文档库 最新最全的文档下载
当前位置:文档库 › 现代食品生物技术重点

现代食品生物技术重点

现代食品生物技术重点
现代食品生物技术重点

◆ 生物技术的确切定义:

人们运用现代生物科学,工程学和其他基础学科的知识,按照预先的设计,对生物进行控制和改造或模拟生物及其功能,用来发展商业性加工,产品生产和社会服务的新技术领域。

◆ 生物技术的构成 ◆ 生物技术各构成成分之间的关系

现代生物技术的核心是基因工程,而现代生物技术的基础和归宿则是发酵工程和酶工程,否则就不能获得产品和经济效益,也就体现不了基因工程和细胞工程的优越性。

基因工程的定义:

▼ 是指按照人们的意愿和设计方案,

▼ 以分子生物学,分子遗传学,生物化学和微生物学为理论基础, ▼ 通过将一种生物细胞的基因分离出来或人工合成新的基因, 在体外进行酶切和连接并插入载体分子构成遗传物质的新组合, ▼ 导入到自身细胞或另一种细胞中进行复制和表达等实验手段, ▼ 有目的的实现动物,植物和微生物等物种之间的DNA 重组和转移, 使现有物种在短时间内趋于完善或创造出新的生物特性。 发酵工程的定义 :

基因工程 细胞工程 发酵工程 酶工程

蛋白质工程

利用微生物的某种特性,通过现代化工程技术手段进行工业规模生产的技术.

包括:

①传统发酵(有时称酿造),

②近代的发酵工业如酒精,如乳酸,丙酮-丁醇等

③目前新兴的如抗生素,有机酸,氨基酸,酶制剂,

核苷酸,生理活性物质,单细胞蛋白等的发酵生产

酶工程的定义 :

酶工程是利用酶所特有的生物催化性能,将酶学理论与化工技术结合而成的一门生物技术。也就是利用离体酶或者直接利用微生物细胞,动植物细胞,细胞器的特定功能,借助于工程学手段来生产酶制剂并应用于相关行业的一门科学。

细胞工程的定义 :

是利用细胞生物学和分子生物学技术,通过类似于工程学的步骤,在细胞整体水平或细胞器水平上,按照人们的意愿改变细胞内的遗传物质已获得新型生物或特定细胞产品的一门综合性科学技术。

蛋白质工程的定义 :

蛋白质结构和功能的研究为基础,运用遗传工程的方法,借助计算机信息处理技术的支持,从改变或合成基因入手,定向地改造天然蛋白质或设计全新的人工蛋白质使之具有特定的结构、性质和功能,能更好地为人类服务的一种生物技术。

生物技术:农业生物技术、医药生物技术、食品生物技术、海洋生物

技术、环境生物技术、能源生物技术

食品生物技术(food biotechnology):是生物技术在食品原料生产、加工和制造应用的一个学科。

◆食品生物工程下游技术

从由基因工程获得的动物、植物和微生物的有机体或器官中,从细胞工程、发酵工程和酶工程产物(发酵液、培养液)中,把目标化合物分离纯化出来,使之达到商业应用目的的过程。

食品发酵和酿造等最古老的生物技术加工过程,也包括了

①应用现代生物技术改良食品原料的加工品质基因,生产高质量的农产品。

②制造食品添加剂。

③植物和动物细胞的培养。

④与食品加工和制造相关的其它生物技术,如:酶工程、蛋白质工程和酶分子进化工程等。

组成DNA的基本单位是四种脱氧核苷酸, dAMP, dGMP, dCMP, dTMP 通过3′,5′(3′-羟基和 5′-磷酸)——磷酸二酯键一定顺序相连

基因工程的最大特点

1、打破生物种属界限

2、进行生物种内外基因的重组、遗传信息的转移

重组DNA技术:DNA克隆、分子克隆、基因克隆。

基因工程核心:糖酸骨架

基因工程的研究内容

1、目的基因的获取

2、构成重组DNA --目的基因与载体的重组

3、将重组DNA转移或导入到受体或宿主细胞

4、筛选重组转化体阳性克隆

5、从筛选出的阳性克隆中提取出扩增的

重组DNA分子或基因供分析和研究使用- 使目的基因在受体细胞中高效表达

◆限制性内切核酸酶(restriction endonuclease, RE)

简称内切酶

是指一类能够识别和切割双链DNA分子内核苷酸序列的内切核酸酶。

◆DNA甲基化酶(DNA methycase)

