文档库 最新最全的文档下载
当前位置:文档库 › 液体表面张力的测量预习报告

液体表面张力的测量预习报告

液体表面张力的测量预习报告
液体表面张力的测量预习报告

液体表面张力系数的测量实验

液体沿表面总是存在着使液面紧张且向液体内收缩的力称为表面张力。液体的许多现象,如毛细管现象、湿润现象、泡沫的形成等,都与表面张力有关。表面张力系数是液体表面的重要力学性质:对于不同种类的液体,其表面张力不同,而对于同一种液体,其表面张力系数随着温度及其所含杂志的改变而增大或减小。这些性质广泛应用于工业生产中,如浮法选矿、液体的传输技术、化工生产线的设计等等都要对液体的表面张力进行研究。

测定液体表面张力系数的方法很多。常用的有拉脱法和毛细管升高法。本次实验介绍用拉脱法测定液体表面张力系数。 一、实验目的

1.用砝码对硅压阻力敏传感器进行定标,计算该传感器的灵敏度,学习传感器的定标方法; 2.观察拉脱法测量表面张力的过程,并用物理学基本概念进行分析,加深对物理规律的认识;

3.测量纯水和其它液体(如:甘油)的表面张力系数。 二、实验仪器

实验仪器主要由液体表面张力系数测量实验仪主机以及实验装置以及镊子、砝码组成。应用电脑采集测量时需要壹根串口转USB 连接线、电脑和采集软件,仪器装置见下图。

三、实验原理

一个金属环固定在传感器上,将该环浸没于液体中,并渐渐拉起圆环,当它从液面拉脱瞬间传感器受到的拉力差值f 为

απ)(21D D f +=

(1)

式中: 1D 、2D 分别为圆环外径和内径,α为液体表面张力系数,g 为重力加速度,所以液体表面张力系数为:

)](/[21D D f +=πα

(2)

实验中,液体表面张力可以由下式得到:

B U U f /)(21-=

(3)

B 为力敏传感器灵敏度,单位V/N 。1U ,2U 分别为即将拉断水柱时数字电压表读数以及拉

断时数字电压表的读数。

四、实验步骤

1.连接硅压阻力敏传感器,并开机预热15~20分钟。测量吊环内外直径,然后清洗玻璃器皿(盛装待测液体)和吊环,给实验装置加水(注意加水量不可过多,可以参考装置外壁加水刻度线);

2.将吊环挂在力敏传感器的钩上,将力敏传感器转至水容器外部,这样取放砝码比较方便。待吊环晃动较小时,对仪器进行调零,然后用镊子安放砝码对传感器进行定标,取放砝码时应尽量轻;

3.将待测液体倒入玻璃器皿后,再将盛有待测液体的玻璃器皿小心地放入空的塑料容器,并一起放入实验圆筒内;将力敏传感器转至容器内,并轻轻挂上吊环,可以轻触吊环,让其晃动

说明:之所以不将测量液体直接倒入塑料容器内进行测量,是防止某些待测液体与塑料容器发生化学反应而影响测量结果。

4.关闭橡皮球阀门,反复挤压橡皮球使装置内部液体液面上升,当吊环下沿部分均浸入待测液体中时,及时松开橡皮球的阀门,这时液面缓慢下降,观察环浸入液体中及从液体中拉起时的物理过程和现象。特别应注意吊环即将拉断液柱前一瞬间数字电压表读数值为U 1,拉断后数字电压表读数为U 2。记下这两个数值。

5.用计算机采集时,在环接触液面开始下降时点开始采集按钮,可以通过软件实时采集传感器输出电压值的变化过程,通过鼠标移动测量拉脱瞬间的电压值以及拉断后的电压值,计算测量液体的表面张力,并与手动测量的结果进行比较。

五、注意事项

1.实验前,吊环须严格处理干净:可用NaOH 溶液洗净油污或杂质后,用纯水冲洗干净,并用热吹风烘干;

2.仪器开机需预热15分钟; 3.特别注意手指不要接触被测液体;

4.力敏传感器使用时用力不宜大于0.098N ,以免损坏传感器; 5.实验结束须将吊环用清洁纸擦干,用清洁纸包好,放入干燥缸内。

6.打气速度不可过快,使液面缓慢上升,否则液面容易接触测试环支撑面,支撑面沾上液体容易产生测量误差。

7.用砝码进行定标时,可以旋转肌张力传感器至水容器外面,这样取放砝码比较方便。

六、数据记录

1.硅压阻力敏传感器定标

力敏传感器上分别加各种质量砝码,测出相应的电压输出值,实验结果见表1。

表1 力敏传感器定标

物体质量m/g 输出电压V/mV

经最小二乘法拟合得仪器的灵敏度B=3.013×103

mV/N ,拟合的线性相关系数r=0.9999。上海地区重力加速度g=9.794m/S 2

。 2.水和其它液体表面张力系数的测量

用游标卡尺测量金属圆环:外径D 1=3.500cm,内径D 2=3.334cm ,调节上升架,记录环在即将拉断水柱时数字电压表读数U 1,拉断时数字电压表的读数U 2,结果见表2。

表2 纯水的表面张力系数测量 (水的温度25.0℃)

测量次数

U 1/mV U 2/mV U ?/mV

f/×10

3

-N

310-?αN/m

1 2 3 4 5 6

在此温度下水的表面张力系数为70.0×10-3

N/m 。经查表,在T=25.0℃时水的表面张力系数为71.97×10-3

N/m ,百分误差为2.7%。

表3 甘油(丙三醇)的表面张力系数测量(甘油的温度:T=24.30℃)

