文档库 最新最全的文档下载
当前位置:文档库 › 相控阵技术

相控阵技术

超声相控阵检测教材超声相控阵技术

第三章超声相控阵技术 3.1 相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像,必须进行声束扫描。相控阵成像是通过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相控阵波束合成,形成成像扫描线的技术,如图3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2 相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制,采用先进的计算机技术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射/接收信号的相位延迟(phase delay),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。就波束的旁瓣声压而言,文献研究表明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根(RMS)延时量化误差与旁瓣幅值之比为 (式3-1) 式中,; N-----阵元数目; μ----中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随N、μ变化的关系曲线。早期的超声成像设备如医用B超中,由LC网络组成多抽头延迟线直接对模拟信号进行延迟,用电子开关来分段切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分段聚焦,当聚焦点很多时需要庞大的LC网络和电子开关矩阵;②由于是模拟延迟方式,电气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。

相控阵雷达系统的设计与分析2

第三章 天线阵列设计 雷达波形和信号的时间宽度通常与雷达的距离分辨率和速度分辨率相关,而雷达分辨率除了包括距离分辨率和速度分辨率,还包括角度分辨率,角度分辨率,亦称为横向距离分辨率。距离和速度分辨率由雷达信号的模糊函数确定。由模糊函数理论可知,信号的距离测量精度和分辨率取决于信号的频率结构,为了提高距离分辨率,信号必须有大的持续带宽,距离分辨率与信号带宽的关系满足下式 B c R 2△= △R 为距离分辨率,c 为光速,B 为信号持续带宽。所以现代雷达几乎都要求大带宽甚至超宽带工作能力。 速度测量精度和速度分辨率同样由模糊函数可知,它取决于信号的时域结构,即速度分辨率越高,要求信号具有大的持续时宽,二者关系由下式确定 C T f c v 02△= v △为速度分辨率,0f 为载波频率,c T 为信号持续时宽。 高性能雷达中常常使用大时宽带宽积的雷达信号以获得多方面的优越性能,所以普通相控阵列雷达将受到限制。而光控相控阵雷达由于采用光真实延时技术能够在大的瞬时信号带宽下工作,故在现代相控阵雷达中,它将更加值得重视和深入研究。 而角度分辨率取决于天线波束的宽度,其表达式为 R L 0λδ= δ表示角度分辨率,0λ为载波波长,R 为斜距,L 为天线孔径。为了提高角度分辨率,可以采用更短的波长,以及使天线孔径更大,更为实用和先进的改进角分辨能力的方法是采用具有超分辨处理能力的阵列技术,故相控阵列雷达具备了这方面的优势。阵列天线有一个由大量相同辐射单元(例如裂缝或偶极子)组成的孔径,每个单元在相位和幅度上是独立控制的。能得到精确可预测的辐射方向图和波束指向。 由此处给出并将在以后还要详细讨论的一些简单公式,很容易得到一般平面阵的特性。按间距λ/2排列单元(λ为波长)以避免产生被称为栅瓣的多个波束。对笔形波束而言,辐射单元个数N 与波束宽度的关系为 2 )(000 10B N θ≈ 或 N B 100 =θ 式中,θB 是以度为单位的3 dB 波束宽度。当波束指向孔径法线方向时,相应的天线增益为 a L N N G ηηηπ≈π≈0 式中,η计入由天线损耗ηL 和由于单元不等加权带来的幅度分布不均匀而产生的增益下降ηa 。当扫描到角度θ0时,平面阵列增益减少到与投影孔径相对应的值: 00cos )(θηθN G π≈

无损检测新技术-超声波相控阵检测技术简介

无损检测新技术-超声波相控阵检测技术简介 夏纪真 无损检测资讯网 https://www.wendangku.net/doc/2013414157.html, 广州市番禺区南村镇恒生花园14梯701 邮编:511442 摘要:本文简单介绍了超声波相控阵检测技术的基本原理、应用与局限性 关键词:无损检测超声检测相控阵 1 超声波相控阵检测技术的基本原理 超声波相控阵检测技术是一种新型的特殊超声波检测技术,类似相控阵雷达、声纳和其他波动物理学应用,依据惠更斯(Huyghens-Fresnel)原理:波动场的任何一个波阵面等同于一个次级波源;次级波场可以通过该波阵面上各点产生的球面子波叠加干涉计算得到。 并显示保真的(或几何校正的)回波图像,所生成材料内部结构的图像类似于医用超声波图像。 常规的超声波检测技术通常采用一个压电晶片来产生超声波,一个压电晶片只能产生一个固定的声束,其波束的传递是预先设计选定的,并且不能变更。 超声波相控阵检测技术的关键是采用了全新的发生与接收超声波的方法,采用许多精密复杂的、极小尺寸的、相互独立的压电晶片阵列(例如36、64甚至多达128个晶片组装在一个探头壳体内)来产生和接收超声波束,通过功能强大的软件和电子方法控制压电晶片阵列各个激发高频脉冲的相位和时序,使其在被检测材料中产生相互干涉叠加产生可控制形状的超声场,从而得到预先希望的波阵面、波束入射角度和焦点位置。因此,超声波相控阵检测技术实质上是利用相位可控的换能器阵列来实现的。超声波相控阵激发的超声波进入材料后,仍然遵循超声波在材料中的传播规律。因此,对于常规超声波检测应用的频率、聚焦的焦点尺寸、聚焦长度、入射角、回波幅度与定位等等,超声波相控阵也是同样应用的。 超声波相控阵探头的每个压电晶片都可以独立接受信号控制(脉冲和时间变化),通过软件控制,在不同的时间内相继激发阵列探头中的各个单元,由于激发顺序不同,各个晶片激发的波有先后,这些波的叠加形成新的波前,因此可以将超声波的波前聚焦并控制到一个特定的方向,可以以不同角度辐射超声波束,可以实现同一个探头在不同深度聚焦(电子动态聚焦)。此外,从电子技术上为阵列确定相位顺序和相继激发的速度可以使固定在一个位置上的探头发出的超声波束在被检工件中动态地“扫描”或“扫调”通过一个选定的波束角范围或者一个检测的区域,而不需要对探头进行人工操作。相控阵探头的关键特性包括:电子焦距长度调整、电子线性扫描和电子波束控制/偏角。 图1示出了超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图。 图1超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图超声波相控阵换能器的晶片不同组合构成不同的相控阵列,目前主要有三种阵列类型:线形阵列(晶片成间隔状直线形分布在探头中)、面形(二维矩阵)阵列和圆(环)形阵列,

