文档库 最新最全的文档下载
当前位置:文档库 › 水轮发电机基本知识介绍

水轮发电机基本知识介绍

水轮发电机基本知识介绍
水轮发电机基本知识介绍

水轮发电机基本知识介绍

一. 关于发电机电磁设计

水轮发电机电磁设计的任务是按给定的容量、电压、相数、频率、功率因数、转速等额定值和其他技术要求来确定发电机的有效部分尺寸、电磁负荷、绕组数据及性能参数等。

水轮发电机电气参数的选择,主要依据电力系统对电站电气参数和主接线的要求,同时根据《水轮发电机基本技术条件》、《导体和电器设备选择设计技术规定》等相关规范来选择,当然也要根据具体电站的要求。

在电磁设计过程中考核的几个主要参数:磁密,定、转子线圈温升,短路比,主要电抗,效率,飞轮力矩。

二. 电磁设计需要输入的基本技术数据

(一)额定容量、有功功率、无功功率和功率因数的关系

Φ--发电机输出电流在时间相位上滞后于电压的相位角

额定容量S=√3U N I N =22Q P

有功功率P=√3U N I N cos φ=S ·cos φ

无功功率Q=√3U N I N sin φ=S ·sin φ

cos φ= S

P (二)发电机的电磁计算需要具备以下基本的额定数据:

功率/容量,功率因数,电压,转速(极数),频率,相数,飞轮力矩(转运惯量)

1. 额定容量(视在功率)或者额定功率(有功功率)

S=φ

cos P (kV A / MV A ) P=水轮机额定出力×发电机效率 (kW / MW )

发电机的容量大小更直接反映发电机的发电能力。有功功率结合功率因数才能完整反映发电机的输出功率能力。

2. 额定功率因数cos φ

发电机有功功率一定时,cos φ的减小,可以提高电力系统稳定运行的功率极限,提高发电机的稳定运行水平;同时由于增大了发电机的容量,发电机造价也增加。相反,提高额定功率因数,可以提高发电机有效材料的利用率,并可提高发电机的效率。近年来由于电力系统容量的增加,系统装设同步调相机和电力电容器来改善其功率因数,以及远距离超高压输电系统使线路对地电容增大,发电机采用快速励磁系统提高稳定性,使发电机额定功率因数有可能提高。

取值:0.8,0.85,0.875,0.9,国内大容量多取0.85~0.9,国外发达国家多取0.9~0.95。 灯泡式水轮发电机由于受结构尺寸限制,功率因数较一般水轮发电机的取值高,以减小气隙长度,提高通风冷却效果。

(1) 一般水轮发电机

GB/T7894-2009 水轮发电机基本技术条件:

《水电站机电设计手册-电气一次》:

(2) 灯泡贯流式发电机

JB/T7071-2005 灯泡式水轮发电机基本技术条件:

3.额定电压U N

额定电压的选取需综合考虑对发电机的技术经济指标,对发电机断路器开断容量,对母线、变压器低压线圈,对近区负荷的供电电压及其输配电设备的投资运行费等因素的影响。对发电机而言,一般来说,额定电压选得低,电机消耗的绝缘材料和有效材料(硅钢片、铜)可相应减少;但并非越低越好。

灯泡式水轮发电机安装在水下流道内,因密封不良或停机检修时,线圈绝缘容易受潮而引起绝缘性能下降。为安全可靠运行,发电机额定电压选择比一般水轮发电机低。同时由于灯泡式水轮发电机外径受到限制,比一般水轮发电机外径小得多,提高端电压会使铁心加长,造成发电机制造、通风等方面的困难。

灯泡式发电机额定电压与额定容量的关系可参考下表选择。

4.额定转速n N

5. 额定频率 f =50Hz

多数美洲国家采用60Hz

6. 发电机极数 2p= N

n f 60×2 三. 发电机主要性能参数

1. 短路比

是指同步发电机在空载额定电压所对应的励磁电流I f0下三相稳态短路时的短路电流I k0与额定电流I N 之比。也等于产生空载额定电压和额定短路电流所需的励磁电流之比。

Kc=N

k I I 0 短路比小,负载变化时发电机的电压变化较大,并联运行时发电机的稳定度较差。增大气隙可减小同步电抗X d ,使短路比增大,电机性能变好,但励磁电动势和转子用铜量增大,造价增高。随着单机容量的增大,为提高材料利用率,希望短路比有所降低。

短路比是根据电站输电距离、负荷变化情况等因素提出的。短路比大,可提高发电机在系统运行的静态稳定,发电机的充电容量也相应增大。水轮发电机的短路比一般为0.9~1.3。对于要求电压变化率很小或充电容量较大的电机,可采用较高数值。

2. 电抗及时间常数

进行稳态分析时需要的参数:定子绕组漏抗X σ,直轴电枢反应电抗X ad ,交轴电枢反应电抗X aq ,直轴同步电抗X d ,交轴同步电抗X q 等;

进行瞬变状态分析时需要的参数:直轴瞬变电抗X d ’,直轴超瞬变电抗X d ”,交轴超瞬变电抗X q ”,定子绕组开路时励磁绕组的时间常数T d0’,定子绕组短路时励磁绕组的时间常数T d ’,定子绕组及励磁绕组短路时直轴阻尼绕组的时间常数T d ”,励磁绕组短路时定子绕组的时间常数T a 等;

进行不对称负载运行状态分析时需要的参数:负序电抗X 2,零序电抗X 0等。

(1) X d --反应发电机静态稳定运行的能力,影响发电机的过载能力,X d 小,静过载系数(发电机可能输出的最大电磁功率与额定电磁功率之比)。计算发电机滞后运行情况(常规工况)时,采用饱和值;在调相运行和充电运行时采用不饱和值。

(2) X d ’--发电机发生三相短路后,在自动电压调节器的调节下能够稳定运行的能力,影

响暂态稳定。发电机额定运行或小波动运行时,为不饱和值,三相短路时为饱和值。

(3) X d”--发电机端口的三相短路电流周期分量与X d”成反比。

对电抗、短路比及时间常数的具体取值,标准中未见有规定。在GB/T7894-2009中只提到:交、直轴超瞬态电抗(不饱和值)之比(X q”/X d”)一般为0.98~1.25。《水电站机电设计手册-电气一次》:

发电机主要电抗参数及其影响见下表:

水轮发电机主要参数的典型值(不饱和值):

3.飞轮力矩GD2

直接影响到发电机在甩负荷时的速度上升率和系统负荷突变时发电机的运行稳定性,因此它对电力系统的暂态过程和动态稳定也有很大影响。当水轮发电机组的部分负荷被切除时,水轮机的驱动转矩与发电机的电磁转矩一时失去平衡,机组的转速上升,此时GD2越大,机组转速变化率越小,电力系统运行的稳定性就越高。但是GD2过大,使发电机重量增加,导致成本的提高。

GD2由水轮机的调节保证计算确定。

4.机械(或惯性)时间常数

表示在发电机额定转矩作用下,把转子从静止状态加速到额定转速所需要的时间。与飞轮力矩成正比。

储能时间常数H:国外一些厂家习惯用储能常数(或能量系数)表示发电机转子储存的能量,其表达式为:

H=((5.479/1000)*J*(N_N^2))/P_N

H:单位为s,kW.s/kVA

J:转动惯量tm^2,=1/4*GD^2

N_N:转速rpm

P_N:容量kVA

5.调相容量及充电容量

(1) 发电机的运行状态

当电网或原动机偶然发生微小扰动时,若在扰动消失后发电机能自行回复到原运行状态稳定运行,则称发电机是静态稳定的;反之,就是不稳定的。

当发电机带感性负载时,电枢反应具有去磁作用,这时为了维持发电机端电压恒定,就必须增大励磁电流,以补偿电枢反应的影响。因此,无功功率的调节依赖于励磁电流的变化。

在原动机输入功率不变,即发电机输出功率P恒定时,改变励磁电流将引起同步电机定子电流大小和相位的变化。将cosφ=1时的励磁电流定义为“正常励磁”值(点),此时发电机输出纯有功功率,定子电流最小,且与端电压同相位。

发电机“过励”状态:从“正常励磁”点开始,励磁电流增大,cosφ减小,定子电流增大,并滞后于端电压,发电机输出滞后无功功率(感性无功);

发电机“欠励”状态:从“正常励磁”点逐步减小励磁电流,cosφ减小,定子电流变大,并超前于端电压,发电机向电网输出超前的无功功率(容性无功),或者说吸收滞后的无功功率。

滞(迟)相运行:发电机在过励状态下,既向系统输送有功功率又输送感性无功功率。这是发电机的工作常态。

进相运行:发电机在欠励状态下,向系统输送容性的无功功率和部分有功功率。由于发电机进相运行时处于欠励状态,为保证进相运行的安全,机组的千伏安出力应经试验分析确定。SL321-2005:进相深度为0.95时应能长期运行(即cosφ=0.95超前)。

充电运行:发电机投入空载高压长距离输电系统运行,即不发出有功功率,只

向系统输出容性无功功率,是进相运行的一种方式。

调相运行:发电机工作在电动机状态,不发出有功功率,只向系统输出感性无功功率,发电机处于过励状态。

(2) 调相容量

水轮发电机作调相运行时的容量按转子励磁绕组的允许温升确定,通常范围为

(0.6~0.75) SN。

(3) 充电容量

发电机端电压为额定电压时,发电机带电容性负载运行最大可能吸收的系统无功功率的容量。

6.效率

四. 发电机结构型式

1.立式:

(1)立轴悬式:推力轴承位于转子上部,适用于中高速机组。

优点:机组径向机械稳定性好,轴承损耗较小,维护检修方便。

(2)立轴伞式:推力轴承位于转子下部,全伞,半伞,中低速大容量采用。

优点:结构紧凑,机组总高度比悬式低;可减轻定子和负重机架重量,从而可减轻发电机总重量,

缺点:推力轴承直径较大,轴承损耗比悬式大。

2.卧式:两轴承,三轴承

3.灯泡贯流式

4.轴伸贯流式

五.通风系统

1.开启式自通风:1000kV A及以下

2.管道式通风:1000~4000kV A

3.密闭自循环通风冷却

4.密闭强迫循环通风冷却:灯泡贯流式机组

六.发电机设计中需注意的一些要求

1.高海拔地区的定子线圈防晕;

2.直径较大的定子铁心为防止热胀冷缩引起的变形所采取的措施;

3.制动器采用两腔结构还是油气分离的三腔结构,制动块的材料是否要求无石棉;

4.转速较高或轴承直径较大的轴承防油雾措施。

5.关于定子铁心的穿心螺杆

6.关于弹性金属塑料瓦

(厂家资料,供参考)

水轮机盘车方法要点

水轮发电机的安装 安装主要分为两大部: a、静止部分:发电机(上机架、下机架、发电机定子)水轮机(座环、基础环、底环、顶盖等) b、转动部件:上端轴、发电机转子、发电机轴、水轮机轴、水轮机转轮。 一、两大部件安装应注意什么问题?为什么注意这些问题? 1、静止部件的安装一定要注意三要素:安装部件标高、安装部件中心、安装部件水平。 标高安装的好与坏直接影响设计要求转动部件的紧张部件的相对位置,对静止不同部件的安装的标高要求是不一样,应严格按图纸和图标要求安装。 中心安装的好与坏是影响各紧张部件的同心度对各静止部件安装中的标准也不同,应严格按图纸和国标要求去安装。 水平安装的好与坏是影响紧张部件的垂直度问题,如定子安装不水平倾斜带机组安装完后会影响定转子上下端之间气隙不均匀造成机组振动故要求各静止部件安装水平应严格按图纸和国标的要求去安装。 2、转动部分的安装应注意一下两个问题 a、分轴在联轴时,如法兰石是无密封条结,在联轴时应注意法兰面一定要干净无毛刺、锈斑,联轴后不能有间隙如法兰面油密封条结应注意密封圈和密封槽配合尺寸问题是否合适。另外把合联轴螺栓时一

定要安图纸要求的螺栓把合紧度去把合。 b、发电机转子组装冷热打磁极键时一定要注意上下因盘法兰面上下止口的同心度问题,并且注意打键前后测量上下止口同心度并做好记录,一边总装时上端轴就位情况有效。 静止部分按照的好与坏总装后是通过定转子间隙及谁路径上下止喽环间隙来验证。另外标高是通过静止部分和转动部分相对位置尺寸是否符合图纸要求来验证。 转动部分安装的好与坏是通过盘车来验证。 二、转动部件盘车部分的盘车问题 1、盘车目的和什么原因会造成判处数据部合格 盘车目的:通过盘车了解轴系的推力头和大轴垂直度情况及各轴组合面的同心度情况。 三方面造成盘车数据不合格: a、制造厂:如制造厂加工上都保证没什么问题的话,小型机组导轴承的滑转子热套方法不当会造成滑转子倾斜或和大轴不同心如图 b、轴的存放:轴的存放一定要注意定期一百八十度转动存放否则由于转子的自重和大轴的自重造成大轴的弯曲,如图所示 c、安装:对于小机组推力头热套有可能套斜,引起大轴和推力头部垂直。对于大机组转子中心体上下园盘止口由于冷打键造成不同心另外各轴连接时法兰面清理不干净或有锈斑。 总的来讲:影响盘车数据不合格有如下几种情况:(1)、大轴和推力头不垂直。(2)、各轴组合不同心。(3)、大轴弯曲。(4)、大轴

水轮机的结构和原理(+笔记)

水轮机 水轮机+ 发电机:水轮发电机组 功能:发电 水泵+ 电动机:水泵抽水机组 功能:输水 水泵+ 水轮机:抽水蓄能机组。 功能:抽水蓄能 水轮发电机组:水轮机是将水能转变为旋转机械能,从而带动发电机发出电能的一种机械,是水电站动力设备之一。 第一节水轮机的工作参数 水轮发电机组装置原理图 定义:反映水轮机工作状况特性值的一些参数,称水轮机的基本参数。 由水能出力公式:N=9.81ηQH可知,基本参数:工作水头H(m)、流量Q(m3/s)、出力N(kw)、效率η,工作力矩M、机组转速n。 一、水头(head):作用于水轮机的单位水体所具有的能量,或单位重量的水体所具有的势能,更简单的说就是上下游的水位差,也叫落差。142米 1. 毛水头(nominal productive head) H M=E U-E D=Z U - Z D 2. 反击式水轮机的工作水头