测量次数

U 1/mV U 2/mV U ?/mV

f/×10

3

-N

310-?αN/m

1 2 3 4 5 6

在此温度下甘油的表面张力系数为57.9×10-3

N/m 。经查表,在T=24.30℃时,甘油的表面张力系数为59.40×10-3

N/m ,百分误差为2.5%。

七、附录

不同温度下纯水的表面张力系数对照表

温度T /℃ 张力系数σ /×10-3N/m 温度T /℃ 张力系数σ /×10-3N/m 温度T /℃ 张力系数σ /×10-3N/m 0 75.62 16 73.34 30 71.15 5 74.90 17 73.20 40 69.55 6 74.76 18 73.05 50 67.90 8 74.48 19 72.89 60 66.17 10 74.20 20 72.75 70 64.41 11 74.07 21 72.60 80 62.60 12 73.92 22 72.44 90 60.74 13 73.78 23 72.28 100 58.84 14 73.64 24 72.12 15 73.48

25

71.96

液体表面张力

液体表面张力系数的测定实验报告模板 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】液体表面层内分子相互作用的结果使得液体表面自然收缩,犹如紧张的弹性薄膜。由于液面收缩而产生的沿着切线方向的力称为表面张力。设想在液面上作长为L 的线段,线段两侧液面便有张力作用,其方向与L 垂直,大小与线段L 成正比。即有:=γL 比例系数γ称为液体表面张力,其单位为N/m. 将一表面洁净的长为L 、宽为d 的圆形金属环(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属环将要脱离液面,即拉起的水膜刚好要破裂时,则有:F=mg+,式中F 为把金属环拉出液面时所用的力;mg 为金属环和带起的水膜的总质量;f 为张力。此时,与接触面的周围边界π(),则 有γ= ,式中D1,D2分别为圆环的内外直径。 实验表明,γ与液体种类、纯度、温度和液面上方的气体成分有关,液体温度越高,γ值越小,液体含杂质越多,γ值越小,只要上述条件保持一定,则γ是一个常量,所以测量γ时要记下当时的温度和所用液体的种类及纯度。 【实验步骤】1.安装好仪器,挂好弹簧,调节底板的三个水平调节螺丝,使焦利称立柱竖直。在主尺顶部挂入吊钩再安装弹簧和配重圆柱体,使小指针被夹在两个配重圆柱之间,配重圆柱体下端通过吊钩钩住砝码托盘。调整小游标的高度使小游标左侧的基准线大致对准指针,锁紧固定小游标的锁紧螺钉,然后调节微调螺丝使指针与镜子框边的刻线重合,当镜子边框上刻线、指针和指针的像重合时(即称为“三线对齐”),读出游标0线对应刻度的数值。 2.测量弹簧的劲度系数k.依次增加 1.0g 砝码,即将质量为1.0g,2.0g,3.0g,…,9.0g,10.0g 的砝码加在下盘内。调整小游标的高度,每次都 F f F f F f F f D D 2 1 +) mg -F 21D D +∏(

表面张力的测量方法

表面张力的测量方法 英才学院 1236305 张雍淋 6121810519 液体表面张力测量在化学、医药、生物工程等领域具有重要意义, 根据液体表面张力的大小可以确定表面活性并计算表面活性剂在溶液表面的吸附量;在合金液体体系中,借助于表面张力还可以评价金相组织及孕育效果等重要参数。目前,测量液体表面张力系数有毛细上升法、最大气泡压力法、液滴法等。 1. 毛细上升法 这个方法,研究的比较早,在理论和实际上都比较成熟。如图 1所示,干净的毛细管浸入液体内部时,如果液体间的分子力小于液体与管壁间的附着力,则液体表面呈凹形。此时表面张力产生的附加力为向上的拉力,并使毛细管内的液面上升, 直到液柱的重力与表面张 力相平衡。 图 1 212cos ()g r r gh πσθπρρ=- 1()2cos g ghr ρρσθ-=

其中:σ—液体的表面张力;r-毛细管的内径;θ-接触角; ρ 1ρ-液体和气体的密度;h-液柱的高度;g-当地的重力加速度。在 和 g 实际应用中一般用透明的玻璃管,如果玻璃被液体完全润湿,可以近似的认为θ= 0。 毛细上升法是测定表面张力最准确的一种方法,国际上也一直用此方法测得的数据作为标准。应用此方法时,要注意选择管径均匀, 透明干净的毛细管,并对毛细管直径进行仔细的标定;毛细管要经过仔细彻底的清洗,毛细管浸入液体时要与液面垂直。 2.最大气泡压力法 如图 2 所示,向插入液体的毛细管轻轻的吹入惰性气体(如 N 2等)。如果选用的毛细管半径很小,在管口形成的气泡基本上是球形的。并且当气泡为半球时,球的半径最小等于毛细管半径 r ;在其前后曲率半径都比r大,如图2 所示。当气泡为半球时,泡内的压力最大,管内外最大压差可由差压计测量得到。 图2

溶液中的吸附作用和表面张力的测定

溶液中的吸附作用和表面张力的测定 ——最大气泡压力法 【摘要】本实验采用最大气泡压力法测定了一系列不同浓度的正丁醇溶液的表面张力,并根据Gibbs吸附公式和Langmuir等温方程式的到了表面张力与溶液吸附作用的关系,用作图法求出了正丁醇分子横截面积,从实验上进一步了解表面张力的性质以及表面张力和吸附的关系,并得到了一个测量表面张力的简单有效而又精确的方法。 【关键词】最大气泡法表面张力吸附作用 一、前言 正丁醇是一种表面活性物质,可以使溶液表面张力下降。利用最大气泡压力法,可以测量出正丁醇溶液的表面张力。根据表面张力与气泡压力的关系,由σ-c曲线可以求出溶液界面上的吸附量和单个正丁醇分子的横截面积(S)。 1、物体表面的分子和内部分子能量也不同,表面层的分子受到向内的拉力,有自动缩小的趋势,表面分子的能量比内部分子大。体系产生新的表面(A)所需耗费功(W)的量,其大小应与A成正比。在等温下形成1m2新的表面所需的可逆功为,称为单位表面的表面能,其单位为N·m-1,通常称为表面张力。 2、纯液体情形下,表面层的组成与内部的组成相同,因此液体降低体系表面自由能的途径是缩小其表面积。对于溶液,溶质会影响表面张力,调节溶质在表面层的浓度来降低表面自由能。根据能量最低