超声相控阵检测教材-第三章-超声相控阵技术

第三章超声相控阵技术 3.1相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像, 必须进行声束扫描。相控阵成像是通 过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收) 声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相 控阵波束合成,形成成像扫描线的技术,如图 3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制, 采用先进的计算机技 术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键 数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射 /接收信号的相位延迟 (phase delay ),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束 形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术 的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。 就波束的旁瓣声压而言, 文献研究表 明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根( ,r . / \ 诙爲 式中, 一-—— N-----阵元数目; 尸--中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随 N 、□变化的关系曲线。早期的超声成像设备 如医用B 超中,由LC 网络组成多抽头延迟线直接对模拟信号进行延迟, 用电子开关来分段 切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分 段聚焦,当聚焦点很多时需要庞大的 LC 网络和电子开关矩阵;②由于是模拟延迟方式,电 气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。 RMS )延 (式 3-1)

相控阵天线的基础理论

第二章相控阵天线的基础理论 相控阵天线是从阵列天线发展起来的,主要依靠相位变化实现天线波束指向在空间的移动或扫描,亦称电子扫描阵列(ESA)天线。虽然用于相控阵雷达的相控阵天线有多种,但相控阵天线均是由多个天线单元,亦称辐射器构成的。天线单元可以是单个的波导喇叭天线、偶极子天线、贴片天线等。在每个天线单元后端都设置有移相器,用来改变单元之间信号的相位关系,信号的幅度变化则通过功率分配/相加网络或者衰减器来实现。在扫描过程中,整个雷达不需要像采用普通阵列天线或者剖物面天线的雷达那样进行机械运动,因此波束指向迅速灵活,且可以实现多波束并行工作,使得雷达具有很强的自适应能力。 在相控阵天线的实际使用过程中,线性相控阵天线平面相控阵天线是较为常见的两种形式。下面分别以这两种形式为例,阐述相控阵天线扫描的基本原理。 2.1相控阵天线扫描的基本原理 2.1.1线性相控阵天线扫描的基本原理 线性相控阵天线广泛应用于一维相控扫描的相控阵雷达中。根据基本的阵列类型,线 性相控阵天线可以划分为垂射阵列和端射阵列。垂射阵列最大辐射方向垂直于阵列轴向,天线波束在线阵法线方向左右两侧进行扫描。相反,端射阵列主瓣方向沿着阵列轴向。由于垂射阵应用最为广泛,因此主要讨论垂射阵。 图2.1是一个由N个天线单元组成的线性阵列原理图,天线单元呈均匀排成一线,途中沿y轴方向按等间距方式分布,天线单元间距为d。每一个天线单元的激励电流为 I i(i =0,1,2,...N -1)。每一单元辐射的电场强度与其激励电流I i成正比。天线单元的方向 图函数用fiG,:)表示。 图2.1 N单元线性相控天线阵原理图 阵中第i个天线单元在远区产生的电场强度为: e丸E i =K i I i fip, ) (2.1) 式中,K i为第i个天线单元辐射场强的比例常数,r i为第i个天线单元至观察点的距离, f i P,)为第i个天线单元的方向图函数,h为第i个天线单元的激励电流,可以表示成为: (2.2) 式中,3i为幅度加权系数,厶B为等间距线阵中,相邻单元之间的馈电相位差,亦称阵内相移值。 在线性传播媒质中,电磁场方程是线性方程,满足叠加定理的条件。因此,在远区观察点P处的总场强E可以认为是线阵中N个辐射单元在P处辐射场强之和,因此有:

相控阵雷达系统的仿真_王桃桃

计算机与现代化 2014年第2期 JISUANJI YU XIANDAIHUA 总第222期 文章编号:1006- 2475(2014)02-0209-04收稿日期:2013-09-29作者简介:王桃桃(1989-),女,江苏沭阳人, 南京航空航天大学自动化学院硕士研究生,研究方向:雷达系统仿真;万晓冬(1960-),女,江苏南京人, 副研究员,硕士生导师,研究方向:分布式仿真技术,实时分布式数据库技术,嵌入式软件测试技术;何杰(1988- ),男,安徽铜陵人,硕士研究生,研究方向:机载红外弱小目标检测,三维视景仿真。相控阵雷达系统的仿真 王桃桃,万晓冬,何 杰 (南京航空航天大学自动化学院,江苏南京210016) 摘要:雷达的数字仿真及雷达仿真库的建立已经成为近年来雷达领域研究的热点。本文主要进行相控阵雷达系统的仿真研究。首先根据相控阵雷达的组成和原理,建立相控阵雷达的仿真模型与数学模型。然后选择Simulink 作为仿真平台,对相控阵雷达系统进行仿真与研究。仿真的模块主要有天线模块、信号环境模块、信号处理模块以及GUI 人机交互界面模块。最终在Simulink 库中生成自己的雷达子库,形成相控阵雷达系统,为后续相控阵雷达的研究奠定基础。关键词:雷达;相控阵;信号处理中图分类号:TP391.9 文献标识码:A doi :10.3969/j.issn.1006-2475.2014.02.047 Simulation of Phased Array Radar Systems WANG Tao-tao ,WAN Xiao-dong ,HE Jie (College of Automation Engineering ,Nanjing University of Aeronautics and Astronautics ,Nanjing 210016,China )Abstract :The digital simulation of radar and the establishment of radar simulation libraries has become research hot spot in radar field in recent years.This paper mainly focuses on phased array radar system simulation.According to the composition and prin-ciple of phased array radar ,it establishes the simulation model and mathematical model of phased array radar.Then ,the paper does simulation and research on phased array radar system by choosing Simulink as the simulation platform.The simulation mod-ule mainly includes the antenna module ,the signal environment module ,the signal processing module and GUI man-machine in-terface module.Eventually it generates radar sub-libraries and forms phased array radar system ,which lay the foundation for fol-low-up phased array radar study. Key words :radar ;phased array ;signal processing 0引言 计算机仿真技术应用于雷达源于20世纪70年代,国内雷达仿真起步较晚,仿真主要是基于SPW 、Matlab 、Simulink 、ADS 、HLA 等平台,其中Simulink 是一种在国内外得到广泛应用的计算机仿真工具,它支持线性系统和非线性系统,连续和离散事件系统,或者是两者的混合系统以及多采样率系统。ADS (Ad-vanced Design System )软件可以实现高频与低频、时域与频域、噪声、射频电路、数字信号处理电路的仿真等。SPW (Signal Processing Workspace )是用于信号处理系统设计的强有力的软件包,在雷达领域有着广泛的应用。HLA (High Level Architecture )提供了基于分布交互环境下仿真系统创建的通用技术支撑框架, 可用来快速地建造一个分布仿真系统。比较4种仿 真平台,SPW 比较昂贵,只能在Unix 操作系统下使用,HLA 通信协议复杂,不同版本的RTI 可能有无法通信的问题。Simulink 应用于雷达仿真比ADS 广泛并易于推广,所以本文采用Simulink 作为仿真平台。 为了进行后期雷达与红外的数据融合,首先需要建立雷达模块以产生雷达数据源,本文根据相控阵雷达的工作原理,采用数字仿真的方法,仿真雷达模块。首先提出相控阵雷达的仿真结构图以及给出各个模块的数学模型,然后根据数学模型,利用Simulink 仿真平台,仿真实现雷达的各组成模块,从而构建一个完整的雷达系统。同时,也可以通过使用S 函数将各个模块封装,然后建成自己的雷达仿真库,从而可以形成不同类型的雷达系统,便于更好地进行雷达系统

相控阵超声新技术在电站设备无损检测中的实践思路探索(正式版)

文件编号:TP-AR-L2243 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 相控阵超声新技术在电站设备无损检测中的实践思路探索(正式版)

相控阵超声新技术在电站设备无损 检测中的实践思路探索(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 超声相控阵检测技术20世纪60年代就已经出 现,被应用于医疗领域。但是由于固体中波动传播复 杂性、系统复杂性和成本费用高等因素存在,限制了 超声相控阵检测技术在无损检测中的运用。而电子技 术和计算机技术以及压电复合材料等高新技术被广泛 综合应用,促进了超声相控阵技术发展,并且渐渐应 用到工业无损检测中。 现代技术飞速发展,带动了很多高新技术在超声 相控阵技术中被综合应用,从而降低了相控阵系统复 杂性与制作费用[1]

。而且相控阵技术具有比传统超声波检测更加明显的优势,使得超声相控阵检测技术被广泛应用于工业无损检测领域,并且日渐得到人们重视,迎来了很大的发展空间。 超声相控阵检测技术 超声相控阵检测技术建立在惠更斯原理上,其探头由许多个晶片组成。要应用时,则需要按照相关规则以及时序激活探头中一组或全部晶片,其中相控阵仪器的控制能力与检测需要决定着晶片激活数量。晶片被激活后,发出的超声波即为次波。每一个晶片的次波会彼此干涉,形成新波阵面并传播开来,从而形成超声波束检测工件。 无损检测技术 无损检测就是在不损坏被检测设备的基础上,根据物理特性将被检对象的内外部缺陷的位置、形状、