毛水头 - 水头损失=净水头 H G =E A - E B =H M - h I -A 3. 冲击式水轮机的水头 H G =Z U - Z Z - h I-A 其中Z U 和Z Z 分别为上游和水轮机喷嘴处的水位。 4. 特征水头(characteristic head) 表示水轮机的运行范围和运行工况的几个典型水头。 最大工作水头: H max =Z 正-Z 下min -h I-A 最小工作水头: H min =Z 死-Z 下max -h I-A 设计水头(计算水头) H r :水轮机发额定出力时的最小水头。 平均水头: H av =Z 上av -Z 下av 二、流量(m 3/s)(flow quantity):单位时间内通过水轮机的水量Q 。单机12.2m 3/s Q 随H 、N 的变化:H 、N 一定时, Q 也一定; 当H =H r 、N =N 额时,Q 为最大。 在H r 、n r 、N r 运行时,所需流量Q 最大,称为设计流量Q r 三、出力 (output and):水轮机主轴输出的机械效率。N(KW): 指水轮机轴传给发电机轴的功率。 水轮机的输入功率 (水流传给水轮机的能量),即水流效率,与a.作用于水轮机的有效水头;b.单位时间通过水轮机的水量,即流量Q ;c.水体容重γ成正比。其公式为:QH QH N w 8.9==γ γ指水体容重(即单位容积水所具有的重力,比重): 水的比重=1000kg/m 3、G=9.8N/Kg γ=9800N/m 3 )(8.9)/(9800)/(9800)()/()/(33kw QH s J QH s m N QH m H s m Q m N N w ==?=??=γ 水轮机的输出功率:ηηQH N N w 8.9== 四、效率(efficiency ):输入水轮机的水能与水轮机主轴输出的机械能之比,又叫水轮机的机械效率、能量转换效率。η

水轮发电机结构

一、简介 (一)、简介 水轮机是水电厂将水轮转换为机械能的重要设备。 1、按能量方式转换的不同,它可分为反击式和冲击式两类。反击型 利用水流的压能和动能,冲击型利用水流动能。 2、反击式中又分为混流、轴流、斜流和贯流四种; 3、冲击式中又分为水斗、斜击和双击式三种。 1)、混流式: 水流从四周沿径向进入转轮,近似轴向流出 应用水头范围:30m~700m 特点:结构简单、运行稳定且效率高 2)、轴流式 水流在导叶与转轮之间由径向运动转变为轴向流动 应用水头:3~80m 特点:适用于中低水头,大流量水电站 分类:轴流定桨、轴流转桨 3)、冲击式 转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。 水头范围:300~1700m 适用于高水头,小流量机组。 (二)、水轮机主要类型归类

二、水轮机主要基本参数 1、水轮机主要基本参数 水头:Hg、H、Hmax、Hmin、Hr(设计水头)流量:Q 转速:f=np/60 出力:N=9.81QHη(Kw) 效率:η 2、水轮机型式代号 混流式:HL 斜流式:XL 轴流转桨式:ZZ 轴流定桨式:ZD 冲击(水斗式):CJ 双击式:SJ 斜击式:XJ 贯流转桨式:GZ 贯流定桨式:GD 对于可逆式,在其代号后增加N 3、混流式水轮机 型号:HL100—LJ—210 HL:代表混流式水轮机 100:转轮型号(也称比转速)

LJ:立式金属蜗壳 210:转轮直径(210厘米) 4、轴流式水轮机 ZZ560—LH—1130 ZZ:轴流转桨式水轮机 560:转轮型号 LH:立式混凝土蜗壳 1130:表示转轮直径为1130厘米 5、冲击式水轮机 CJ47—W—170/2X15.0 CJ:冲击式 W:卧轴 170:转轮直径170cm 2:2个喷嘴 15.0:射流直径 三、水轮机主要部件 (一)、组成 引水部件、导水部件、工作部件、泄水部件 1、引水部件 组成:引水室(蜗壳)、座环 作用:以较小的水力损失把水流均匀地、对称地引入导水部件,并在进入导叶前形成一定的环量。

水轮机复习知识要点总结

水轮机原理及水力设计 第一章 1、水轮机是一种将河流种蕴藏的水能转换成旋转机械能的原动机,水流流过水轮机时,通过主轴带动发电机或 者发电机的转子将旋转的机械能转换成电能。 2、反击式水轮机转轮区内的水流在通过转轮叶片通道时,始终是连续充满整个转轮的有压流动,当水 流通过水轮机后其动能和势能大部分被转换成转轮的旋转机械能。 3、反击式水轮机包括:混流式水轮机:水流从四周沿径向进入转轮,然后近似的以轴向流出转轮,应用 水头范围较广,约为20~700m,水头较高。 轴流式水轮机:水流在导叶和转轮之间由径向流动变为轴向流动,而在转轮 区 水流保持轴向流动,其应用水头约为3~80m,适用水头较低,根据其转轮叶片在运行中能否转动,可以分为轴流定浆式和轴流转浆式两种。 斜流式水轮机:斜流式水轮机具有较宽的高效率区,适用水头在轴流式与混流式水轮机之间,约为40~200m。 贯流式水轮机:根据其发电装置形式不同,分为全贯流式和半贯流式两类。 4、冲击式水轮机的转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已转变成高速自由射流, 该射流冲击水轮机的部分轮叶,并在轮叶的约束下发生流速大小和方向的急剧改变,从而将其动能大部分传递给轮叶,驱动轮叶旋转。 5、冲击式水轮机按射流冲击转轮方式的不同分为:水斗式水轮机、斜击式水轮机、双击式水轮机三种。 6、水头H :水轮机的水头(亦称工作水头),是指水轮机进口和出口截面处单位重量的水流能量差,单位为 m。 7、各种水头:(1)最大水头:H max,是允许水轮机运行的最大净水头。它对水轮机结构的强度设计有决性影 响。 (2)最小水头H mim,是保证水轮机安全、稳定运行的最小净水头。 (3)加权平均水头H a:是在一定期间内(视水库调节性能而定), 所有可能出现的水轮机水头的加权平均值,是水轮机在其附近运 行时间最长的净水头。 (4)设计水头H r:是水轮机发出额定出力时所需要的最小净水头。 &流量:水轮机的流量是指单位时间内通过水轮机某一过流断面的水流体积,常用符号Q表示,常用单 位为m/s。在设计水头下,水轮机以额定转速、额定出力时所对应的水流量常委设计流量。 9、出力P:水轮机出力是水轮机轴端输出的功率,常用符号P表示,常用单位为KW。 P 10、水流的出力:P n= QH=9.81QH(KW)水轮机的效率:t二一由于水轮机在总做中存在能量耗损 P n 所以水轮机的出力P总是小于水流的出力P n,其效率总是小于1. 水轮机的出力P=P n t=9.81OH t(KW)或者是P=M,也2卫其中「是水轮机的旋转速度, 60 rad/s; M是水轮机主轴输出的旋转力矩,N.m ;n是水轮机转速,r/min。 11、水轮机型号:①HL220 —LJ—250,表示转轮型号为220的混流式水轮机,立轴,金属蜗壳,转轮直 径为250cm。 ②ZZ560- LH- 500,表示转轮型号为560的轴流转浆式水轮机,立轴,混凝土蜗壳,转轮 直径为500cm ③GD60—W—300,表示型号为600的贯流定浆式水轮机,卧轴、灯泡式引水,转轮直 径为300cm ④2CJ-20W—120/2 X 10,表示转轮型号为20的水斗式水轮机,一根轴上装有两个转轮,卧轴,转轮直径 为120cm,每个转轮有两个喷嘴,射流直径为20cm 11、水轮机的装置形式:指水轮机主轴的不知形式与引水室形式相结合的总体。 ①反击式水轮机的装置形式:大型机组采用立轴布置形式,水轮机轴与发电机轴直接连接;中高水头混