原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比溶液内部大。反之同理 。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。 Gibbs 用热力学的方法推导出吸附与溶液的表面张力及溶液的浓度间的关系式 =T c RT c ??? ??- ??σ 当( )?σ ?c T <0时, >0,称为正吸附。反之,( )?σ ?c T >0时, <0,称 为负吸附。 正丁醇溶液浓度极小时,溶质分子平躺在溶液表面上,当浓度增加到一定程度时,被吸附了的表面活性物质分子占据了所有表面形成了单分子的饱和吸附层。 在一定温度下,吸附量与溶液浓度之间的关系由Langmuir 等温方程式表示:ΓΓ=?+?∞K C K C 1 或 C C K ΓΓΓ=+ ∞∞ 1 以 C Γ ~C 作图可得一直线,由直线斜率即可求出Γ∞。在饱和吸附情况下,正丁醇分子在气-液界面上铺满一单分子层,则可求得正丁醇分子的横截面积S N 01 = ∞Γ~ 3、最大气泡压力法:当表面张力仪中的毛细管截面与欲测液面相齐时,液面沿毛细管上升。当此压力差在毛细管端面上产生的作用 力稍大于毛细管口溶液的表面张力时,气泡就从毛细管口逸出。 张力与浓度的关系图

液体表面张力系数测定的实验报告

xx 大学实验报告 一【实验目的】 (1) 掌握力敏传感器的原理和方法 (2) 了解液体表面的性质,测定液体表面张力系数。 二【实验内容】 用力敏传感器测量液体表面的张力系数 三【实验原理】 液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的橡皮膜一样。 这种沿着表面的、收缩液面的力称之为表面张力。 测量表面张力系数的常用方法:拉脱法、毛细管升高法和液滴测重法等。此试验中采用了拉脱法。拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度力的大小。液体表面层内的分子所处的环境跟液体内部的分子不同。液体内部的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向下的引力小,合力不为零。这个力垂直于液面并指向液体内部。所以分子有从液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。 假如在液体中浸入一块薄钢片,则钢片表面附近的液面将高于其它处的,如图1所示。 由于液面收缩而产生的沿切线方向的力Ft 称之为表面张力,角φ称之为接触角。当缓缓拉出钢片时,接触角φ逐

渐的减小而趋于零,因此Ft方向垂直向下。在钢片脱离液体前诸力平衡的条件为 F = mg + F t (1)其中F是将薄钢片拉出液面的时所施加的外力,mg为薄钢片和它所沾附的液体的总重量。表面张力Ft与接触面的周长2(l+d)成正比,故有Ft = 2σ(l+d),式中比例系数σ称之为表面张力系数,数值上等于作用在液体表面单位长度上的力。将Ft代入式(1)中得 (2) 当用环形丝代替薄钢片做此实验时,设环的内外直径为D1、D2,当它从液面拉脱瞬间传感器受到的拉力差 f = F–m g =π(D1+D2)σ,此时 (3)只要测出力f和环的内外直径,将它们代入式(3),即可算出液体的表面张力系数σ。式中各量的单位统一为国际单位。 四【实验仪器】 (1)FD—NST—B 液体表面张力系数测定仪。 (2)砝码六个,每个质量 五【实验步骤】 (1)开机预热。 (2)清洗玻璃器皿和吊环。 (3)在玻璃器皿内放入被测液体并安放在升降台上。 (4)将砝码盘挂在力敏传感器上,对力敏传感器定标。 (5)挂上吊环,测定液体表面张力系数。当环下沿全部浸入液体内时,转动升降台的螺帽,使液面往下降。 记下吊环拉断液面瞬间时的电压表的读数U1,拉断后瞬间电压表的读数U2。则f=(U1-U2)/B 六【实验注意事项】 (1)轻轻挂上吊环,必须调节好水平。 (2)在旋转升降台时,尽量是液体的波动要小。

实验四溶液的吸附作用和液体表面张力的测定

实验四溶液的吸附作用和液体表面张力的测定 一、实验目的 1.用最大泡压法测定不同浓度的表面活性物质(正丁醇)溶液在一定温度下的表面张力; 2.应用Gibbs和Langmuir吸附方程式进行精确作图和图解微分,计算不同浓度正丁醇溶液的表面吸附量和正丁醇分子截面积,以加深对溶液吸附理论的理解; 3.掌握作图法的要点,提高作图水平。 二、基本原理 T一定,溶液表面吸附量Γ γ测定,毛细管半径r,其抛压出时受到向下压力∏r2P,最大时离开管口:P max =P 外 -P 系 。测 Pmax 气泡在管口受到的表面张力:2∏r*γ γ=rPmax 用同C溶液γ 1/γ 2 =P max1 /P max2 所以:γ1=(γ 2/P max2 )P max1 =KP max1 求常数K。 对于单分子吸附,其吸附量Γ与浓度c之间的关系可用等温吸附方程表示,即: 式中Гm为饱和吸附量,a为吸附平衡常数。将此式两边取倒数可整理成线性方程: 在饱和吸附时,每个被吸附分子在表面上所占的面积,即分子的截面积S为: 三、仪器与试剂 表面张力仪1套;恒温槽1台;1ml移液管1个;烧杯(250ml) 1个;100ml容量瓶1个;50ml容量瓶5个; 正丁醇(二级.);去离子水. 四、实验步骤 样品编号123456789容量瓶体积/cm31005050505050505050 V醇/cm3 3.仪器系数的测定。先用少量丙酮清洗毛细管3,再用蒸馏水仔细清洗样品管2和毛细管3,然后加入适量蒸馏水。在减压管1中装满水,压力计5中注入适量的水,在活塞8打开的情况下,调节活塞6使毛细管端面与液面相切。关闭活塞8,打开活塞7使体系减压,当毛细管口逸出气泡时,调节活塞7使液滴缓慢滴下,读出数字式微压差测量仪最大数值。 再更换样品重复测定两次,取平均值。已知25o C水的表面张力=,计算仪器系数K。 4.乙醇溶液表面张力的测定。取3%的乙醇溶液(一号样品)洗净样品管和毛细管,然后加入适量溶液,待恒温后,按上述操作步骤测定Δh。