简称甲基化酶

是指一类能够识别DNA特定序列,并其特定碱基的特定位置上

引入甲基而发生修饰作用的酶。

※限制酶和甲基化酶主要是从多种微生物中分离纯化而来的。

◆Eco RⅠ表示从(Escherichia coli或大肠埃希氏菌)菌株RY13中

分离出的第(1)种限制性内切酶。

食品生物技术期末考试试题及答案

食品生物技术试题 甘肃农业大学12级食品质量与安全-李红科 一、单项选择题 1 通过()和酶工程处理废弃物,提高资源的利用率并减少环境污染( A )A发酵工程 B基因工程 C蛋白质工程 D酶工程 2 ()是生物技术在食品原料生产、加工和制造中的应用的一个学科(B) A微生物学 B食品生物技术 C生物技术 D绿色食品 3 在引起食品劣变的因素中(C)起主导作用 A虫害 B物理因素 C微生物 D化学因素 4下列哪些食品保藏方法不属于物理保藏法(B) A脱水干燥保藏法 B熏制保藏法 C冷藏保藏法 D罐藏法 5 细胞工程包括动植物题的体外培养技术、()、细胞反应技术。 A细胞改造 B细胞修饰 C细胞杂交 D细胞衰老 6 自然选育过程中采取土样时主要选择()之间的土壤(B) A 3-10cm B 5-15cm C10-15cm D 10-20cm 7 下列不属于真空冷冻干燥法中冷冻干燥的步骤是(B) A制冷 B高压 C供热 D抽真空 8 食品生产中的危害分析与关键控制点是(D) A GMP B ISO C CCP D HACCP 9 下列不属于纯种分离的常用方法的是(B) A 组织分离法 B 单孢分离法 C 划线分离法 D 稀释分离法 10 下列分离方法具有简单、快速的特点的是(B) A稀释分离法 B划线分离法 C组织分离法 D 单孢分离法11()是采样与生产相近的培养基和培养条件,通过三角瓶的容量进行小型发酵试验,以求得适合于工业生产用菌种(C) A 培养 B 分离 C 筛选 D 鉴定 12 诱变育种是以(C)为基础的育种 A自然突变 B 基因突变 C 诱发突变 D 基因重组 13 在整个诱变育种工作中,工作量最大的是(A) A 筛选 B 分离 C 鉴定 D 培养 14 分子育种是应用()来进行的育种方式(B) A 酶工程 B 基因工程 C 蛋白质工程 D 细胞工程 15 通过基因工程改造后的菌株被称为(B) A“蛋白菌” B“工程菌” C “酶菌” D“细胞菌” 16冷冻保藏的温度一般要求在( C )摄氏度 A 1 B-10 C -20 D-5 17 发酵工业中培养基所使用的碳源中最易利用的糖是(A) A葡萄糖 B蔗糖 C淀粉 D乳糖 18(A)是人工配制的提供微生物或动植物生长、繁殖、代谢和合成人们所需要产物的营养物质和原料。 A培养基 B人工培养基 C合成培养基 D天然培养基 19 在引起肉腐败的细菌中,温度较高时(B)容易发育

食品生物技术导论 复习题(仅供参考)

考试题型:名词解释(5题15分)填空题(15分)选择题(20分) 简答题(6题30分)论述题(2题20分) 名词解释(15’) 1、基因工程技术:在基因水平上,用分子生物学的技术手段来操纵、改变、重建细胞的基因组,从而使生物体的遗传性状按要求发生定向的变异,并能将这种结果传递给后代。 2、基因工程:是利用人工的方法把不同生物的遗传物质分离出来,在体外进行剪切、拼接、重组,形成基因重组体,然后再把重组体引入宿主细胞或个体中以得到高效表达,最终获得人们所需的基因产物。 3、细胞工程:就是在细胞水平研究开发、利用各类细胞的工程。是人们利用现代分子学和现代细胞分子学的研究成果,根据人们的需要设计改变细胞的遗传基础,通过细胞培养技术、细胞融合技术等,大量培养细胞乃至完整个体的技术。 4、基础培养基:是含有一般微生物生长所需的基本营养物质的培养基。 5、加富培养基:(营养培养基)在基础培养基中加入某些特殊营养物质制成的一类营养丰富的培养基,这些特殊营养物质包括包括血液、血清等。 6、鉴别培养基:在培养基中加入某种特殊化学物质,某种微生物在培养基中生长后能产生某种代谢产物,而这种代谢产物可以与培养基中的特殊化学物质发生特定的化学反应,产生明显的特征变化,根据这种特征变化,可将该种微生物与其他微生物区分开来。 7、选择培养基:是用来将某中或某类微生物从混杂的微生物群体中分离出来的培养基。 8、细胞全能性:一个微生物细胞就是一个生命,而分化的植物细胞在合适的条件下具有潜在的发育成完整植株或个体的能力。 固体培养基:在液体培养基中加入一定量凝固剂,使其成为固体状态即为固体培养基。 9、固定化酶:酶分子通过吸附、交联、包埋及共价键结合等方法束缚于某种特定支持物上而发挥酶的作用。 10、蛋白质工程:是指通过生物技术对蛋白质的分子结构或者对编码蛋白质的基因进行改造,以便获得更适合人类需要的蛋白质产品的技术。 11、发酵工程:就是利用微生物的特定性状和功能,通过现代化的工程技术生产有用物质或直接应用于工业化生产的技术体系。 12、食品基因工程:是指利用基因工程的技术和手段,在分子水平上定向重组遗传物质,以改善食品的品质和性状,提高食品的营养价值、贮藏加工性状以及感官性状的技术。 13、细胞融合:两个或多个细胞相互接触后,其细胞膜发生分子重排,导致染色体合并、染色体等遗传物质充足的过程称为细胞融合。 14、连续培养:是指在培养过程中,不断抽取悬浮培养物并注入等量新鲜培养基,使培养物不断得到养分补充和保持其恒定体积的培养方法。 ★15、同步培养:在分批或连续培养中,微生物群体以一定速度生长,并非所有细胞同时进行分裂,即培养中的细胞不是处于同一生长阶段。 16、酶工程:利用酶的催化作用进行物质转化的技术,是酶学理论、基因工程、蛋白质工程、发酵工程相结合而形成的一门新技术。 ★17、转化:是将重组质粒导入受体细胞,使受体菌遗传性状发现改变的方法; ★18、转染:是将携带外源基因的病毒感染受体细胞的方法(其中又分磷酸钙沉淀法与体外包装法); ★19、载体:把一个有用的目的DNA片段通过重组DNA技术,送进受体细胞中去进行繁殖或表达的工具称为载体。