水轮机盘车方法

水轮发电机安装的盘车方法 安装主要分为两大部: a、静止部分:发电机(上机架、下机架、发电机定子)水轮机(座环、基础环、底环、顶盖等) b、转动部件:上端轴、发电机转子、发电机轴、水轮机轴、水轮机转轮。 一、两大部件安装应注意什么问题?为什么注意这些问题? 1、静止部件的安装一定要注意三要素:安装部件标高、安装部件中心、安装部件水平。 标高安装的好与坏直接影响设计要求转动部件的紧张部件的相对位置,对静止不同部件的安装的标高要求是不一样,应严格按图纸和图标要求安装。 中心安装的好与坏是影响各紧张部件的同心度对各静止部件安装中的标准也不同,应严格按图纸和国标要求去安装。 水平安装的好与坏是影响紧张部件的垂直度问题,如定子安装不水平倾斜带机组安装完后会影响定转子上下端之间气隙不均匀造成机组振动故要求各静止部件安装水平应严格按图纸和国标的要求去安装。 2、转动部分的安装应注意一下两个问题 a、分轴在联轴时,如法兰石是无密封条结,在联轴时应注意法兰面一定要干净无毛刺、锈斑,联轴后不能有间隙如法兰面油密封条结应注意密封圈和密封槽配合尺寸问题是否合适。另外把合联轴螺栓时一

定要安图纸要求的螺栓把合紧度去把合。 b、发电机转子组装冷热打磁极键时一定要注意上下因盘法兰面上下止口的同心度问题,并且注意打键前后测量上下止口同心度并做好记录,一边总装时上端轴就位情况有效。 静止部分按照的好与坏总装后是通过定转子间隙及谁路径上下止喽环间隙来验证。另外标高是通过静止部分和转动部分相对位置尺寸是否符合图纸要求来验证。 转动部分安装的好与坏是通过盘车来验证。 二、转动部件盘车部分的盘车问题 1、盘车目的和什么原因会造成判处数据部合格 盘车目的:通过盘车了解轴系的推力头和大轴垂直度情况及各轴组合面的同心度情况。 三方面造成盘车数据不合格: a、制造厂:如制造厂加工上都保证没什么问题的话,小型机组导轴承的滑转子热套方法不当会造成滑转子倾斜或和大轴不同心如图 b、轴的存放:轴的存放一定要注意定期一百八十度转动存放否则由于转子的自重和大轴的自重造成大轴的弯曲,如图所示 c、安装:对于小机组推力头热套有可能套斜,引起大轴和推力头部垂直。对于大机组转子中心体上下园盘止口由于冷打键造成不同心另外各轴连接时法兰面清理不干净或有锈斑。 总的来讲:影响盘车数据不合格有如下几种情况:(1)、大轴和推力头不垂直。(2)、各轴组合不同心。(3)、大轴弯曲。(4)、大轴

水轮机的基本组成结构

水轮机 一、水轮机的基本参数 1)工作水头(H):水轮机的工作水头就是指水轮机的进、出口单位 能量差,也就是上游水位与下游水位之差,用H表示,其单位为m。其大小表示水轮机利用水流单位能量的多少。 2)流量(Q):在单位时间内流经水轮机的水量,称为流量,用Q表 示,其单位为m3/s。其大小表示水轮机利用水流能量的多少 3)出力(P):具有一定水头和流量的水流通过水轮机便做功,而在 单位时间内所做的功率称为水轮机的出力,用P表示,其单位KW。 水轮机的出力为:P=9.81QH 4)效率(η)目前混流式水轮机的最高效率95% P=9.81QHη 5)比转速指工作水头H为1m、发出的功率P为1kw时水轮机所具有的转速,故称为比转速。 二、水轮机的类型与代号 我们根据水流能量的转换的特征不同,把水轮机分为两大类,及反击型和冲击型水轮机。 反击型水轮机,具有一定位能的水流主要以压能的形态,由水轮机转变为机械能。按其水流经过转轮的方向不同,反击型水轮机可分为以下几种类型: 反击型:轴流(定桨、转桨)水轮机、混流式水轮机、贯流式水轮机、斜流式水轮机

冲击型:水流不充满过流流道,而是在大气压力下工作,水流全部以动能形态由转轮变为机械能。按射流冲击水斗的方式不同,可分为如下几种类型: 冲击型:水斗式水轮机、斜击式水轮机、双击式水轮机 我国水轮机式的代号,有三部分组成,第一部分由水轮机型式及转轮型号组成,并由汉语拼音表示。 水轮机型式的代号 水轮机型式代号水轮机型式代号 混流式HL 轴流转桨式ZZ 斜流式XL 轴流定桨式ZD 双击式SJ 贯流转桨式GZ 斜击式XJ 贯流定桨式GD 冲击式CJ 以本电站为例:水轮机型号:HL(247)—LJ—235,表示混流式水轮机,转轮型号为247,立轴,金属蜗壳,转轮直径为235㎝。三、混流式水轮机 1定义:水流从径向流入转轮,在转轮中改变方向后从轴向流出的水轮机。其叶片固定,不能转动调节。 2 混流式水轮机 - 结构特点 混流式水轮机主要应用于20—450米的中水头电厂, 其结构紧凑,效率较高,能适应很宽的水头范围,是目前 世界各国广泛采用的水轮机型式之一。