溶液表面张力测定实验报告

学号:201114120222 基础物理化学实验报告 实验名称:溶液表面张力的测定 应用化学二班班级 03 组号 实验人姓名: xx 同组人姓名:xxxx 指导老师:杨余芳老师 实验日期: 2013-11-12 湘南学院化学与生命科学系 一、实验目的

1、测定不同浓度正丁醇(乙醇)水溶液的表面张力; 2、了解表面张力的性质,表面自由能的意义及表面张力和吸附的关系; 3、由表面张力—浓度曲线(σ—c 曲线)求界面上吸附量和正丁醇分子的横截面积S ; 4、掌握最大气泡法测定表面张力的原理和技术。 二、实验原理 测定液体表面张力的方法很多,如毛细管升高法、滴重法、环法、滴外形法等等。本实验采用最大泡压法,实验装置如图一所示。 图一中A 为充满水的抽气瓶;B 为直径为0.2~0.3mm 的毛细管;C 为样品管;D 为U 型压力计,内装水以测压差;E 为放空管;F 为恒温槽。 图一 最大泡压法测液体表面张力仪器装置图 将毛细管竖直放置,使滴口瓶面与液面相切,液体即沿毛细管上升,打开抽气瓶的活栓,让水缓缓滴下,使样品管中液面上的压力渐小于毛细管内液体上的压力(即室压),毛细管内外液面形成一压差,此时毛细管内气体将液体压出,在管口形成气泡并逐渐胀大,当压力差在毛细管口所产生的作用力稍大于毛细管口液体的表面张力时,气泡破裂,压差的最大值可由U 型压力计上读出。 若毛细管的半径为r ,气泡从毛细管出来时受到向下的压力为: 式中,△h 为U 型压力计所示最大液柱高度差,g 为重力加速度,ρ为压力计所贮液体的密度。 气泡在毛细管口所受到的由表面张力引起的作用力为2πr?γ,气泡刚脱离管口时,上述二力相等: 若将表面张力分别为和的两种液体用同一支毛细管和压力计用上法测出各 g h p p p ρ?=-=系统大气m ax r g h r p rr πρππ22m ax 2=?=γπρππr g h r p r 22m ax 2 =?=g h r ργ?=2

液体表面张力实验报告

液体表面张力实验报告 实验原理: 实验一、一元硬币上能承载几滴水? 水是由水分子组成,它们之间不是独来独往的,而是互相吸引,甚至三三两两地结合。处在中间的水分子受到来自四面八方的其他水分子的包围,受力均匀。可是处在水面的水分子情况不同,它的一面与空气接触,没有来自其他水分子的吸引力,使得它受力不均匀,水的表面好像一块张紧的弹性薄膜。 由于液体的表面有这种奇特的存在,就使得液体的表面总是处在被绷紧的状态,并尽量收缩到最小。由于在体积相同的条件下,球的面积最小,所以在表面张力的作用下,肥皂泡、小露珠、水银滴等也

就都收缩成球形了。一元硬币上能承载的水滴也相应增加了。 实验二、订书针、一分硬币能浮在水面上吗? 小木块入水后,撤掉压力还能上浮是因浮力作用,而订书针、硬币入水后,由于表面张力被破坏下沉,原来浮在水面是因水的表面张力。 其实科学就在我们的身边,就在我们的生活中,你也可以和爸爸妈妈一起动手做一做,亲自去感受去体验,做个科学小达人吧! 处于表面的液体分子(球状模型,液体分子排列紧密),以分子B为中心的球面中的一部分在液体当中,另一部分在液面之外,由于对称性可知,CC'和DD'之间部分的受到的合力等于零;对B有效的作用力是由球面内DD'以下的部分受到的向下合力。由于处在边界内的每—个分子都受到指向液体内部的合力,所以这些分子都有向液体内部下降的趋势,同时分子与分子之间还有侧面的吸引力,即有尽量收缩表面的趋势。

以最简单的气液相界面为例,液相内分子周围所受的力是对称的,彼此相互抵消,但表面层分子由于受力不均衡,其结果受到垂直指向液体内部的拉力,所以液体表面都有自动缩小的趋势。如果要扩大表面就要把内层分子移到表面上来,这至少需要克服表面分子的拉力而做功。实际上液体分子内部所受的力是分子间作用力当然也包括氢键。因此,简单地说表面张力是范德华力和氢键微观作用在宏观上的表现。

用拉脱法测定液体表面张力系数物理实验报告

用拉脱法测定液体表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被周 围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密 度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行 定标的方法,计算该传感器的灵敏度。 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一 层液膜。使液面收缩的表面张力f 沿液面的切线方向,角?称为湿润角(或接触角)。当继续提起圆筒形吊环时,?角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破 裂时的拉力为F ,则有 f g m m F 2)(0++= (1) 式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ?+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。α在数值上等于单位长度上的表面张力。式中l 为圆筒形吊环内、外圆环的周长之和。 ) ()(0外内D D g m m F ++-= πα (3) 由于金属膜很薄,被拉起的液膜也很薄,m 很小可以忽略,于是公式简化为:

液体表面张力系数的测量1

实验报告 班级微电子101姓名贺鸿浩学号10105110 日期2011.10.24 室温26.2℃气压102.29kpa成绩教师 实验名称液体表面张力系数的测量 【实验目的】 1.了解液体表面性质 2.学习采用液体表面张力系数测定仪的使用方法 3.学习用拉脱法测表面张力系数的原理和方法 【实验仪器】 液体表面张力测定装置、砝码盘和砝码、圆环型吊片、卡尺、温度计 图1液体表面张力测定装置 【实验原理】 1. 拉脱法 测量一个已知周长的金属圆环或金属片从待测液体表面脱离时所需的拉力,从而求得该液体表面张力系数的方法称为拉脱法。所需的拉力是由液体表面张力、环的内外径及液体材质、纯度等因素决定。 2. 吊环法和吊片法比较 (1)吊环法:使用金属细线制成吊环时,在液膜被拉破的瞬间接触角不接近于零,此时所测得的力是表面张力向下的分量,因而所得表面张力系数误差较大,必须用修正公式对测量结果进行修正。 (2)吊片法:虽然液膜被拉破的瞬间接触角趋近于零,但在具体测量时,由于吊片在拉脱

