。 该校准仪最大的负载不得大于650克。 仪器的原理方框图如下:

电磁激振器 正弦信号发 生器 功率放大器 参考电荷放大器 单片机及面板控制旋钮 LCD 显示屏 测量电路 三、主要技术指标 信号源:(正弦信号) 频率范围:10~1kHz ,连续可调。 频率精度:±0.1% 频率分辨率:1Hz 幅值测量准确度: 振动量 量程 测试条件 准确度 加速度(pk ) 0~20 m/s 2 10m/s 2 40~320Hz ±0.3db ±1个字 20~1kHz ±1db ±1个字 0~200 m/s 2 30m/s 2 速度(RMS ) 0~20 mm/s , 14 mm/s 40~320Hz ±0.5db ±1个字 0~200 mm/s 42.2mm/s 位移(pk-pk ) 0~200μm 79.16μm 0~2000μm 237.5μm 注1:由于振动台体的机械特性,在整个频段内,会有2,3个谐振点,这些点是不可用的。 注2:振动的各项参数定义为: 加速度(m/s 2): 峰值 速度(mm/s ): 有效值 位移(μm ): 峰峰值 激振器最大位移量: 0~4.0mm 最大振动幅度和负载的关系: 重量 频率 ≤100g ≤250g ≤650g m/s 2 mm/s μm m/s 2 mm/s μm m/s 2 mm/s μm 10 2.5 28 1300 3.5 40 1800 4 45 2000

振动测试方法简介

振动测试方法简介 工程振动量值的物理参数常用位移、速度和加速度来表示。由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。常用单位为:米/秒2 (m/s2),或重力加速度(g)。 描述振动信号的另一重要参数是信号的频率。绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。 工程振动测试方法 在工程振动测试领域中,测试手段与方法多种多样,但是按各种参数的测量方法及测量过程的物理性质来分,可以分成三类。 1、机械式测量方法 振动传感器将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录,常用的仪器有杠杆式测振仪和盖格尔测振仪,它能测量的频率较低,精度也较差。但在现场测试时较为简单方便。 2、光学式测量方法 将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。如读数显微镜和激光测振仪等。 3、电测方法 将工程振动的参量转换成电信号,经电子线路放大后显示和记录。电测法的要点在于先将机械振动量转换为电量(电动势、电荷、及其它电量),然后再对电量进行测量,从而得到所要测量的机械量。这是目前应用得最广泛的测量方法。上述三种测量方法的物理性质虽然各不相同,但是,组成的测量系统基本相同,它们都包含拾振、测量放大线路和显示记录三个环节。1、拾振环节。把被测的机械振动量转换为机械的、光学的或电的信号,完成这项转换工作的器件叫传感器。2、测量线路。测量线路的种类甚多,它们都是针对各种传感器的变换原理而设计的。比如,专配压电式传感器的测量线路有电压放大器、电荷放大器等;此外,还有积分线路、微分线路、滤波线路、归一化装置等等。3、信号分析及显示、记录环节。从测量线路输出的电压信号,可按测量的要求输入给信号分析仪或输送给显示仪器(如电子电压表、示波器、相位计等)、记录设备(如光线示波器、磁带记录仪、X—Y 记录仪等)等。也可在必要时记录在磁带上,然后再输入到信号分析仪进行各种分析处理,从而得到最终结果。 传感器的机械接收原理 振动传感器在测试技术中是关键部件之一,它的作用主要振动传感器原理是将机械量接收下来,并转换为与之成比例的电量。由于它也是一种机电转换装置。所以我们有时也称它为换能器、拾振器等。振动传感器并不是直接将原始要测的机械量转变为电量,而是将原始要测的机械量做为振动传感器的输入量,然后由机械接收部分加以接收,形成另一个适合于变换的机械量,最后由机电变换部分再将变换为电量。因此一个传感器的工作性能是由机械接收部分和机电变换部分的工作性能来决定的。 1、相对式机械接收原理由于机械运动是物质运动的最简单的形式,因此人们最先想到的是用机械方法测量振动,从而制造出了机械式测振仪(如盖格尔测振仪等)。传感器的机械接收原理就是建立在此基础上的。相对式测振仪的工作接收原理是在测量时,把仪器

相关文档