水轮发电机基本常识-简

水轮发电机基本常识 水轮发电机组的用途。 水轮发电机组是将具有一定高度的水头和流量的水的动能和势能转换为机械能并最终转换成电能的装置。水轮发电机设备是一种集合了多种学科和技术的工业产品,其中包括流体力学、工程力学、材料力学等多学科和机械、冶金、电子、计算机、自动控制等多门技术产物。水力发电站及其主要的设备——水轮发电机组是现代工业和现代生活的一项重要设备。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 水力发电站 水力发电是大自然赐给人类的一种清洁能源,就像风能、太阳能一样,是可以再生、取之不尽,用之不绝,无污染的能源。水力发电站运行费用低,便于电力调峰。尽管水力发电站造价较高,水电建设成本高于火电建设成本约40%,然而由于能满足较高的环保要求,考虑到火电厂燃料的燃烧在脱硫、脱硝、脱尘等方面所需资金约占投资的 1/3,水、火电建设成本也就相差不多了。至于运行成本,水电明显优于火电:在中国,水电为0.04-0.09元/kwh,而火电为0.19元/kwh(火电燃料的购买和运输费用就占去50%一70%)。除了上述经济效益,开发水电还具有防洪、航运、供水、灌溉、旅游等综合效益。 因此,自1888年美国人建成世界上第一座水电站以来,各国都很重视水电站的兴建。发达国家的可用水电资源在20世纪60年代即已基本开发完。到80年代,世界最大水电站──长江三峡水电站的设计装机容量为1260万千瓦(机组容量70万千瓦)。 水力发电站规模分类:按照中国水利部部颁标准分为: 1、大型水力发电站:容量大于250MW为大型水力发电站。 2、中性水力发电站:装机容量50~250MW的为中型水力发电站。 3、小型水力发电站: 装机容量小于50000kW的为小型水力发电站。 4、微型水利发电站:装机容量100KW以下的为微型水力发电站 小型水电站枢纽工程主要由哪几部分组成? 主要由挡水建筑物(坝)、泄洪建筑物(溢洪道或闸)、引水建筑物(引水渠或隧洞,包括调压井)及电站厂房(包括尾水渠、升压站) 四大部分组成。 水轮发电机的工作原理 水轮机是把水流的能量转换为旋转机械能的动力机械,它属于流体机械中的透平机械。 早在公元前100年前后,中国就出现了水轮机的雏形——水轮,用于提灌和驱动粮食加工器械。现代水轮机则大多数安装在水电站内,用来驱动发电机发电。在水电站中,上游水库中的水经引水管引向水轮机,推动水轮机转轮旋转,带动发电机发电。作完功的水则通过尾水管道排向下游。水头越高、流量越大,水轮机的输出功率也就越大。 水轮机按工作原理可分为冲击式水轮机(impules turbine)和反击式水轮机((reaction water turbine) 两大类。冲击式水轮机的转轮受到水流的冲击而旋转,工作过程中水流的压力不变,主要是动能的转换;反击式水轮机的转轮在水中受到水流的反作用力而旋转,工作过程中水流的压力能和动能均有改变,但主要是压力能的转换。 冲击式水轮机按水流的流向可分为切击式(又称水斗式)和斜击式两类。斜击式水轮机的结构与水斗式水轮机基本相同,只是射流方向有一个倾角,只用于小型机组。 反击式水轮机可分为混流式、轴流式、斜流式和贯流式。在混流式水轮机中,水流径向进入导水机构,

水轮发电机基本知识介绍

水轮发电机基本知识介绍 一. 关于发电机电磁设计 水轮发电机电磁设计的任务是按给定的容量、电压、相数、频率、功率因数、转速等额定值和其他技术要求来确定发电机的有效部分尺寸、电磁负荷、绕组数据及性能参数等。 水轮发电机电气参数的选择,主要依据电力系统对电站电气参数和主接线的要求,同时根据《水轮发电机基本技术条件》、《导体和电器设备选择设计技术规定》等相关规范来选择,当然也要根据具体电站的要求。 在电磁设计过程中考核的几个主要参数:磁密,定、转子线圈温升,短路比,主要电抗,效率,飞轮力矩。 二. 电磁设计需要输入的基本技术数据 (一)额定容量、有功功率、无功功率和功率因数的关系 Φ--发电机输出电流在时间相位上滞后于电压的相位角 额定容量S=√3U N I N =22Q P 有功功率P=√3U N I N cos φ=S ·cos φ 无功功率Q=√3U N I N sin φ=S ·sin φ cos φ= S P (二)发电机的电磁计算需要具备以下基本的额定数据: 功率/容量,功率因数,电压,转速(极数),频率,相数,飞轮力矩(转运惯量) 1. 额定容量(视在功率)或者额定功率(有功功率)

S=φ cos P (kV A / MV A ) P=水轮机额定出力×发电机效率 (kW / MW ) 发电机的容量大小更直接反映发电机的发电能力。有功功率结合功率因数才能完整反映发电机的输出功率能力。 2. 额定功率因数cos φ 发电机有功功率一定时,cos φ的减小,可以提高电力系统稳定运行的功率极限,提高发电机的稳定运行水平;同时由于增大了发电机的容量,发电机造价也增加。相反,提高额定功率因数,可以提高发电机有效材料的利用率,并可提高发电机的效率。近年来由于电力系统容量的增加,系统装设同步调相机和电力电容器来改善其功率因数,以及远距离超高压输电系统使线路对地电容增大,发电机采用快速励磁系统提高稳定性,使发电机额定功率因数有可能提高。 取值:0.8,0.85,0.875,0.9,国内大容量多取0.85~0.9,国外发达国家多取0.9~0.95。 灯泡式水轮发电机由于受结构尺寸限制,功率因数较一般水轮发电机的取值高,以减小气隙长度,提高通风冷却效果。 (1) 一般水轮发电机 GB/T7894-2009 水轮发电机基本技术条件:

水轮发电机结构

一、贯流式水轮机的特点 贯流式水轮机是开发低水头水力资源的一种机组,适用于25m以下的水头。这种机型流道呈直线状,是一种卧轴水轮机,转轮形状与轴流式相似,也有定桨和转桨之分,由于水 流在流道内基本上沿轴向运动不拐弯,因此较大的提高了机组的过水能力和水力效率。 此外,与其它机型相比,它还有其它一些显著特点: (1)从进水到出水方向轴向贯通形状简单,过流通道的水力损失减小,施工方便,另外它效率较高,其尾水管恢复功能可占总水头的40%以上。 (2)贯流式机组有较高的过流能力和比转速。 (3)贯流式水轮机适合作可逆式水泵水轮机运行,由于进出水流道没有急转弯,使水泵工况和水轮机工况均能获得较好的水力性能。如应用于潮汐电站上可具有双向发电,双向抽水和双向泄水等六种功能,很适合综合开发利用低水头水力资源,另外在一般平原地区的排灌站上可作为可逆式水泵水轮机运行,应用范围比较广泛。 (4)贯流式水电站一般比立轴的轴流式水电站建设周期短、投资小、收效快、淹没移民少,电站靠近城镇,有利于发挥地区兴建电站的积极性。 二、贯流式水轮机的分类 根据贯流式水轮机机组布置形式的不同可将其划分为以下几种形式: 1.轴伸贯流式 这种贯流式水轮发电机组基本上采用卧式布置,水流基本上沿轴向流经叶片的进出口, 出叶片后,经弯形(或称S形)尾水管流出,水轮机卧式轴穿出尾水管与发电机大轴连接,发电机水平布置在厂房内。 轴伸贯流式机组按主轴布置方式可分成前轴伸、后轴伸和斜轴伸等几种,如图7-1所示。这种贯流式机组与轴流式相比没有蜗壳、肘形尾水管,土建工程量小,发电机敞开布置,易于检修、运行和维护。但这种机组由于采用直弯尾水管,尾水能量回收效率较低,机组容量大时不仅效率差,而且轴线较长,轴封困难,厂房噪音大都将给运行检修带来不方便。所以一般只用于小型机组。 2.竖井贯流式 这种机组主要特点是将发电机布置在水轮机上游侧的一个混凝土竖井中,发电机与水轮机的连接通过齿轮或皮带等增速装置连在一起如图7-2所示。