过程中容易发生倾斜,实验时吊片的长度上限为3—4cm ,而在测量力时,则希望力大 一点,有利于提高测量精确度。 (3)片状吊环:新设计有一定厚度的片状吊环。经过对不同直径吊环的多次试验,发现当 吊环直径等于或略大于 3.3cm 时,在液膜被拉破的瞬间液体与金属环之间的接触角接 近于零,此时接触面总周长约为20cm 左右。在保持接触角为零时,能得到一个 较大的待测力。 3. 实验原理 使用片状吊环,在液膜拉破前瞬间,考虑一级近似,认为液体的表面张力为: f = f 1 + f 2 = αл(D 1+ D 2) 这里α为表面张力系数,D 1、D 2分别为吊环的外径和内径。 片状吊环在液膜拉破前瞬间有: 此时传感器受到的拉力F 1和输出电压U 1成正比,有: U 1 = BF 1 片状吊环在液膜拉破后瞬间有: F 2 = mg 同样有 U 2 = BF 2 片状吊环在液膜拉破前后电压的变化值可表示为: U 1- U 2 = △U = B · △F = B (F 1- F 2)= B αл(D 1+ D 2) 由上式可以得到液体的表面张力系数为:1212() U U B D D απ-=+ 这里U 1:液膜拉断前瞬间电压表的读数,U 2:膜拉断后瞬间电压表的读数 实验内容(用拉脱法测量水的表面张力): 1.力敏传感器进行定标,用最小二乘法作直线拟合,求 出传感器灵敏度B 。 2.游标卡尺测量金属圆环的内、外直径。 3.金属环状吊片挂在传感器的小钩上,调节升降台,将 液体升至靠近环片的下沿,观察环状吊片下沿与待测液面 是否平行,将金属环状吊片取下后,调节吊片上的细丝, 使吊片与待测液面平行。(注意 :吊环中心、玻璃皿中心 最好与转轴重合。) 4.调节容器下的升降台,使其渐渐上升,将环片的下沿部分全部浸没于待测液体。然后反 向调节升降台,使液面逐渐下降。这时,金属环片和液面间形成一环形液膜,出现“浸润” 现象,继续下降液面,测出环形液膜即将拉断前一瞬间数字电压表读数值 U1和液膜拉断后 一瞬间数字电压表读数值U2。(注意 :液膜断裂应发生在转动的过程中,而不是开始转动 或转动结束时,因为此时振动较厉害,应多次重复测量。) 【实验步骤】 1.开机预热(15分钟) 2.将水盛入玻璃器皿内(1cm 左右),用双面胶与升降台面贴紧固定。 3.将砝码盘挂在力敏传感器的钩上 图2液膜的收缩

溶液表面张力的测定详解

学号:201214140123 基础物理化学实验报告 实验名称:溶液表面张测定 12届药学班级1组号 实验人姓名:李楚芳 同组人姓名:罗媛,兰婷 指导老师:邓斌 实验日期:2014-05-30

湘南学院化学与生命科学系 一、 实验目的: 1.加深理解表面张力的性质,表面吉布斯能的意义以及表面张力和吸附的关系。 2. 掌握最大气泡法测定表面张力的原理和技术。 二、 主要实验原理,实验所用定律、公式以及有关文献数据: 当加入溶质后,溶剂的表面张力要发生变化。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的浓度大;如果所加溶质能使溶剂的表面张力增加,那么,表面层溶液质的浓度应比内部低。这种现象为溶液的表面吸附。用吉布斯公式(Gibbs )表示: T c σ )d d (RT c Γ- = (1)式 式中,Г为表面吸附量(mol.m -2);σ为表面张力(J.m -2);T为绝对温度(K);C为溶液浓度(mol/L );)(dc d σ T 表示在一定温度下表面张力随浓度的改变率。

当 )( dc d σ T < 0,Г>0,溶质能增加溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附作用。 )( dc d σ T >0,Г<0,溶质能增加溶剂的表面张力,溶液表面层的 浓度小于内部的浓度,称为负吸附作用。 可见,通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。 本实验采用最大气泡压力法测定正丁醇水溶液的表面张力值。将欲测表面张力的液体装入试管中,使毛细管的端面与液面相切,液体即沿毛细管上升,直到液柱的压力等于因表面张力所产生的上升力为止。若管内增加一个与此相等的压力,毛细管内液面就会下降,直到在毛细管端面形成一个稳定的气泡;若所增加的压力稍大于毛细管口液体的表面张力,气泡就会从毛细管口被压出。可见毛细管口冒出气泡的需要增加的压力与液体的表面张力成正比。 σ=K △p 式中K 与毛细管的半径有关,对同一支毛细管是常数,可由已知表面张力的液体求得。本实验通过蒸馏水来测得。 由实验测得不同浓度时的表面张力,以浓度为横坐标,表面张力为纵坐标,得σ-c 图,过曲线上任一点作曲线的切线和水平线交纵坐标于b1,b2两点,则曲线在该点的斜率为 c b b c 0b b d d 2121c σ--=--=