现代生物技术在食品领域中的应用

现代生物技术在食品领域中的应用 发表时间:2010-09-30T14:27:21.670Z 来源:《魅力中国》2010年9月第1期作者:肖付才[导读] 本文阐述了基因工程、细胞工程、酶工程等现代生物技术在食品发酵业的应用。肖付才(许昌职业技术学院园林园艺系,河南许昌 461000)摘要:本文阐述了基因工程、细胞工程、酶工程等现代生物技术在食品发酵业的应用。代生物学和分子生物学的发展,对基因工程、细胞工程、酶工程、发酵工程等现代生物技术工程产生重要影响,其在食品发酵生产中的应用越来越广。 关键词:生物技术;基因工程;细胞工程中图分类号:Q81 文献标识码:A 文章编号:1673-0992(2010)09A-0164-01 生物技术是21世纪高新技术革命的核心内容,具有巨大的经济效益及潜在的生产力。专家预测,到2010~2020年,生物技术产业将逐步成为世界经济体系的支柱产业之一。生物技术是以生命科学为基础,利用生物机体、生物系统创造新物种,并与工程原理相结合加工生产生物制品的综合性科学技术。现代生物技术则包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程等领域。在我国的食品工业中,生物技术工业化产品占有相当大的比重;近年,酒类和新型发酵产品以及酿造产品的产值占食品工业总产值的17%。现代生物技术在食品发酵领域中有广阔市场和发展前景,本文主要阐述现代生物技术在食品发酵生产中的应用。 一、基因工程技术在食品发酵生产中的应用基因工程技术是现代生物技术的核心内容,采用类似工程设计的方法,按照人类的特殊需要将具有遗传性的目的基因在离体条件下进行剪切、组合、拼接,再将人工重组的基因通过载体导入受体细胞,进行无性繁殖,并使目的基因在受体细胞中高速表达,产生出人类所需要的产品或组建成新的生物类型。发酵工业的关键是优良菌株的获取,除选用常用的诱变、杂交和原生质体融合等传统方法外,还可与基因工程结合,进行改造生产菌种。 (一)改良面包酵母菌的性能面包酵母是最早采用基因工程改造的食品微生物。将优良酶基因转入面包酵母菌中后,其含有的麦芽糖透性酶及麦芽糖的含量比普通面包酵母显著提高,面包加工中产生二氧化碳气体量提高,应用改良后的酵母菌种可生产出膨润松软的面包。 (二)改良酿酒酵母菌的性能利用基因工程技术培育出新的酿酒酵母菌株,用以改进传统的酿酒工艺,并使之多样化。采用基因工程技术将大麦中的淀粉酶基因转入啤酒酵母中后,即可直接利用淀粉发酵,使生产流程缩短,工序简化,革新啤酒生产工艺。目前,已成功地选育出分解β-葡聚糖和分解糊精的啤酒酵母菌株、嗜杀啤酒酵母菌株,提高生香物质含量的啤酒酵母菌株。 (三) 改良乳酸菌发酵剂的性能乳酸菌是一类能代谢产生乳酸,降低发酵产品pH值的一类微生物。乳酸菌基因表达系统分为组成型表达和受控表达两种类型,其中受控表达系统包括糖诱导系统、Nisin诱导系统、pH 诱导系统和噬菌体衍生系统。相对于乳酸乳球菌和嗜热链球菌而言,德氏乳杆菌的基因研究比较缺乏,但是已经发现质粒pN42和PJBL2用于构建德氏乳杆菌的克隆载体。有研究发现乳酸菌基因突变有2种方法:第一种方法涉及(同源或异源的)可独立复制的转座子,第二种方法是依赖于克隆的基因组DNA 片断和染色体上的同源部位的重组整合而获得。通过基因工程得到的乳酸菌发酵剂具有优良的发酵性能,产双乙酰能力、蛋白水解能力、胞外多糖的稳定形成能力、抗杂菌和病原菌的能力较强。 二、细胞工程技术在食品发酵生产中的应用细胞工程是生物工程主要组成之一,出现于20世纪70年代末至80 年代初,是在细胞水平上改变细胞的遗传特性或通过大规模细胞培养以获得人们所需物质的技术过程。细胞工程主要有细胞培养、细胞融合及细胞代谢物的生产等。细胞融合是在外力(诱导剂或促融剂)作用下,使两个或两个以上的异源(种、属间) 细胞或原生质体相互接触,从而发生膜融合、胞质融合和核融合并形成杂种细胞的现象。细胞融合技术是一种改良微生物发酵菌种的有效方法,主要用于改良微生物菌种特性、提高目的产物的产量、使菌种获得新的性状、合成新产物等。与基因工程技术结合,使对遗传物质进一步修饰提供了多样的可能性。例如日本味之素公司应用细胞融合技术使产生氨基酸的短杆菌杂交,获得比原产量高3倍的赖氨酸产生菌和苏氨酸高产新菌株。酿酒酵母和糖化酵母的种间杂交,分离子后代中个别菌株具有糖化和发酵的双重能力。日本国税厅酿造试验所用该技术获得了优良的高性能谢利酵母来酿制西班牙谢利白葡萄酒获得了成功。目前,微生物细胞融合的对象已扩展到酵母、霉菌、细菌、放线菌等多种微生物的种间以至属间,不断培育出用于各种领域的新菌种。 三、酶工程技术在食品发酵生产中的应用酶是活细胞产生的具有高效催化功能、高度专一性和高度受控性的一类特殊生物催化剂。酶工程是现代生物技术的一个重要组成部分,酶工程又称酶反应技术,是在一定的生物反应器内,利用生物酶作为催化剂,使某些物质定向转化的工艺技术,包括酶的研制与生产,酶和细胞或细胞器的固定化技术,酶分子的修饰改造,以及生物传感器等。酶工程技术在发酵生产中主要用于两个方面,一是用酶技术处理发酵原料,有利于发酵过程的进行。如啤酒酿制过程,主要原料麦芽的质量欠佳或大麦、大米等辅助原料使用量较大时,会造成淀粉酶、俘一葡聚糖酶、纤维素酶的活力不足,使糖化不充分、蛋白质降解不足,从而减慢发酵速度,影响啤酒的风味和收率。使用微生物淀粉酶、蛋白酶、一葡聚糖酶等制剂,可补充麦芽中酶活力不足的缺陷,提高麦汁的可发酵度和麦汁糖化的组分,缩短糖化时间,减少麦皮中色素、单宁等不良杂质在糖化过程中浸出,从而降低麦汁色泽。二是用酶来处理发酵菌种的代谢产物,缩短发酵过程,促进发酵风味的形成。啤酒中的双乙酰是影响啤酒风味的主要因素,是判断啤酒成熟的主要指标。当啤酒中双乙酰的浓度超过阈值时,就会产生一种不愉快的馊酸味。双乙酰是由酵母繁殖时生成的α-乙酰乳酸和α-乙酰羟基丁酸氧化脱羧而成的,一般在啤酒发酵后期还原双乙酰需要约5~10d 的时间。崔进梅等报道,发酵罐中加入α-乙酰乳酸脱羧酶能催化α-乙酰乳酸直接形成羧基丁酮,可缩短发酵周期,减少双乙酰含量。 四、小结在食品发酵生产中应用生物技术可以提高发酵剂的性能,缩短发酵周期,丰富发酵制品的种类。不仅提高了产品档次和附加值,生产出符合不同消费者需要的保健制品,而且在有利于加速食品加工业的发展。随着生化技术的日益发展,相信会开发出更多物美价廉的发酵制品,使生物加工技术在食品发酵工业中的应用更加广泛。参考文献