雷达的工作原理及相控阵雷达

问:有源相阵控雷达和无源相阵控雷达的区别是什么? h t p:/b s.t i e x u e.n e t/] [ 转自铁 血社区 答:区别就是无源是只有单个或者几个发射机子阵原只能接收,而有源是每个阵原都有完整的发射和接收单元! 机载雷达经历了从机械扫描形式到相控阵电子扫描,再到最新的保形"智能蒙皮"天线的发展过程,电子扫描雷达在作战使用中的优势在哪里?未来的综合式射频(RF)传感器系统的总体特点和关键技术是哪些?您将从本文中得到启发 近50多年来,机载雷达不断采用新的技术成果,性能不断提高,其中重要的有全向多脉冲射频(MPRF)模式和高分辨率多普勒波束锐化(DBS)技术在雷达中的实际应用。目前,由于在信号处理和砷化镓微波集成电路领域技术的进步,雷达作为战术飞机主传感器的地位仍然会继续保持下去。 电子扫描技术的发展 雷达波束天线电子扫描应用的第一步是无源电子扫描阵列(ESA),其主要优点是实现了波束的无惯性扫描,在作战中有助于对辐射能量的控制。现役的此种类型的雷达有美国空军的B1-B和俄罗斯的米格-31装备的雷达,在研的有法国装备其"阵风"战斗机的RBE-2雷达。 有源ESA的出现是技术上的又一进步。它的每一个阵元中都有一个RF发射机和灵敏的RF接收机,在各个发射/接收(T/R)模块内都有一个功率放大器、一个低噪声放大器和用砷化镓技术制造的相位振幅控制装置。有源ESA雷达技术放弃了传统的中心式高功率发射机,除了具有无源相控阵雷达的优点外,还提高了能量的使用效率并具有自适应波束控制、强抗干扰能力和高可靠性等优点。 h t p:/b s.t i e x u e.n e t/] 血社区 [ 转自铁 西方国家第一代有源相控阵雷达系统接近定型的有美国装备F-22和日本装备 FS-X的雷达。英、法和德国共同研制的AMSAR项目也确定使用先进的有源相控阵雷达技术,为其后续的欧洲战斗机雷达的升级改装做准备。从今天的角度来看,雷达技术未来的下一个发展方向是保形"智能蒙皮"阵列,它把有源ESA技术和多功能共用RF孔径结合了起来,在天线阵元的安排上,与飞机机身的结构巧妙地配合,实现宽波段和多功能。保形天线阵列有高性能的处理器并使用空-时自适应处理技术有效地抑制了外部的噪声、干扰和杂波并能以最优化的方式来探测所感兴趣的目标。虽然有许多相关的技术问题需要解决,但保形"智能蒙皮"技术并非是个不切实际的解决方案,预计在20~25年的时间内就可以达到实用阶段。 在10~15年内,对战术飞机射频传感器(包括雷达)未来所执行的任务来说,最迫切的需要是增加功能、提高性能,并且还要注重经济性和可维护性。美国的"宝石路"计划已经证明,航空电子系统通过采用通用模块、资源共享和传感器的空间重构(重构的设备包括雷达、电子战及通信-导航-识别等射频传感器)可以做到系统的造价和重量减小一半,而可靠性提高三倍。它所确立的综合模块化航空电子的设计原则已用于JSF战斗机的综合传感器系统(ISS)和多重综合式射频传感器工程的设计中,欧洲类似的用于未来战术飞机的综