全贯流式水轮机基本结构

贯流式水轮机基本结构 一、贯流式水轮机的特点 贯流式水轮机是开发低水头水力资源的一种新型机组,适用于25m以下的水头。这种机型流道呈直线状,是一种卧轴水轮机,转轮形状与轴流式相似,也有定桨和转桨之分,由于水流在流道内基本上沿轴向运动不拐弯,因此较大的提高了机组的过水能力和水力效率。 此外,与其它机型相比,它还有其它一些显著特点: (1)从进水到出水方向轴向贯通形状简单,过流通道的水力损失减小,施工方便,另外它效率较高,其尾水管恢复功能可占总水头的40%以上。 (2)贯流式机组有较高的过滤能力和比转速,所以在水头与功率相同的条件下,贯流式的要比转桨式的直径小10%左右。 (3)贯流式水轮机适合作了逆式水泵水轮机运行,由于进出水流道没有急转弯,使水泵工况和水轮机工况均能获得较好的水力性能。如应用于潮汐电站上可具有双向发电,双向抽水和双向泄水等六种功能,很适合综合开发利用低水头水力资源,另外在一般平原地区的排灌站上可作为可逆式水泵水轮机运行,应用范围比较广泛。 (4)贯流式水电站一般比立轴的轴流式水电站建设周期短、投资小、收效快、淹没移民少,电站靠近城镇,有利于发挥地区兴建电站的积极性。 二、贯流式水轮机的分类 根据贯流式水轮机机组布置形式的不同可将其划分为以下几种形式: 1.轴伸贯流式 这种贯流式水轮发电机组基本上采用卧式布置,水流基本上沿轴向流经叶片的进出口, 出叶片后,经弯形(或称S形)尾水管流出,水轮机卧式轴穿出尾水管与发电机大轴连接,发电机水平布置在厂房内。 轴伸贯流式机组按主轴布置方式可分成前轴伸、后轴伸和斜轴伸等几种,如图7-1所示。这种贯流式机组与轴流式相比没有蜗壳、肘形尾水管,土建工程量小,发电机敞开布置,易于检修、运行和维护。但这种机组由于采用直弯尾水管,尾水能量回收效率较低,机组容量大时不仅效率差,而且轴线较长,轴封困难,厂房噪音大都将给运行检修带来不方便。所以一般只用于小型机组。 2.竖井贯流式 这种机组主要特点是将发电机布置在水轮机上游侧的一个混凝土竖井中,发电机与水轮机的连接通过齿轮或皮带等增速装置连在一起如图7-2所示。

水轮机调节基础知识

水轮机调节基础知识 1、反应电能质量指标:电压和频率。 2、水轮机调节:在电力系统中,为了使水轮发电机组的供电频率稳定在某一规定的范围内而进行的调节。 3、水轮机调节系统由调节对象和调速器组成。调节对象有引水系统、水轮机、发电机和电力系统。。 4、Kf 越大,或者δf 越小,或者转速死区越小,离心摆的灵敏度越高。 5、系统越稳定:TW 越小、TA 越大、en 越大、TD 越大、bp 越大 6、Tw 大则应增加bt 以减小水击。,Ta 小则应增加bt 以减小转速变化值。 7、水轮机调节的途径:改变导叶开度或喷针行程,方法是利用调速器按负荷变化引起的机组转速或频率的偏差调整水轮机导叶或喷针开度使水轮机动力距和发电机阻力距及时回复平衡从而使转速和频率保持在规定范围内。 8、水轮机调节的特点:自动调节系统、一个复杂非线性控制系统、有较长引水管道开启或关闭导叶时压水管道产生水击、随电力系统容量的扩大和自动化水平的提高对水轮机调速器的稳定性,速度性,准确性要求高。 9、调速系统的组成:被控对象,测量元件,液压放大元件,反馈控制元件。 10、引导阀的作用:把转动套的位移量的变化变转变为压力油的流量的变化,去控制辅助接力器活塞的运动。 11、硬反馈又称调差机构或永态转差机构,输出信号与输入信号成比例的反馈称为硬反馈或比例反馈。用于实现机组有差调节,以保证并网运行的机组合理地分配负荷。 12、软反馈又称缓冲装置或暂态转差机构或校正元件,只在调节过程中存在,调节过程结束后,反馈位移自动消失,这种反馈称为软反馈或暂态反馈。作用是提高调节系统的稳定性和改善调节系统的品质。 13、硬反馈的作用:实现机组有差调节保证并网运行的机组合理非配负荷。 14、硬反馈的组成:反馈椎体、反馈框架、螺母、螺杆、转轴、传动杆件。 15、软反馈的作用:提高调节系统的稳定性,改善调节系统的品质。 16、缓冲装置的组成:壳体,主动活塞组件,从动活塞组件,针塞组件,弹簧盒组件。 17、 18、调差机构的作用:用于改变机组静特性斜率,确定并列运行机组之间负荷的分配,防止负荷在并列运行机组之间来回窜动。 19、调差机构的组成:螺母,螺杆,反馈框架,转轴 20、转速调整机构的作用:当机组单机运行时用于改变机组转速,当机组并列于无穷大电网运行时用于改变机组所带的负荷。 21、转速调整机构的组成:手轮、螺杆、螺母。 22、调节系统的静特性:统节系统处于平衡状态时机组转速与发电机出力之间的关系。 23、调节规律的输出信号接力器位移y 与输入信号转速x 之间的关系称为调节规律。PI :比 例积分型S K K S G I P PI /)(+=,PID 比例积分微分型s K s K K s G D I P PID ++=/)( 24、 bp 与调节系统的构造有关,与机组特性和运行水头无关。 ep 与两者都有关。 25、调速器的典型环节:比例环节、积分环节、理想微分环节、实际微分环节、惯性环节。 26、按元件结构不同分为:手动、电动、机械液压型、电气液压型、微机调速器; 27、按容量分为:特小型、中小型、大型调速器; 28、按执行机构不同分为:单调节(混流,轴流定浆式)、双调节调速器(轴流转浆,贯流转浆,冲击式); 29、按调节规律:PI 型,PID 型 30、按所有油压装置和主接力器设置情况分为:整体式和分离式。 31、离心摆工作原理:当离心摆在额定转速时,如果转速增加则离心力增大,重块外张使转动套升高;反之则转动套下降,这样,离心摆转速的变化就以转动套位置的高低反映出来 32、离心摆的作用:将机组转速偏差信号按比例装换成装套的位移信号,传递给引导阀。 33、离心摆静特性:离心摆静态方程式表示在稳定工况时,离心摆的转速几乎与转动套行程