食品生物化学复习题

第一章糖 1.糖概念、糖的生物学功能。 2.糖的分类并举例。 3.葡萄糖在水溶液中分子存在形式。 4.单糖的性质(单糖的氧化、成脎作用) 5.双糖(蔗糖、麦芽糖、乳糖)的分子组成、糖苷键类型、及其性质。 6.多糖(淀粉、糖原、纤维素)的分子组成、糖苷键类型、有无还原性。 第二章脂类和生物膜 1.脂质(脂类)概念、脂类的生物学功能 2.三酯酰甘油的化学性质。 3.血浆脂蛋白的组成及其主要生理功能。 4.膜蛋白的分类及其各自特点。 5.生物膜结构流动镶嵌模型的主要内容。 6.生物膜的物质运输方式。 第三章核酸 1.核酸水解。 2.DNA和RNA化学组成的异同点。 3.核苷酸的生物学功能。 4. DNA的一级结构、RNA的一级结构. 5.DNA双螺旋结构的特点及稳定因素 6.核酸的颜色反应。 7.核酸的变性、变性的本质、变性后变化 8.核酸的复性、复性的本质、复性后变化。 9.增色效应、减色效应、解链温度、核酸杂交 第四章蛋白质 1、蛋白质的概念、蛋白质的生物学功能。 2、蛋白质中氮的含量,会计算题。 3、2种酸性氨基酸、3种碱性氨基酸。 4、氨基酸等电点,并会判断在不同的pH条件下氨基酸带什么电荷。 5.肽键、肽键平面 6、蛋白质的分子结构。(蛋白质一级、蛋白质二级、超二级结构、结构域、蛋白质三级和蛋白质四级结构的概念以及维持其结构的化学键。) 7、蛋白质等电点,并会判断在不同的pH条件下蛋白质带什么电荷。 8.蛋白质胶体性质维持的因素。 9.蛋白质沉淀的分类及蛋白质沉淀的方法。 10.蛋白质变性、本质及变性后性质的改变。 第五章酶 1.酶与一般催化剂相比的共性和特性。 2.单体酶、寡聚酶、多酶体系、全酶、辅酶、辅基、酶的活性中心、同工酶 3.酶可分为哪6大类。 4.影响酶促反应动力学的因素。 5.酶具有高效催化效率的因素。 第六章维生素与辅酶 一些常见的维生素缺乏症。 第七章生物氧化 1.生物氧化与非生物氧化的异同点。 2.呼吸链(即电子传递链)的概念、组成。 3.电子传递链抑制剂概念及其抑制部位。 3. 生物氧化、底物水平磷酸化、电子传递链磷酸化、P/O 4.化学渗透学说的内容。 5.影响氧化磷酸化的因素。 6.两种穿梭系统的比较。 第八章糖代谢 1..EMP反应过程、限速酶、能量计算、生物学意义。 2.TCA反应过程、限速酶、能量计算、生物学意义。 3. 糖异生的三步不可逆反应、生物学意义。 4. 血糖的来源与去路。 第九章脂代谢 1.脂肪酸的β-氧化过程,会能量计算(16个碳原子或18个碳原子饱和脂肪酸彻底氧化分解的能量计算)。 2.酮体有哪三种? 3.脂肪酸合成和β-氧化的比较。 4.糖代谢与脂代谢之间的相互联系。 第十章蛋白质代谢 1.氨基酸的脱氨基作用有哪几种? 2.鸟氨酸循环(即尿素循环)小结。 3.一碳基团、.翻译 4.什么是密码子?遗传密码有何特点? 5.蛋白质的生物合成过程。

现代食品生物技术重点

◆ 生物技术的确切定义: 人们运用现代生物科学,工程学和其他基础学科的知识,按照预先的设计,对生物进行控制和改造或模拟生物及其功能,用来发展商业性加工,产品生产和社会服务的新技术领域。 ◆ 生物技术的构成 ◆ 生物技术各构成成分之间的关系 现代生物技术的核心是基因工程,而现代生物技术的基础和归宿则是发酵工程和酶工程,否则就不能获得产品和经济效益,也就体现不了基因工程和细胞工程的优越性。 基因工程的定义: ▼ 是指按照人们的意愿和设计方案, ▼ 以分子生物学,分子遗传学,生物化学和微生物学为理论基础, ▼ 通过将一种生物细胞的基因分离出来或人工合成新的基因, 在体外进行酶切和连接并插入载体分子构成遗传物质的新组合, ▼ 导入到自身细胞或另一种细胞中进行复制和表达等实验手段, ▼ 有目的的实现动物,植物和微生物等物种之间的DNA 重组和转移, 使现有物种在短时间内趋于完善或创造出新的生物特性。 发酵工程的定义 : 基因工程 细胞工程 发酵工程 酶工程 蛋白质工程