相控阵雷达系统

揭秘预警机的相控阵雷达系统 现代预警机除了装备有先进的机载远程监视雷达,通常还装有电子侦察、敌我识别,以及通信、导航、指挥控制和电子/通信对抗等多种电子设备。它不但能及早发现和监视从各个空域入侵的空中和海面目标,还能对己方战斗机和其它武器设备进行引导和控制;不但是空中雷达站,更是空中指挥所,在多次现代战争中发挥着无以替代的作用,证明了自身重大价值,成为各国重点开发研制的尖端武器装备。目前,美国、以色列、俄罗斯、瑞典和英国等国装备了自行研制的预警机,日本、法国、印度、沙特、希腊、澳大利亚和巴基斯坦则不惜重金从他国购买预警机,现役预警机总数已逾300架,型号逾20种……从而也成为广大军事爱好者关注的焦点之一。 在我们生活的大自然中,有很多生物,它们的眼睛并不相同。例如,昆虫的眼睛和人类的眼睛就不一样。昆虫的每只眼睛内部几乎都是由成千上万只六边形的小眼睛紧密排列组合而成,每只小眼睛又都自成体系,各自具有屈光系统和感觉细胞,而且都有视力。这种奇特的小眼睛,动物学上叫做“复眼”。蜻蜓的复眼,在昆虫界要算最大最多的,占整个头部的2/3,最多可达2.8万只左右,是一般昆虫的10倍。这样它在空中捕捉小虫时,便能得心应手,百发百中,从不落空。而人们常把雷达比作战争的眼睛。实际上,就像生物的眼睛有很多类型一样,雷达作为战争的眼睛,也有很多种。今天我们要介绍的有源相位控制阵列,简称有源相控阵,就像蜻蜓的眼睛,在所有种类的雷达里面,具有最好的“视力”。那么,什么是相控阵?什么是有源?有源相控阵和蜻蜓的眼睛到底有什么相似之处?这就是我们今天的话题。 相位控制天线阵列——不靠天线旋转实现扫描 在回答什么是相控阵之前,我们需要知道雷达的天线为什么要旋转。我们看到一部雷达时首先看到的就是天线——个头又大又高的部分。雷达作为战争的眼睛,用来看目标的实际上就是天线。大部分雷达,特别是早期的雷达,天线都是需要旋转的,天线要旋转的根本原因是天线的视野不是“广角”的,为了使所有方向上的飞机都能“天网恢恢、疏而不漏”,就要让天线转起来,就像人的眼睛只能看到前方,如果想看到自己两侧和身后的东西,就必须转身一样。它的视野有多宽,主瓣宽度就有多大。也许有人会问,为什么不能把天线做成广角的?这是因为输入到天线的能量如果平均分配到全部方向上辐射,能量就会比较分散,自然就不能传得很远了,所以,雷达主瓣做得比较窄。举例来说,美国E-3预警机的雷达天线的主瓣宽度近似为1°。如果要把全部方向上的空域都扫描一遍,主瓣得先后处于360各不同的位置上。 雷达采用天线旋转的方式,虽然实现了全方向的监视,但缺点也是秃头上的虱子——明摆着的。雷达波下一次再照射到同一架飞机,必须等到天线转完一圈,这个时间叫做“扫描周期”,通常天线一分钟转6圈,也就是每10秒转1圈。在这种转速下,对同一架飞机的连续两次照射,得过10秒之后,这时敌方的飞机可能已跑到3千米以外了飞、其次,让天线旋转的机械装置要比天线不动时的复杂,而且驱动它转起来要耗费更大的能量,安全性和可靠性也不容易保证。 相控阵体制的出现使得天线不用旋转就能实现扫描。它是如何实现扫描的呢?还得从天线说起。天线有很多小的单元——从样子看,像是很多缝隙―每个小的单元都能利用电磁感应原理将雷达蕴含的能量转化成电磁波辐射到空中。雷达发射机向每一个天线单元输入变化着的电流,产生变化的电场和磁场,电场和磁场交替振荡、互相激发,组成能在空间传播的电磁波,雷达发射机所产生的能量就这样被天线带到空中了。在空中一些很小的区域蕴含大部分雷达能量的是主瓣,类似于人眼的正前方,视角最为集中;在空间大部分区域蕴含了其余很少一部分能量的就是副瓣,类似于人眼的余光区域。 主瓣和副瓣到底占多大区域.取决于每一个天线单元辐射出的电磁波在空间叠加后的结果。每一个天线单元辐射出来的能量既有幅度,又有辐角,这个辐角就是“相位控制阵列”中的“相位”。多个天线单元按

相控阵技术

导读 任何无损检验方法(NDT)的可信度很大程度上取决于人员因素。进行相控阵超声检验的人员应经过培训并取得相应的资格。通过检验人员的技能、教育经历、培训经历,NDT检验人员来证明自己能够根据工艺和设备(相控阵超声设备,扫描仪,探头,软件,分析分布图和报告)的特殊要求进行操作。检验人员应熟悉应用于特殊零件的相控阵技术的基本特性。应客户要求,关于R/D技术原理的第一本书出版了:相控阵技术应用简介:R/D技术指南。该指南用大幅篇章介绍了基本的超声测试,数据评定和扫查方式,相控阵探头以及应用,适合广大读者使用,该指南包含大量实用信息堪称为实用手册。该指南可通过登陆我们的网站使用e-mail订购。 相控阵技术指南手册可视为NDT从业人员使用基本相控阵超声技术的备忘录。它面向日常的操作,针对技术秘诀,介绍操作方法(工艺规范,标定,特征描述,重新启动,解决检验的问题)。关于其大小,该手册设计为口袋书籍。为使该手册能适应现场条件,我们采用防水抗扯的合成纸印刷该书,且封面和装订都十分牢固。 相控阵技术指南手册包括: ·第一章“相控阵超声技术——基本特性“ 详述了PAUT(相控阵超神探伤的缩写)原理,介绍了主要硬件设备和相控阵声束组成类型和运动形式(线性,方位角型,深度型,平面型和3-D型)。 ·第二章“相控阵探头——基本特性“ 详述了用于日常检验的PA(相控阵的缩写)探头及其主要特性。范例介绍时使用的是大多数场合最常用的探头类型,即1-D平面线性阵探头。 ·第三章“聚焦法则“——常用范例 介绍了线性阵探头如Tomoscan ⅢTM PA探头(TomoView TM 2.2R9)和OmniScan○R PA探头定义聚焦法则的基本步骤。 ·第四章“扫查方式,观察,和分布图” 介绍了Tomoscan ⅢTM PA探头(TomoView TM 2.2R9)和OmniScan○R PA探头评定(A-扫查法,S-扫查法,B-扫查法,C-扫查法和D-扫查法)的主要数据,基本分布以及扫查方式。特殊场合下推荐的分布图也进行了说明。 ·第五章“超声束设置,标定和定期检查” 介绍了关于超声束设定调节,设备标定和现场定期检查的基本范例。 ·第六章“使用表格,图表和公式” 该章是实用公式的总结,如:斯涅尔定律,近场长度,波长,声束宽度,半角声束传播速度。书中特别强调了实用不同方法测量缺陷尺寸。表格,公式,图表都可以作为一些参数的速查工具:折射角,等效延迟和反射体尺寸。 ·附录A:“单位转化” 提供了本手册所使用到的单位与公-英制单位的转化。 ·附录B:“支持和培训” 通过R/D技术网站,你可以寻找或提供关于本手册的相关附加信息。 ·“参考文献” 列出了支持和扩充本手册构想的基本资料。本手册编制成一本开放式的对话式手册。对于特殊操作,我们增加了提示,重要标注,注意事项和警告标志等。 正如R/D技术的CEO(首席执行官)和主席在扉页中提到的,我们欢迎您参与进来,提出意见,进行评论,提出设想,从而促进本书第二版的进一步完善。