大型发电机结构说图解

大型发电机 一、发电机概述 发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机可分为直流发电机和交流发电机,交流发电机又可分为同步发电机和异步发电机(很少采用) ,还可分为单相发电机与三相发电机。 发电机通常由定子、转子、端盖及轴承等部件构成。定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。 二、发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。图1为同步发电机的工作原理图。发电机转子与汽轮机转子为同轴连接,当蒸汽推动汽轮机高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电源后,便建立了一个磁场,这个磁场有一对主磁极,它随着汽轮机发电机转子旋转。磁通自转子的一个极(N级)出来,经过空气隙、定子铁芯、空气隙,进入转子另一个极(S极)构成回路。 图1 同步发电机工作原理图2 发电机出线的接线发电机转子具有一对磁极,转子旋转一周,定子绕组中感应电动势正好交变一次(假如发电机转子为P对磁极是,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次。这样,发电机转子以每秒50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中心点)连在一起,绕组的首端引出线与用电设备相连,就会有电流流过,如图2所示。 三、发电机的结构 图3 大型发电机基本结构 目前我国热力发电厂的发电机皆采用二极、转速为3000r/m的卧式结构。如图4所示,发电机最基本的组成部件是定子和转子。 图4 300MW汽轮发电机组侧视图 1-发电机主体;2-主励磁机;3-永磁副励磁机;4-气体冷却器;5-励磁机轴承;6-碳刷架隔音罩;7-电机端盖;8-连接汽轮机背靠轮;9-电机接线盒;10-电路互感器;11-引出线;12测温引线盒;13-基座定子由铁芯和定子绕组构成,固定在机壳(座)上,转子由轴承支撑置于定子铁芯中央,

水轮发电机组盘车

立式水轮发电机组盘车大纲 (采用机械盘车方式)NJB0717 一、基本要求 1、采用机械盘车方式,一般将圆盘式盘车工具,装于发电机推力 头上。 2、机组转动部分应位于机组中心,镜板已调好水平,并使每块推 力瓦受力基本均匀。 3、盘车用润滑脂为无水纯净的猪油,或二硫化钼润滑脂,或者专 用盘车润滑脂。 4、上导轴瓦间隙不大于0.05mm.,其余导轴承(下导、水导)退 出。 5、在镜板、上导轴承、下导轴承、法兰、水导轴承处按逆时针方 向分成八等分,各部分的对应等分点应在同一垂直线上,并做出标记和X、Y座标之标识。 6、在各测量部位的X、Y座标上各装设一块千分表,千分表测杆 应与所测部位表面垂直。 二、盘车及记录 1、盘动转子,每转一个等分点,同时记录各部位对应点的摆度值 (每部位8个点),并做好记录。 2、盘车过程中应校核镜板水平。 三、摆度值分析与计算 1、全摆度,将对面两测点的摆度值相减,计算出全摆度,即计算 上导1-5、2-6、3-7、4-8,下导1-5、2-6、3-7、4-8,法兰1-5、2-6、3-7、4-8,水导1-5、2-6、3-7、4-8

之算术值。 2、净摆度,在垂直对应各点全摆度值上,同时加或同时减上导之 摆度值(使上导摆度值为0)既为各点的净摆度值。 3、根据各点的净摆度值,通过平面座标的形式,(横座标为测点, 纵座标为净摆度值)可绘出各部位的净摆度座标曲线,一般情况下该曲线应近似正弦曲线,从曲线中可以看出最大摆度值和摆度位置。如果座标曲线不接近正弦曲线而是畸形的,应查找原因,并重新盘车。 四、摆度校正 1、当摆度超出规范要求时,根据需要选择刮削推力头与镜板间的 绝缘垫板,或是联轴螺栓之紧度问题。 2、绝缘垫板刮削厚度δ计算式为: δ=φD/2L (mm) 式中D-----推力头与镜板配合直径(mm) φ----净摆度(mm) L----对应净摆度的距离(mm) 3、绝缘垫板刮削方向应是摆度最大的方向,刮削后的绝缘垫板应 按原来位置装入。 五、重新盘车----直到摆度值合格为止。

水轮发电机构造

水轮发电机的构造 本课件2012年8月重新编辑(将图片黑底色更换为白色) 水轮机的转速都比较低,特别是立式水轮机,为了能发出50Hz的交流电,水轮发电机采用多对磁极结构,对于每分钟120转的水轮发电机,需要25对磁极。由于过多磁极不易看清结构,本课件介绍一个有12对磁极的水轮机发电机模型。 水轮发电机的转子采用凸极式结构,图1是发电机的磁轭与磁极,磁极安装在磁轭上,磁轭是磁极磁力线的通路,发电机模型有南北相间的24个磁极,每个磁极上都绕有励磁线圈,励磁电源由安装在主轴端头的励磁发电机提供,或由外部的晶闸管励磁系统提供(由集电环向励磁线圈供电)。 图1 水轮发电机转子有多对磁极 磁轭安装在转子支架上,在转子支架中心安有发电机主轴,在主轴的上端头安装有励磁发电机或集电环。见图2。

图2 水轮发电机转子 发电机定子铁芯由导磁良好的硅钢片叠成,在铁芯内圆均匀分布着许多槽, 用来嵌放定子线圈,见图3。 图3 水轮发电机定子铁芯 定子线圈嵌放在定子槽内,组成三相绕组,每相绕组由多个线圈组成,按一定规律排列,

见图4。 图4 水轮发电机定子绕组 水轮发电机安装在由混凝土浇筑的机墩上,在机墩上安装机座,机座是定子铁芯的安装基座,也是水轮发电机的外壳,在机座外壳安装有散热装置,降低发电机冷却空气的温度;在机墩上还安装下机架,下机架有推力轴承,用来安装发电机转子,推力轴承可承受转子的重量与振动、冲击等力。见图5。

图5 水轮发电机机墩、机座、下机架 在机座上安装定子铁芯与定子线圈,见图6。 图6 水轮发电机的定子 转子插在定子中间,与定子有很小间隙,转子由下机架的推力轴承支撑,可以自由旋转,见图7。

卧式的水轮发电机的安装

卧式的水轮发电机的安装 卧式的水轮发电机,除容量很小的以外,都是由底座、定子、转子、轴承座等组成。而且多数是采用管道式通风冷却,机坑与进、出风道相连。因尺寸较小,转速较高,发电机定子和转子往往在厂内组装,经过试验后整体运到电站工地,安装工程相对简单。一、安装的质量要求和基本程序(一)安装的基本质量要求卧式发电机都是以水轮机轴线为准进行安装的,最基本的质量要求是: 1.发电机主轴法兰按水轮机法兰找正时,偏心量W倾斜旨2.以转子为准调整定子的位置,发电机应气隙均匀一致,最大偏差不大于平均气隙的± 10%实测气隙时,应对 每个磁极的两端,就转子不同的3~4个位置(如每次让转子转过90°测量,取所有实测值的平均值为准,再计算偏差的大小; 3.定子的轴向位置应使定子中心 偏离转子中心,偏向水轮机端1~,以便机组运行时使转子承受与轴向水推力相反方向的磁拉力,减轻推力轴承负荷并有利于机组稳定。 (二)卧式水轮发电机的基本安装程序卧式水轮发电机的安装程序因具体结构的不同有所差异,但基本安装程序如下:1.准备标高中心架、基础板及地脚螺栓;2.安装底座;3.安装定子、轴承座;4.转子检查及轴瓦研刮;5.吊装转子;6. 与水轮机连轴、轴线检查、调整;7.安装附属装置;8.机组启动试运行。 、卧式发电机转子的吊装 卧式发电机底座、定子、轴承座的安装都以水轮机轴线为准,其安装方法与前述相同,但转子吊装与立式机组不同。由于卧式发电机转子两端用轴承座支撑,中部的磁轭、磁极悬空在定子内,且气隙不大,又不允许转子与定子摩擦,所以转子的装入和拆卸都必须沿水平方向移动,这就形成了所谓穿转子”的特殊工艺过程,其过程如图所示。 1.准备工作(1)准备吊具、吊索。起吊转子时钢丝绳不能与转子两端接 触,必须经过吊梁来悬挂转子。吊梁如图(a)所示,是一根 具有足够刚度的横梁,通常用工字钢或槽钢焊接而成。根据需要在吊梁上设置钢丝绳吊点,悬挂转子的钢丝绳尽可能垂直向下,而连接桥吊吊钩的钢丝绳夹角尽可能小。(2)准备临时支撑。穿转子必须分段进行,为了调整钢丝绳, 必须设置可靠的临时支撑,如图(b)、(d)。常用若干条形方木作支撑,但必须稳定可靠。 2.分步穿转子 转子吊入(或吊出)定子要分步进行,其过程中需要调整钢 丝绳。若法兰端的轴长不够,通常是采用一段带法兰的钢管作 为假轴,其法兰按主轴法兰加工,用连轴螺栓连接假轴使主轴加长,但必须保证假轴有足够的刚度。转子开始穿入定子时,为保证转子与定子的气隙,在气隙