利用微生物的某种特性,通过现代化工程技术手段进行工业规模生产的技术. 包括: ①传统发酵(有时称酿造), ②近代的发酵工业如酒精,如乳酸,丙酮-丁醇等 ③目前新兴的如抗生素,有机酸,氨基酸,酶制剂, 核苷酸,生理活性物质,单细胞蛋白等的发酵生产 酶工程的定义 : 酶工程是利用酶所特有的生物催化性能,将酶学理论与化工技术结合而成的一门生物技术。也就是利用离体酶或者直接利用微生物细胞,动植物细胞,细胞器的特定功能,借助于工程学手段来生产酶制剂并应用于相关行业的一门科学。 细胞工程的定义 : 是利用细胞生物学和分子生物学技术,通过类似于工程学的步骤,在细胞整体水平或细胞器水平上,按照人们的意愿改变细胞内的遗传物质已获得新型生物或特定细胞产品的一门综合性科学技术。 蛋白质工程的定义 : 蛋白质结构和功能的研究为基础,运用遗传工程的方法,借助计算机信息处理技术的支持,从改变或合成基因入手,定向地改造天然蛋白质或设计全新的人工蛋白质使之具有特定的结构、性质和功能,能更好地为人类服务的一种生物技术。 生物技术:农业生物技术、医药生物技术、食品生物技术、海洋生物

现代生物学技术

现代生物学技术 1:2010年诺贝尔生理学或医学奖:试管婴儿 2:人造生命“人造儿”菌落图 细胞工程与胚胎移植 一:细胞工程概述 1:细胞工程:以细胞为对象,应用生命理论科学理论,借助工程学原理和技术。 研究对象:动植物细胞(原生质体)。细胞器、染色体、细胞核、胚胎 2:生物工程:以生命科学为基础,用生物体系和工程学原理。生产生物制品和制造新物种的一种综合技术。 第一代生物工程:4000多年前—20世纪30年代 第二代生物工程:30年代—二战期间 微生物工程→生物化学工程→酶工程→基因工程→细胞工程→蛋白质工程(第二代基因工程)→组织工程→代谢工程 3:细胞工程发展历史 ①探索期:19世纪末—20世纪中期 动物:1885年卢克斯“组织培养”1907【美】哈林森 植物:1937年【荷兰】温特植物组织培养 ②诞生期:20世纪70年代 1956—1959年斯沃尔三倍体:三棘刺鱼 1959年张明觉试管兔 1962年仓鼠肾细胞悬浮培养 1965年哈里斯·沃特金斯灭活病毒诱导动物细胞融合 20世纪70年代高国楠聚乙二醇促使植物原生质体融合 1960年兰花无性繁殖 1972年【美】卡尔森NaNO3诱导烟草原生质体融合 4:快速发展时期:20世纪70年代——至今 1973年古各树里。植物活性物质生产新途径 1975年科勒·米尔斯坦单克隆抗体 1977年首例试管婴儿 1981年埃文斯·科夫曼分离小鼠胚胎干细胞 A:动植物人工繁殖技术:植物组织培养,人工育种,试管动物,克隆动物 B:细胞充足与新品种培育技术{细胞水平、细胞器水平} C:生物制品生产技术 D:细胞组织工程技术 二、动物细胞工程 1.动物细胞和组织培养 正常哺乳动物细胞四大生物学特征:锚地依赖性 血清依赖性生长因子 接触依赖性 形态依赖性细胞扁平状 2.细胞融合