液体表面张力实验报告

液体表面张力系数的测定 [实验目的] 1、了解液体表面张力性质以及表面张力系数的含义和影响因素. 2、理解拉脱法测量液体表面张力系数的基本原理,了解测量方法。 3、了解用液体界面张力仪定标测量微小力的思想和方法。 4、了解液体界面张力仪的调节使用方法和校准方法。 5、熟悉实验的具体内容. 6、拟定出合理的实验数据记录表格. [实验原理] 表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。作用于液面单位长度上的表面张力称为液体的表面张力系数,用来度量表面张力的大小。表面张力系数不仅与液体的种类有关,而且还与温度、纯度、表面上方的气体成分等有关.物质液体状态的许多性质都与液体的表面张力相关,如毛细现象、浸润现象等。因此,测量液体表面张力系数对于科学研究和实际应用都具有重要意义。测定液体表面张力系数的常用方法有:拉脱法,液滴测重法和毛细管升高法等。拉脱法是一种直接测定法,通过物体的弹性形变(拉伸或扭转)来度量力的大小,如扭力天平法、焦力称法等。 实验中采用拉脱法测量水与空气界面的表面张力系数。通过实验可以重点学习如下内容:(1)实验方法:测量液体表面张力系数的拉脱法。(2)测量方法:用液体界面张力仪定标测量微小力的方法。(3)数据处理方法:质量标准曲线的绘制方法.(4)仪器调整使用方法:液体界面张力仪的调整使用方法。 [实验内容] 1、整液体界面张力仪水平和零点,达到待测状态. 2、准液体界面张力仪。 (1)金属环上放一块小纸片,仪器调零。包括两个方面的调节:第一,调节刻度盘蜗轮,使零刻度线与游标零线重合,即读数为零;第二,调节调零微调蜗轮,使吊杆臂上的指针与平面反射镜的红线重合。 (2)在小纸片上放质量0.0005kg的砝码,测量金属环单位长度的受力F,即调节刻度盘蜗轮使指针与红线重合时刻度盘的读数. (3)计算理论值F0=mg/π(d1+d2)。 (4)比较测量值F与理论值F0,如果二者相等,说明校准准确;若不相等,调节两个吊杆臂,保证两臂的长度等值缩短或伸长,使刻度盘上的读数F与理论值F0相等.重复测量几次,直至二者一致为止. 3、测量绘制质量标准曲线。 (1)仪器校准后,放置不同质量m的砝码,记录刻度盘的读数f。 (2)以m为横坐标f为纵坐标绘制质量标准曲线。

液体表面张力系数的测量

液体表面力系数的测定 表面力是液体表面的重要特性,它类似于固体部的拉伸应力,这种应力存在于极薄的表面层,是液体表面层分子力作用的结果。液体表面层的分子有从液面挤入液的趋势,从而使液体有尽量缩小其表面的趋势,整个液面如同一拉紧了的弹性薄膜,我们把这种沿着液体表面,使液面收缩的力称为表面力。作用于液面单位长度上的表面力,称为液体的表面力系数,测定液体表面力系数的方法有:拉脱法、毛细管法、最大气泡压力法等。本实验采用拉脱法测定表面力系数。实验目的: 1、了解液体表面性质。 2、熟悉用拉脱法测定表面力系数的方法。 3、熟悉用焦利弹簧秤测量微小力的方法。 实验仪器: 焦利弹簧秤,被测液体,游标卡尺,矩形金属框,烧杯,砝码及托盘等 实验原理: 1、面力的由来 假设液体表面附近分子的密度和部一样,它们的间距大体上在势能曲线的最低点,即相互处在平衡的位置上。由图(1)可以看出,分子间的距离从平衡位置拉开时,分子间的吸引力先加大后减小,在这儿只涉及到吸引力加大的一段,如图(2)所示,设想部某个分子A欲向表面迁徙,它必须排开分子1、2,并克

服两侧分子3、4和后面分子5对它的吸引力 用势能的概念来说明,就是它处在图(3)左边的势阱中,需要有大小为Ed的 激活能才能越过势垒,跑到表面去。然而表面某个分子B要想挤向部,它只需排 开分子1'、'和克服两侧分子3'、4'的吸引力即可,后面没有分子拉它。所以它所处 I 的势阱(图(3)中右边的那个)较浅,只要较小的激活能Ed就可越过势垒,潜入液体部。这样一来,由于表面分子向扩散比部分子向表面扩散来得容易,表面分子会变得稀疏了,其后果是它们之间的距离从平衡位置稍为拉开了一些,于是相互之间产生的吸引力加大了,这就是图(3)右边所示的情况。此时分子B需克服分子3'、'对它的吸引力比刚才大,从而它的势阱也变深了,直到Ed变得和E d 一样时,外扩散达到平衡。所以在平衡状态下液体表面层的分子略为稀疏,分子间距比平衡位置稍大,在它们之间存在切向的吸引力。这便是表面力的由来。 在刚才的讨论中未考虑液面外是否有气体。如果有,则分子B背后有气 体的分子拉它,这显然会使上述差距减小,从而减小表面力。事实也确实如此。

实验17液体表面张力的测定

. . 物理化学实验备课材料 实验17 液体表面张力的测定 一、基本介绍 液体的表面张力是指液体与它的蒸气成平衡时体系的界面张力。液体表面张力常常是在空气中测定的。当气相是一个处于低压或中压的惰性气体时,一般液体表面张力值与气相的组成几乎无关。液体的表面张力,源于液体相界面分子受力不平衡,意为相表面的单位长度收缩力,用“σ"表示,其单位是焦耳/平方米(J·m-2)或牛/米(N·m-1).液体表面张力的测定,不仅可以加深对表面张力这一物系热力学性质的认识,而且可以研究表面活性剂的表面活性、分子的横截面积、分子长度等。 二、实验目的1、掌握最大气泡法测定表面张力的原理,了解影响表面张力测定的因素。 2、测定不同浓度正丁醇溶液的表面张力,计算吸附量, 由表面张力的实验数据求分子的截面积及吸附层的厚度。 三、实验原理 1、溶液中的表面吸附 从热力学观点来看,液体表面缩小是一个自发过程,这是使体系总自由能减小的过程,欲使液体产生新的表面ΔA,就需对其做功,其大小应与ΔA 成正比: -W′=σ·ΔA(1) 如果ΔA为1m2,则-W′=σ是在恒温恒压下形成1m2新表面所需的可逆功,所以σ称为比表面吉布斯自由能,其单位为J·m-2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m-1。在定温下纯液体的表面张力为定值,当加入溶质形成溶液时,表面张力发生变化,其变化的大小决定于溶质的性质和加入量的多少。根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种表面浓度与内部浓度不同的现象叫做溶液的表面吸附。在指定的温度和压力