水轮发电机的构造

水轮发电机的构造 水轮机的转速都比较低,特别是立式水轮机,为了能发出50Hz的交流电,水轮发电机采用多对磁极结构,对于每分钟120转的水轮发电机,需要25对磁极。由于过多磁极不易看清结构,本课件介绍一个有12对磁极的水轮机发电机模型。 水轮发电机的转子采用凸极式结构,图1是发电机的磁轭与磁极,磁极安装在磁轭上,磁轭是磁极磁力线的通路,发电机模型有南北相间的24个磁极,每个磁极上都绕有励磁线圈,励磁电源由安装在主轴端头的励磁发电机提供,或由外部的晶闸管励磁系统提供(由集电环向励磁线圈供电)。 图1--水轮发电机转子有多对磁极 磁轭安装在转子支架上,在转子支架中心安有发电机主轴,在主轴的上端头安装有励磁发电机或集电环。轴下端有连接水轮机的法兰,见图2。 图2--水轮发电机转子

发电机定子铁芯由导磁良好的硅钢片叠成,在铁芯内圆均匀分布着许多槽, 用来嵌放定子线圈,见图3。 图3--水轮发电机定子铁芯 定子线圈嵌放在定子槽内,组成三相绕组,每相绕组由多个线圈组成,按一定规律排列,见图4。 图4--水轮发电机定子绕 水轮发电机安装在由混凝土浇筑的机墩上,在机墩上安装机座,机座是定子铁芯的安装基座,也是水轮发电机的外壳,在机座外壳安装有散热装置,降低发电机冷却空气的温度;在机墩上还安装下机架,下机架有推力轴承,用来安装发电机转子,推力轴承可承受转子的重量与振动、冲击等力。见图5。

图5--水轮发电机机墩、机座、下机架在机座上安装定子铁芯与定子线圈,见图6。 图6--水轮发电机的定子

转子插在定子中间,与定子有很小间隙,转子由下机架的推力轴承支撑,可以自由旋转,见图7。 图7--定子与转子安装在机座上 安装上机架,上机架中心安装有导轴承,防止发电机主轴晃动,使它稳定的处于中心位置。 图8--水轮机发电机未盖地板

水轮机调节考试复习章节知识点分类、河海大学 沈祖义主编 第三版

第一章水轮机调节基本概念 1、分析基本要求:稳定性、准确性、快速性 2、水轮机调节任务\作用:调频、调功(根据电力系统负荷的变化不断调节水轮发电机的有功功率输出,维持机组转速(频率)在规定范围内) 3、特点:(操作力大、影响因素大多、动作过程复杂、功能多、结构类型多)1调速器需设置多级液压放大元件,而液压放大元件的非线性及时间滞后有可能使水轮机调节系统调节品质恶化2,水击作用与导水机构的调节作用相反,将严重的影响水轮机调节系统的调节品质3对于双重调节机构,调速器中需要增加一套调节和执行机构,从而增加调速器的复杂性4要求调速器具有越来越多的自动操作和自动控制功能,使得水轮机调速器成为水电站中一个十分重要的综合自动装置,总之,水轮机调节系统相对来说不易稳定,结构复杂,要求具有较强的功能 4、调节途径:改变导叶的开度(或喷针开度),使水轮机的动力矩和发电机阻力矩平衡,使转速和频率保持在规定范围。 5、电力系统的频率稳定主要取决于:有功功率的平衡 6、J dw/dt=Mt-Mg (J转动惯量、水轮机动力矩、发电机阻力矩) 7、调速器分类:(1)按元件结构分为:机械液压和电气液压(模拟电气液压、数字电气液压)(2)按系统结构\反馈位置分为:辅助接力器型、中间接力器型、电子调节器型(3)按照控制策略\调节规律分为:PI(比例+积分)调节型、PID(比例+积分+微分)调节型、智能控制型(4)按执行机构数目分为:单调节调速器、双调节调速器(5)按工作容量分为:大型、中型、小型、特小型 8、调速器型号:①②③④━⑤⑥━⑦1—大型无代号;中小型(与油压装置组合在一起)代号Y;特小型(通流式结构)代号T;2—机械液压无代号;电气液压代号D;微机调速器W;3—单调节无代号;双调节代号S;4—调速器基本代号T;5—调速器工作容量(N·m );或主配压阀直径(mm);6—改型标记,经改型的用A、B等标明;7—调速器额定工作油压,大于2.5MPa的才标注,单位MPa 9、数学模型:微分方程、传递函数、动态结构图、方框(块)图、状态方程 第二章水调系统工作原理 1、单调节系统组成:离心飞摆(测速元件)、引导阀(对应的液压放大装置:放大元件)、辅助接力器、主配压阀、主接力器、缓冲器(反馈元件)、调差机构 2、带动离心飞摆转动的两种电源:1、来自与主机同轴的永磁发电机2、来自发电机端电压互感器 3、局部反馈、全局反馈(软反馈\暂态反馈、硬反馈\永态反馈) 4、双调节系统关键部位:协联块 5、双调节:两个调速机构 6、ep调差率es最大功率调差率bp永态转差率bs最大行程永态转差率最大非线性度≤5% 转速死区ix 不准确度ia≤1.5% 第三章机械液压型调速器 1、转速死区ix(指在某一规定的转速范围内,飞摆无法测量出来的最大转速范围与额定转速之比的百分数):当机组转速超过N1时调速器关闭导叶,而当机组转速低于N2时调速器才开启导叶,当转速在N1和N2之间时,调速器不动作,称为转速死区(作用:静态特性非线性度,动态系统的不准确度) 2、转速调整机构作用:当机组单机运行时,改变机组转速;并网运行,改变机组出力 3、调差机构作用:形成有差静特性 4、调节系统具有有差静特性作用:保证并列运行时机组间分配负荷;如果没有,负荷分配

相关文档