(完整版)食品生物技术导论复习题

一、名词解释 诱变育种:利用诱变剂处理微生物细胞,提高基因突变频率,再通过适当的筛选方法获得所需高产优质菌种的方法。 代谢控制发酵:是指利用生物的、物理的、化学的方法,人为的改变微生物的代谢途径,使之合成、积累、分泌我们所需要的产品的过程。 寡核苷酸介导诱变(oligonucleotide-directed mutagenesis): 指在DNA水平上改变氨基酸 的编码序列,也称定点诱变(site-specific mutage nesis); 补料分批培养:在分批培养过程中补入新鲜的料液,以克服营养不足而导致的发酵过早结束的缺点。临界溶氧浓度:指不影响呼吸所允许的最低溶氧浓度。 诱导酶:有些酶在通常的情况下不合成或很少合成,当加入诱导物后就会大量合成,这样的酶叫诱导酶 固定化酶:通过物理的或化学的方法,将酶束缚于水不溶的载体上,或将酶束缚于一定的空间内,限制酶分子的自由流动,但能使酶发挥催化作用的酶 非水酶学:通常酶发挥催化作用都是在水相中进行的,研究酶在有机相中的催化机理的学科即为非水酶学? 抗体酶:是一种具有催化作用的免疫球蛋白,属于化学人工酶 细胞培养:是指动植物细胞在体外条件下的存活或生长,此时细胞不再形成组织. 愈伤组织:在人工培养基上由外植体长出来的一团无序生长的薄壁细胞。 接触抑制:细胞从接种到长满底物表面后,由于细胞繁殖数量增多相互接触后,不再增加。细胞系:原代细胞经第一次传代后,形成的细胞群体,即具有增殖能力,类型均匀的培养细胞,一般为有限细胞系。 抗性互补筛选法:利用亲本细胞原生质体对抗生素、除草剂及其它有毒物质抗性差异选择杂种细胞。细胞拆合:是指以一定的实验技术从活细胞中分离出细胞器及其组分,然后在体外一定条件下将不同细胞来源的细胞器及其组分进行重组,使其重新装配成为具有生物活性的细胞或细 胞器. 基因重组(gene recombination): 是指DNA片段在细胞内、细胞间,甚至在不同物种之间 进行交换,交换后的片段仍然具有复制和表达的功能。 克隆:来自同一始祖的相同副本或拷贝的集合。 限制性内切酶:限制酶是在生物体(主要是微生物)内的一种酶,能将外来的DNA切断,由于这种切割作用是在DNA分子内部进行的,故名限制性内切酶。 黏性末端:被限制酶切开的DNA两条单链的切口,带有几个伸出的核苷酸,他们之间正好互补配对,这样的切口叫黏性末端。 CCCDNA色大多数的天然DNA质粒具有共价、封闭、环状的分子结构,即CCCDN A 回文结构:在切割部位,一条链正向读的碱基顺序与另一条链反向读的顺序完全一致。 基因探针:是一段与目的基因互补的核酸序列,可以是DNA,也可以是RNA,用它与待测样品DNA 或RNA进行核酸分子杂交,可以判断两者的同源程度. Dot印迹杂交:将待测DNA或RNA的细胞裂解物变性后直接点在硝酸纤维素膜上,不需要限制性酶进行酶切,既可与探针进行杂交反应. cDNA文库:是指某生物某一发育时期所转录形成的cDNA片段与某种载体连接而成的克隆的 集合。 二、填空题 1.1972年斯坦福大学的Berg等人完成了首次体外重组实验,并首次用限制性内切酶切割 SV40的DNA片断与噬菌体的DNA片断,经过连接,组成重组DNA分子,他是第一个 实现DNA重组的人。

食品科学专业学校排名

1、中国农业大学 【专业特色】中国农大食品科学与工程专业是国家级重点学科。 本专业采用两段式培养方案。基础阶段,采用完全一致的教学计划;进入专业阶段后,划分为果蔬及饮料加工工艺、畜水产品加工工艺、粮油食品加工工艺、食品工程等4个专业方向。 成绩优秀者可免试推荐攻读研究生,部分可硕博连读或出国深造。 2、江南大学 【专业特色】江南大学(原无锡轻工大学)食品学院是中国食品工业最著名的学府之一,拥有国家重点学科、国家“211工程”重点建设的学科。 学院建有7个博士点、8个硕士点和食品科学与工程博士后流动站。 在本科生中推行导师制,通过师生双选,学生可自二年级起每人有1位导师给予专业指导。实施精英教育,组建试点班。学业优异者免试攻读硕士学位。 3、南昌大学 【专业特色】南昌大学食品科学与工程学科拥有国家重点学科、教育部食吕科学

重点实验室、江西省食品生物技术重点实验室,是南昌大学“211工程”国家重点 建设学科和江西省高校重点学科。 本学科发展具有浓郁的国际合作与交流特点。其江西中德联合研究院、江西南大 中德食品工程中心,是中德政府科技合作项目。 本学科在食物资源开发与利用、食品化学与营养、食品生物技术、食品加工与贮 藏方向上形成了自身特色。 近5年已承担国家自然科学基金项目7项,国家项目9项,省部级项目69项, 获得国家科技进步一等奖,国家级教学成果二等奖、省部级奖,发明专利7项。 4、上海交通大学 【专业特色】食品科学与工程是一门集生物、化学、物理、机电、化工等多学科 交叉渗透的学科。 从2003年起,农业与生物学院按“生物技术”和“环境生态类”两个专业招生。第二学年末,按学生前两学年的成绩、个人志向、社会需求预测等,经个人申请,院 校批准,可在学院所属专业中选读某一个专业。第一学年末,部分优秀学生可跨 学院重新选择专业。 此外,大多数学生可攻读第二学士学位。第7学期,一定比例的优秀生可直接攻