相控阵雷达简介

相控阵雷达简介 第一部分:引言 论坛上朋友们对相控阵雷达很感兴趣,而且对美军的有源相控阵雷达表示出近乎崇拜的热情,总是哀叹我们为什么没有这么神气的雷达。但是在很多朋友的帖子中,都表现出我们对相控阵雷达的概念不是很清楚,甚至有的雷达专业的网友有时也有一些似是而非的说法。 其实要正确的了解雷达中的很多基本概念,并不是很容易的事情,要能给别人讲清楚,更需要实际的工作经验。碰巧我参加过相控阵雷达研制,虽然做的工作是边边角角的,但是想结合自己的体会和一些专业书上的概念,尽可能把我认为正确的概念介绍给各位朋友。 第二部分:相控阵技术综述 相控阵技术是一种通过控制阵列天线的各个单元的相位和幅度以便形成在空间满足一定分布特性的波束,并且能够改变其扫描角度(指向)的技术。这种技术目前一般都是用计算机控制波束的形成和扫描,因此最大和好处是可以实现一些传统天线没有的优势,即:形状、指向和波束的个数无惯性的改变。这里解释一下什么是波束,波束实际上是一个形象的说法,在天线和传播技术领域,我们经常讲某个天线发射的(或者接收的)波束是“笔型波束”、“扇行波束”等等之类的,并不是说在空间存在这样的一个笔形或者扇形的东西,而是说当这个天线发射信号时(或者接受信号时)它在不同的方向信号放大倍数是不同的(或者对接收在不同空间到达方向的信号放大倍数不同),有的方向倍数大(叫增益),有的方向小,就形成了一个增益和方向的关系曲线,形象的说,就是一个“笔形的波束”或者“扇形波束”。需要说明的是,所有的天线都有波束的概念,而且接收的时候和发射的时候可以是不同的。相控阵的天线通过电控的单元相位改变,使波束指向、形状、个数等可以很快的改变,这是它根本的优势。还有一个顺便可以提到的问题,就是雷达干扰和抗干扰问题。在雷达对抗领域,经常提到一个旁瓣干扰的概念,这个又是一个和波束概念有关系的。一般在天线增益最大的方向附近是天线的主波瓣,在这个方向附近之外,天线增益下降很快,但是

相控阵雷达系统的设计与分析

第一章 相控阵雷达系发射信号的设计与分析 1.1 雷达工作原理 雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号 ()s t ,电磁波以光速C 向四周传播,经过时间R C 后电磁波到达目标,照射到目标上的电磁波可写成:()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ),反映目标对电磁波的散射能力。再经过时间R 后,被雷 达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一

个LTI (线性时不变)系统。 图1.2:雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成: 1 ()()M i i i h t t σδτ==-∑ (1.1) M 表示目标的个数,i σ是目标散射特性,i τ是光速在雷达与目标之间往返一次的时间, 2i i R c τ= (1.2) 式中,i R 为第i 个目标与雷达的相对距离。 雷达发射信号()s t 经过该LTI 系统,得输出信号(即雷达的回波信号)()r s t : 1 1 ()()*()()*()()M M r i i i i i i s t s t h t s t t s t σδτστ====-=-∑∑ (1.3) 那么,怎样从雷达回波信号()r s t 提取出表征目标特性的i τ(表征相对距离)和 i σ(表征目标反射特性)呢?常用的方法是让()r s t 通过雷达发射信号()s t 的匹配 滤波器,如图1.3。 图1.3:雷达回波信号处理 ()s t 的匹配滤波器()r h t 为: *()()r h t s t =- (1.4) 于是, *()()*()()*()*()o r r s t s t h t s t s t h t ==- (1.5) 对上式进行傅立叶变换:

相控阵天线方向图推导及仿真

相控阵天线方向推导及仿真 1、推导线阵天线方向图公式 一个接收线阵,由等间距为d 的N 个各向同性单元组成,那么在θ方向,相 邻单元接收信号的相位差为Ф=2πd λsinθ,线阵排列情况如图1所示。 图1 线阵排列示意图 因为天线辐射方向图可以由天线上各种各样电流源辐射的单独贡献进行矢 量叠加而得出,故各单元电压和为: E a =sin (ωt )+sin (ωt +?)+sin (ωt +2?)+?+sin?[ωt +(N ?1)?] 将等式两边同时乘以2sin?(? 2),根据积化和差、和差化积等相关数学公式,可得到如下公式: 2sin (?2)E a =cos (ωt ??2)?cos (ωt +?2)+cos (ωt +?2)?cos (ωt ?32 ?) +?+cos (ωt +2N ?32?)?cos?(ωt +2N ?1 2?) 整理得,2sin (? 2)E a =cos (ωt ?? 2)?cos (ωt + 2N?12 ?) ??=2sin?(ωt + N ?12?)sin?(N 2 ?) 最终得到场强方向图,E a =sin?[ωt +(N ?1)?2?]sin?(N?2?) sin?(?2?) 平方归一化后,得到辐射方向图(阵列因子): |G a (θ)|=sin 2[Nπ(d λ)sinθ] N 2sin 2[π(d λ )sinθ]

上式中,当(d λ)sinθ=0,±1,±2,···±n 时|G a (θ)|取得相等的最大值,但是我们 只期望看到(d λ)sinθ=0的情况,取其他值产生的栅瓣是我们所不想见到的,为避免这种情况,特令d <λ。 前面的公式中认定主瓣指向为0°,当主瓣指向θ0方向时,则各向同性单元 线阵的归一化辐射方向图为: G (θ)=sin 2[Nπ(d λ)(sinθ?sinθ0)] N 2sin 2[π(d λ )(sinθ?sinθ0)] 此时,由于?2≤sin (θ)?sin (θ0)≤2,故防止产生栅瓣的条件为d <λ2?。 当来波方向与主瓣指向相近时sinθ?sinθ0很小,有: sin 2[π(d λ)(sinθ?sinθ0)]≈[π(d λ )(sinθ?sinθ0)]2 这时的辐射方向图是sin 2μμ2?的形式,式中μ=(d λ)(sinθ?sinθ0),当μ=±0.443π时,天线方向图被衰减到最大值的一半,又因为sinθ?sinθ0项可以写成 sinθ?sinθ0=sin (θ?θ0)cos (θ0)?[1?cos (θ?θ0)]sin (θ?θ0) 当θ0很小时,方程右边第二项可以忽略,所以sinθ?sinθ0≈sin (θ? θ0)cos (θ0)。最终我们可以得到天线的半功率波束宽度为θB ≈0.886λ Ndcosθ0 (rad )。 2、电子扫描阵列天线方向图仿真 ·1、不同参数情况下的栅瓣现象及分析 由前面的分析可知,归一化后的天线方向图可以表示为: G a (θ)= sin 2(Nπd λ (sin θ?sin θ0)) N 2sin 2(πd λ (sin θ?sin θ0)) 其中d 表示天线长度, N 表示天线阵元个数,λ表示信号波长。 当πd λ(sin θ?sin θ0)=0,±1,±2,?,±n,???n ≥1,n ∈Z 时,G a (θ)的分子、分母均为0,由洛毕达法则可知,当sin θ?sin θ0=±n λ d 时,G a (θ)取最大值1,其中sin θ?sin θ0=0,即θ=θ0时,是主瓣,sin θ?sin θ0=±n λ d 的解对应的是

TOFD与超声波相控阵检测技术特点比较

TOFD与超声波相控阵检测技术特点比较TOFD方法具有超声成像技术,它通过采用一发一收探头布置,然后要求相应的探头入射点间距离,在平板对接焊缝、环焊缝方面具有很大的优势,下面是小编搜集的一篇探究TOFD与超声波相控阵检测技术特点的论文范文,欢迎阅读查看。目前我国无损检领域应用最广泛的是TOFD技术,业界人士已经普遍认可了TOFD技术,这项技术在我国的工业领域已经有了数不胜数的成功案例。21世纪初,我国引入了Isonic系列便携式超声波成像检测系统(以色列的IsonotronNDT公司出品),经由一系列的实际的对比以及验证加之不断改进和创新了的扫查器系统,TOFD技术被更多的应用到各工业现场检测中。TOFD方法具有超声成像技术,它通过采用一发一收探头布置,然后要求相应的探头入射点间距离,在平板对接焊缝、环焊缝及直径大于500mm的纵缝中厚板检测方面具有很大的优势,但是该技术也存在一些弊端,比如对于复杂几何形状的结构件、焊缝检测盲区等束手无策。到目前为止超声相控阵技术已经在我国发展了20年,在早期主要应用在医疗领域,利用该技术可以在实际的医学超声成像中对被检器官进行成像,有益于医学的不断发展和进步,但是由于很多客观因素的限制,比如系统的复杂性、固体中波动传播的复杂性及成本费用高等,使得该技术的应用面受限。在这种情况下,在超声相控阵成像领域应用压电复合材料、数据处理分析等高新技术是大势所趋,未来超声相控阵检测技术一定会得到更加广泛的应用。超声相控阵是采用多晶片控制声束聚焦技术,探头可以在同一位置实现很大声