表面张力的测定实验报告分析

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:溶液表面张力的测定 (1)实验目的 1、掌握最大气泡法测定表面张力的原理和技术 2、通过对不同浓度正丁醇溶液表面张力的测定,加深对表面张力、表面自由能和表面吸附量关系的理解 3、学习使用Matlab 处理实验数据 (2) 实验原理 1、 表面自由能:从热力学观点看,液体表面缩小是一个自发过程,这是使体系总的自由能减小的过程。如欲使液体产生新的表面A ?,则需要对其做功。功的大小应与A ?成正比:-W=σA ? 2、 溶液的表面吸附:根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比 溶液内部大,反之,溶质使溶液的表面张力升高时,它在表面层中的浓度比在内部的浓度低。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。Gibbs 用热力学的方法推导出它们间的关系式 T c RT c )(??- =Γσ (1)当00,溶质能减少溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附,此类物质叫表面活性物质。(2)当0>??? ????T c σ时,Γ<0,溶质能增加溶剂的表面张力,溶 液表面层的浓度小于内部的浓度,称为负吸附,此类物质叫非表面活性物质。由 T c RT c )(??- =Γσ 可知:通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。 3、 饱和吸附与溶质分子的横截面积:吸附量Γ浓度c 之间的关系,有Langmuir 等温方程 式表示:c K c K ·1·+Γ=Γ ∞

液体表面张力系数的测量

液体表面张力系数的测定 表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。液体表面层的分子有从液面挤入液内的趋势,从而使液体有尽量缩小其表面的趋势,整个液面如同一张拉紧了的弹性薄膜,我们把这种沿着液体表面,使液面收缩的力称为表面张力。作用于液面单位长度上的表面张力,称为液体的表面张力系数,测定液体表面张力系数的方法有:拉脱法、毛细管法、最大气泡压力法等。本实验采用拉脱法测定表面张力系数。 实验目的: 1、了解液体表面性质。 2、熟悉用拉脱法测定表面张力系数的方法。 3、熟悉用焦利弹簧秤测量微小力的方法。 实验仪器: 焦利弹簧秤,被测液体,游标卡尺,矩形金属框,烧杯,砝码及托盘等 实验原理: 1、面张力的由来 假设液体表面附近分子的密度和内部一样,它们的间距大体上在势能曲线的最低点,即相互处在平衡的位置上。由图(1)可以看出,分子间的距离从平衡位置拉开时,分子间的吸引力先加大后减小,在这儿只涉及到吸引力加大的一段,如图(2)所示,设想内部某个分子A欲向表面迁徙,

它必须排开分子1、2,并克服两侧分子3、4和后面分子5对它的吸引力。 用势能的概念来说明,就是它处在图(3)左边的势阱中,需要有大小为d E 的激活能才能越过势垒,跑到表面去。然而表面某个分子B 要想挤向 内部,它只需排开分子' ' 21、 和克服两侧分子' ' 43、的吸引力即可,后面没有分子拉它。所以它所处的势阱(图(3)中右边的那个)较浅,只要较小的激活能 ' d E 就可越过势垒,潜入液体内部。这样一来,由于表面分子向内 扩散比内部分子向表面扩散来得容易,表面分子会变得稀疏了,其后果是它们之间的距离从平衡位置稍为拉开了一些,于是相互之间产生的吸引力 加大了,这就是图(3)右边所示的情况。此时分子B 需克服分子' ' 43、 对它的吸引力比刚才大,从而它的势阱也变深了,直到 ' d E 变得和d E 一样时,内外 扩散达到平衡。所以在平衡状态下液体表面层内的分子略为稀疏,分子间距比平衡位置稍大,在它们之间存在切向的吸引力。这便是表面张力的由来。

用拉脱法测定液体的表面张力系数实验

实验二、用拉脱法测定液体的表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被 周围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解737FB 新型焦利氏秤实验仪的基本结构,掌握用标准砝码对测量仪进行定标的方法; 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 1.测量公式推导: 当逐渐拉提冂形铝片框时,?角逐渐变小而接近为零,这时所拉出的液膜前后两个表面的表面张力f 均垂直向下。设拉起液膜将破裂时的拉力为F ,则有 f 2 g )m m (F 0+?+= (1) 式中:m 为粘附在框上的液膜质量,0m 为线框质量。因表面张力的大小与接触面周界长度成正比,则有: )d L (2f 2+?α= (2) 比例系数α称表面张力系数,单位为m /N 。 由(1),(2)式得: ) d L (2g )m m (F 0+?+-= α (3) 由于冂形铝片框很薄,被拉起的水膜很薄,m 较小,可以将其忽略,且一般有d L >>,那么L d L ≈+,于是(3)式可以简化为 : L 2g m F 0?-= α (4)

溶液表面张力的测定(精)

溶液表面张力的测定-最大气泡法 Determination of Surface Tension Using Maxinum Bubble Pressure Method 一、实验目的及要求 1.掌握最大气泡法测定表面张力的原理和技术。 2. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。 3. 求正丁醇分子截面积和饱和吸附分子层厚度。 二、实验原理 在液体的内部任何分子周围的吸引力是平衡的。可是在液体表面层的分子却不相同。因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力(如图1所示)。 这种吸引力使表面上的分子向内挤促成液体的最小面积。要使液体的表面积增大就必须要反抗分子的内向力而作功增加分子的位能。所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值 图1 分子间作用力示意图 ΔG称为单位表面的表面能其单位为J.m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N.m-1。 液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗的可逆功A为: 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决 定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的