第十六章 基因表达的调节控制以及现代生物学技术

第十六章基因表达的调节控制以及现代生物学技术 一:填空题 1.正调控和负调控是基因表达的两种最基本的调节形式,其中原核细胞常用________________调控,而真核细胞常用________________调控模式。 2.操纵子由________________、________________和________________三种成分组成。 3.与阻遏蛋白结合的DNA序列通常被称为________________。 4.β-半乳糖甘酶基因的表达受到________________和________________两种机制的调节。 5.葡萄糖效应是指________________。 6.ticRNA是指________________;micRNA是指________________。 7.大肠杆菌细胞内参与His合成有关酶的基因表达受到________________和________________两种机制的调节。 8.________________或________________可诱导原核细胞出现严谨反应。 9.________________和________________被称为魔斑分子,它作为________________酶的别构效应物调节此酶的活性。 10.鼠伤寒沙门氏菌两种鞭毛蛋白表达之间的转换是通过________________机制实现的。 11.哺乳动物细胞对氨基蝶呤产生抗性,是因为细胞内的DHFR基因经历了________________。 12.在胚系细胞之中,抗体重链的基因可分为________________、________________、________________和 ________________四个区域。 13.在基因表达的调控之中,________________和________________与________________和________________之间的相互作用十分重要。 14.女性两条X染色体只有一条X染色体具有转录的活性是因为________________和________________。 15.乳糖操纵子的天然诱导物是________________,实验室里常用________________作为乳糖操纵子的安慰诱导物诱导β-半乳糖苷酶的产生。 16.基因扩增或基因放大是指________________,它是通过局部DNA的来实现,________________扩增可导致细胞癌变。 17.SPO1噬菌体通过________________级联调节早、中和晚期基因在不同时间内的表达。 18.存在于反式作用因子上负责激活基因转录的结构花色通常有________________、________________和 ________________三种形式。 19.真核细胞核基质的主要成分是________________。 20.组蛋白可经历________________、________________和________________修饰而调节基因的表达。 21.原核细胞DNA的甲基化位点主要是在________________序列上,真核细胞核DNA的甲基化位点则主要是在________________序列上。 22.反式作用因子通常通过________________、________________和________________键与相应的顺式作用因子结合。 23.PCR即是________________。 24.人类基因组计划的主要内容是________________。 25.Southern blotting、Northern blotting和Western blotting分别被用来检测________________、________________和________________。 26.________________是应用于蛋白质工程中的最主要的手段。 27.RFLP即是________________。 28.噬菌体展示(Phage display)技术中常用的噬菌体是________________。 29.基因工程需要的最常用的工具酶包括________________、________________和________________等。 30.基因克隆的载体通常是由________________、________________和________________改造而来。 31.可使用________________和________________方法获得原核细胞的启动子序列。 32.体外转录通常需要使用________________、________________或________________RNA聚合酶。 33.脉冲场凝胶电泳(Pulsed field gel electrophoresis)被用来分离________________。 34.第一个使用体细胞克隆出来的哺乳动物是________________。 35.一种基因的启动子序列与启动子的一致序列越相近,该基因的转录效率就越________________。 36.基因敲除(Gene knockout)即是________________,它是研究________________的好方法。 二:是非题 1.[ ]原核细胞与真核细胞的基因表达调节的主要发生在转录水平上。 2.[ ]衰减子这种调控模式不可能出现在真核细胞。 3.[ ]操纵子结构是原核细胞特有的。 4.[ ]某些蛋白质既可以作为阻遏蛋白又可以作为激活蛋白参与基因表达的调控。 5.[ ]转录因子都具有负责与DNA结合的结构花色。 6.[ ]某些反式作用因子通过亮氨酸拉链这种结构花色与DNA结合。 7.[ ]真核细胞的基因转录也具有抗终止作用。 8.[ ]真核细胞核的三类基因的转录都受到增强子的调节。 9.[ ]某一个基因的转录活性越强,则该基因所处的DNA序列对Ⅰ就越敏感。

食品生物技术基础复习总结

第1章绪论 第2章基因工程 一、概念理解 ①生物技术:生物技术是指综合运用现代生物学、化学和工程学的手段,直接或间接地 利用生物体、生命体系和生命活动过程生产有用物质的一门高级应用技术科学。 生物技术主要包括细胞工程、发酵工程、酶工程和基因工程四大领域。 ②食品生物技术:是现代生物技术在食品领域中的应用,是指以现代生命科学的研究成 果为基础,结合现代工程技术手段和其他学科的研究成果,用全新的方法和手段设计新型的食品和食品原料。 ③基因工程:就是按照预先设计的生物改造蓝图,在分子水平上对基因进行“切割”和 “粘接”,人为的用一种生物组织中的基因替换另一种生物组织中的基因,实现基因定向转移和重新组合,以达到定向改变生物遗传性状的目的。 所谓基因工程,就是利用DNA体外重组或扩增技术从供体生物基因组中分离感兴趣的基因或DNA片段,或是经过人工合成的方法获得基因,然后经过一系列切割,加工修饰, 再将其转入适当的受体细胞,以期获得基因表达的过程。 ④ 良食品的品质和形状,提高食品的营养价值、贮藏加工性状以及感官性状的技术。 ⑤基因重组:利用限制性内切酶和其他一些酶类,切割和修饰载体DNA和目的基因,并 将两者连接起来。 ⑥克隆(Cloning):外源基因的无性繁殖。具体指目的基因与载体连接成重组DNA以 后,将其导入受体细胞进行扩增和筛选,达到大量的重组分子的过程。(大肠杆菌是目前基因工程中最常用的受体细胞。) ⑦基因食品:转基因食品是利用分子生物学技术,将某些生物的基因转移到其他物种中 去,使其性状、营养品质、消费品质向人类所需要的目标转变。转基因食品大致可以分为两大类,一是改造现有的基因,使一些性状不表现出来;另外一类是导入其他的基因,从而产生新的性状。 二、思考题 1.什么是基因重组?DNA重组实验包括哪几个步骤? 答:基因重组就是利用限制性内切酶和其他一些酶类,切割和修饰载体DNA和目的基因,并将两者连接起来。一个典型的DNA重组实验包括以下几个步骤:①提取工体生物的目的基因(或称外源基因),通过限制性内切酶、DNA聚合酶连接到另一个DNA分子上(克隆),形成一个新的重组DNA分子;②将重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化(transformation);③对吸收了重组DNA的受体细胞进行筛选和鉴定;④对含有重组DNA的细胞进行大量培养,检测外源基因是否表达。 2.什么是限制性内切酶(RE)?简述其分类、特点及作用。(P30) 限制性内切酶是能够在特定部位限制性的切割DNA分子的内切酶。 限制性内切酶分类: I型:由三个基因构成,hsdR;hsdM;hsdS位于染色体上,三个基因构成一个复合体,限制酶需要ATP、Mg2+、SAM(5—腺苷甲硫氨酸)。 II型:限制与修饰基因产物独立起作用,在E. coli中这两种基因位于质粒上。 III型:修饰酶与I型酶相同,hsdM与hsdS基因产物结合成一亚单位,限制酶是独立