束及角度范围内的电子扫查,适用于复杂几何形状结构件的检测。 下面对TOFD和相控阵的检测技术做简要对比。 1、TOFD的技术特点 1.1 TOFD的优点 TOFD技术不仅具有很强的缺陷检出能力,还具有很高的缺陷定量精度,除此之外还具有很高的时效性和安全性,可永久保存其检测数据。 ①效率高:该技术只需要做线性扫查就可以对焊缝完成扫查,很大程度上扩大了单组探头检测对焊缝的覆盖范围大,远远超过了传统的检测方法。 ②灵敏度高:由于该技术的衍射波信号具有很高的灵敏度,很大程度上保证了检出率。 ③精度高:利用衍射时差计算方法,缺陷的高度可以得到精确的计算。 ④影响小:该技术不会因焊缝结构或缺陷的方向性就左右最后的检测结果,其检测结果具有很高的稳定性,几乎不受其他因素的影响。 ⑤漏检少:衍射波具有高灵敏度,通过图像记录完整检测数据,重复性好。 ⑥数据全:检测结果的时效性很强,并且相关数据和资料会以存盘、打印出来等形式永久的保留下来,以便随时进行分析处理。 ⑦更安全:采用该技术不会对相关人员造成人身伤害。

宽带宽角扫描相控阵雷达技术研究

2004年3月第26卷 第3期 系统工程与电子技术Systems Engineering and Electronics Mar.2004Vol 26 No 3 收稿日期:2003-06-04;修回日期:2003-11-19。 作者简介:鲁耀兵(1965-),男,研究员,硕士,主要研究方向为雷达总体。 文章编号:1001 506X(2004)03 0288 03 宽带宽角扫描相控阵雷达技术研究 鲁耀兵,戴开良,陈 燕 (中国航天科工集团二院二十三所,北京100854) 摘 要:针对大型相控阵雷达工作在宽带、宽角扫描的情况下,瞬时信号带宽受孔径度越时间限制的问题,从理论上分析了影响相控阵雷达线瞬时带宽提高的因素和接收通道幅相误差对系统性能的影响,提出了采用射频延迟和视频延迟方法提高相控阵天线瞬时带宽的两种技术途径。并给出在微波暗室里进行的相控阵试验雷达工作在宽带角电扫描情况下成像试验的部分结果,验证了理论分析的正确性。 关键词:相控阵;雷达;成像;瞬时带宽中图分类号:TN930.1 文献标识码:A Research of wideband and wide scan phased radar technology LU Yao bing,DAI Kai liang,CHEN Yan (Institute No.23o f The Sec ond Academy,China Ae rospace Science and Indust ry Co rporation,Bei jing 100854,China) A bstract:When large phased array radars work in wideband wide scan conditions ins tantaneous band width of signal i s li mi ted by the size of aperture.The factors of banwid th li mitation and the effects of receive channels phase and amplitude errors on radar are ana lyzed in theory.Two methods for improving band width of phased array by adopting RF and IF ti me delays are presented.Test Results of high range resolution i mages from a phased array radar in microwave anechoic room are given,which demons trate the validity of the analysis. Key words:phased array;radar;i naging;instantaneous band width 1 引 言 具有大瞬时带宽和大扫描角的相控阵雷达(如瞬时相对带宽10%,扫描范围 45 )在未来防空武器和测控系统中具有重要作用,但这种雷达的工程实现比普通相控阵雷达复杂得多。首先,由于天线孔径渡越时间的影响,如不采取特别的补偿措施,相控阵天线的瞬时带宽难以提高;其次,由于宽带信号压缩处理的旁瓣大小与信号通道的幅相起伏对一维距离像的影响,提出了增加相控阵天线瞬时带宽的技术途径,并利用由宽带相控阵天线组成的微波暗室宽带成像系统进行的电扫实验结果说明了理论分析的正确性。 2 影响相控阵天线瞬时带宽提高的因素 在相控阵雷达中,扩大天线系统瞬时带宽主要引起两个方面的问题。 2 1 频率变化引起天线波束指向偏移 相控阵天线电扫描的实质是通过改变天线单元的称相值,使阵内相位差与空间相位差达到平衡,从而在某一方向形成波束。当天线辐射的电磁波频率在大范围变化时,将引 起空间相位差的较大变化,从而引起天线波束指向变化,其量值大小可表示为 f = B f 0 tan m (1) 式中:f 0!!!中心频率,B !!!信号瞬时带宽, m !!!目标位置偏离阵面法线的角度。 2 2 天线的最大瞬时信号带宽受天线孔径渡越时间的限制 设雷达天线口径直径为L,目标位置偏离阵面法线 m ,则定义 T A =L sin m /c (2) 为相控阵天线的孔径渡越时间。在发射状态它反映了天线直径两端两个天线单元辐射信号到达位于 m 方向同一点目标的时间差,在接收状态则反应了天线直径两端两个天线单元接收来自同一点目标回波信号的时间差。 当天线孔径渡越时间大于信号带宽B 的倒数1/B 时,阵列两端天线单元接收到的信号经脉冲压缩后将在时间上完全分开,无法进行相加合成。因此,为保证信号能有效相加,要求 T A ?1/B(注:有些文献取 T A ?1/10B,实际上这并不必要),即

相关文档
相关文档 最新文档