液体表面张力测定实验

[实验目的] 1.用拉脱法测量室温下液体的表面张力系数 2.学习力敏传感器的定标方法 [实验原理] 测量一个已知周长的金属片从待测液体表面脱离时需要的力,求得该液体表面张力系数的实验方法称为拉脱法.若金属片为环状吊片时,考虑一级近似,可以认为脱离力为表面张力系数乘上脱离表面的周长,即 F=α·π(D1十D2 ) (1) 式中,F为脱离力,D1,D2分别为圆环的外径和内径,α为液体的表面张力系数. 硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥,当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正此,即 △U=KF (2) 式中,F为外力的大小,K为硅压阻式力敏传感器的灵敏度,△U为传感器输出电压的大小。 [实验装置] 图1-1为实验装置图,其中,液体表面张力测定仪包括硅扩散电阻非平衡电桥的电源和测量电桥失去平衡时输出电压大小的数字电压表.其他装置包括铁架台,微调升降台,装有力敏传感器的固定杆,盛液体的玻璃皿和圆环形吊片,实验证明,当环的直径在3cm附近而液体和金属环接触的接触角近似为零时.运用公式(1)测量各种液体的表面张力系数的结果较为正

确。 [实验内容] 一、必做部分 1、力敏传感器的定标 每个力敏传感器的灵敏度都有所不同,在实验前,应先将其定标,步骤如下:打开仪器地电源开关,将仪器预热。(2)在传感器梁端头小钩中,挂上砝码盘,调节电子组合仪上的补偿电压旋钮,使数字电压表显示为零。(3)在砝码盘上分别如0.5g、1.0g、1.5g、2.0g、2.5g、3.0g等质量的砝码,记录相应这些砝码力F作用下,数字电压表的读数值U.(4)用最小二乘法作直线拟合,求出传感器灵敏度K. 2、环的测量与清洁 (1)用游标卡尺测量金属圆环的外径D1和内径D2 (关于游标卡尺的使用方法请阅实验1) (2)环的表面状况与测量结果有很大的关系,实验前应将金属环状吊片在NaOH溶液中浸泡20-30秒,然后用净水洗净。 3、液体的表面张力系数 (1)将金属环状吊片挂在传感器的小钩上,调节升降台,将液体升至靠近环片的下沿,观察环状吊片下沿与待测液面是否平行,如果不平行,将金属环状片取下后,调节吊片上的细丝,使吊片与待测液面平行。 (2)调节容器下的升降台,使其渐渐上升,将环片的下沿部分全部浸没于待测液体,

液体表面张力的测量预习报告

液体表面张力系数的测量实验 液体沿表面总是存在着使液面紧张且向液体内收缩的力称为表面张力。液体的许多现象,如毛细管现象、湿润现象、泡沫的形成等,都与表面张力有关。表面张力系数是液体表面的重要力学性质:对于不同种类的液体,其表面张力不同,而对于同一种液体,其表面张力系数随着温度及其所含杂志的改变而增大或减小。这些性质广泛应用于工业生产中,如浮法选矿、液体的传输技术、化工生产线的设计等等都要对液体的表面张力进行研究。 测定液体表面张力系数的方法很多。常用的有拉脱法和毛细管升高法。本次实验介绍用拉脱法测定液体表面张力系数。 一、实验目的 1.用砝码对硅压阻力敏传感器进行定标,计算该传感器的灵敏度,学习传感器的定标方法; 2.观察拉脱法测量表面张力的过程,并用物理学基本概念进行分析,加深对物理规律的认识; 3.测量纯水和其它液体(如:甘油)的表面张力系数。 二、实验仪器 实验仪器主要由液体表面张力系数测量实验仪主机以及实验装置以及镊子、砝码组成。应用电脑采集测量时需要壹根串口转USB 连接线、电脑和采集软件,仪器装置见下图。 三、实验原理 一个金属环固定在传感器上,将该环浸没于液体中,并渐渐拉起圆环,当它从液面拉脱瞬间传感器受到的拉力差值f 为 απ)(21D D f += (1) 式中: 1D 、2D 分别为圆环外径和内径,α为液体表面张力系数,g 为重力加速度,所以液体表面张力系数为:

)](/[21D D f +=πα (2) 实验中,液体表面张力可以由下式得到: B U U f /)(21-= (3) B 为力敏传感器灵敏度,单位V/N 。1U ,2U 分别为即将拉断水柱时数字电压表读数以及拉 断时数字电压表的读数。 四、实验步骤 1.连接硅压阻力敏传感器,并开机预热15~20分钟。测量吊环内外直径,然后清洗玻璃器皿(盛装待测液体)和吊环,给实验装置加水(注意加水量不可过多,可以参考装置外壁加水刻度线); 2.将吊环挂在力敏传感器的钩上,将力敏传感器转至水容器外部,这样取放砝码比较方便。待吊环晃动较小时,对仪器进行调零,然后用镊子安放砝码对传感器进行定标,取放砝码时应尽量轻; 3.将待测液体倒入玻璃器皿后,再将盛有待测液体的玻璃器皿小心地放入空的塑料容器,并一起放入实验圆筒内;将力敏传感器转至容器内,并轻轻挂上吊环,可以轻触吊环,让其晃动 说明:之所以不将测量液体直接倒入塑料容器内进行测量,是防止某些待测液体与塑料容器发生化学反应而影响测量结果。 4.关闭橡皮球阀门,反复挤压橡皮球使装置内部液体液面上升,当吊环下沿部分均浸入待测液体中时,及时松开橡皮球的阀门,这时液面缓慢下降,观察环浸入液体中及从液体中拉起时的物理过程和现象。特别应注意吊环即将拉断液柱前一瞬间数字电压表读数值为U 1,拉断后数字电压表读数为U 2。记下这两个数值。 5.用计算机采集时,在环接触液面开始下降时点开始采集按钮,可以通过软件实时采集传感器输出电压值的变化过程,通过鼠标移动测量拉脱瞬间的电压值以及拉断后的电压值,计算测量液体的表面张力,并与手动测量的结果进行比较。 五、注意事项 1.实验前,吊环须严格处理干净:可用NaOH 溶液洗净油污或杂质后,用纯水冲洗干净,并用热吹风烘干;

相关文档
相关文档 最新文档