食品生物技术复习提纲

基因工程 1.质粒的种类及概念:质粒是细胞质中能自主复制的双链环状DNA分子,在细菌中独立于染色体之外而存在。种类:高拷贝数质粒载体,低拷贝数质粒载体,失控型质粒载体,插入失活型质粒载体,正选择的质粒载体 2.重组DNA技术概念:是指将一种生物体的基因与载体在体外进行拼接重组,然后转入另一种生物体内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术。 3.限制性内切酶的概念及种类:限制性核酸内切酶是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶。分类:I型限制性内切酶,II型~,III 型~ 4.DNA连接酶的概念及种类:能将两段DNA拼接起来的酶叫做DNA连接酶。该酶催化DNA相邻的5’磷酸基和3’羟基末端之间形成磷酸二酯键,将DNA单链缺口封合起来。种类:E·coli DNA连接酶:来源于大肠杆菌,可用于连接黏性末端;T4DNA连接酶:来源于T4噬菌体,可用于连接黏性末端和平末端;热稳定的DNA连接酶:来源于嗜热高温放线菌,能够在高温下催化两条寡核苷酸探针发生连接作用。 5.操纵子的组成:操纵子是由结构基因、调节基因、操纵基因、启动基因等组成的染色体上控制蛋白质合成的功能单位。 6.PCR技术的原理及操作注意事项:类似于DNA的天然复制过

程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR 由变性--退火--延伸三个基本反应步骤构成: ①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。注意事项:1:避免交叉污染。2:引物设计要正确。3:DNA 提取要成功。4:引物和模板和体系所加的比例要合适,模板过量会抑制体系的反应。5:跑胶时注意区分开EB污染区和清洁区 7.基因工程在食品产业中的应用的举例说明。利用基因工程改进食品生产工艺:改良啤酒大麦的加工工艺,改良小麦种子贮藏蛋白的烘烤特性,提高马铃薯的加工性能 8.基因工程的基本步骤:1.的分离或合成2.将与载体DNA连接,构建分子3.将分子导入受体细胞,并获得具有外源基因的个体4.的检测与鉴定5.的。

现代生物科学技术专题复习题(细胞工程)

现代生物科学技术专题复习题(细胞工程)2012、7 1、(2011 A .②和③过程会发生减数分裂过程 B .①阶段需生长素而③阶段需细胞分裂素 C .①阶段有细胞增殖但无细胞分化 D .此兰花的花药离体培养所得植株为二倍体 2、(2011西城)19.下列关于克隆的说法不正确的是 A .由一个受精卵发育为一个完整的个体叫做克隆 B .基因克隆是指某目的基因复制的过程 C .动物体细胞克隆要通过细胞核移植形成重组细胞 D .动物克隆的技术基础是动物细胞的培养 3、(2011海淀)26.下面的简式表示植物组织培养的大致过程,据此判断不正确的是 A .若①是来自不同植物体细胞融合的杂种细胞,则④可能出现不同植物的遗传特性 B .若①是花粉,则④是单倍体植株,经染色体加倍后可得到稳定遗传的品种 C .若①是人参细胞,对②进行扩大培养可提高细胞产物人参皂甙的产量 D .若①是具有杂种优势的农作物细胞,则利用③进行繁育会发生性状分离 4、(2011海淀)27.下列实例与所利用的技术或原理不相符合的是 A .转基因抗虫棉的培育需要利用植物组织培养技术 B .植物组织培养过程依据的原理是植物细胞具有全能性 C .原生质体融合和动物细胞融合都利用了细胞膜的选择透过性 D .植物愈伤组织的形成和杂交瘤细胞的培养都与细胞分裂有关 5、(2011朝阳期末)26.下列各项不属于细胞工程在实际中应用的是: A .培育工程菌使之能产生人生长激素 B .将甲植物细胞内的叶绿体移入乙植物细胞内 C .将番茄的原生质体和马铃薯的原生质体融合,培育出“番茄—马铃薯” D .能够产生抗体的B 细胞与小鼠骨髓瘤细胞融合制备单克隆抗体 6、(2011朝阳期末)39.下列有关克隆的叙述,错误的是 A .动物难以克隆的根本原因是基因组中的基因不完整 B .细胞克隆可用于从普通细胞系中分离出缺乏特殊基因的突变细胞系 C .“多利”绵羊的性状与供核绵羊不完全相同 D .克隆动物的核心技术手段是核移植,属于无性生殖 7、(20XX 年江苏卷)14.关于现代生物技术应用的叙述,错误的是 A .蛋白质工程可合成自然界中不存在的蛋白质 B .体细胞杂交技术可用于克隆动物和制备单克隆抗体 C .植物组织培养技术可用于植物茎尖脱毒 D .动物细胞培养技术可用于转基因动物的培育 8、(2011石景山期末)40.利用细胞工程方法,以SARS 病毒蛋白质外壳为抗原制备出单克隆抗体。下列叙述正确的是 A .用纯化的蛋白质外壳反复注射到小鼠体内,即可获得单克隆抗体 B .体外培养单个效应B 细胞,即可获得针对SARS 病毒的单克隆抗体 C .将等量效应B 细胞和骨髓瘤细胞混合,诱导融合后的细胞均为杂交瘤细胞 D .给小鼠注射抗原,是为了获得能产生相应抗体的效应B 细胞 9、(2011丰台期末)49.下列关于单克隆抗体的叙述,不正确的是 A .小鼠骨髓瘤细胞和经免疫的 B 淋巴细胞融合可制备单克隆抗体 B .动物细胞融合不同于原生质体融合的诱导因素是灭活病毒 C .单克隆抗体比血清抗体的特异性强、纯度高 D .单克隆抗体技术的原理是细胞全能性 10、(20XX 年石景山期末)我国西北一些地区年降雨量小于450mm ,只适宜种植灌木和草,但却被硬性规定种植属于乔木的杨树,结果防护林成为残败的“灰色长城”。其失败的原因主要是违背了 A .物种多样性原理 B .协调与平衡原理 C .系统整体性原理 D .物质循环再生原理 11、(20XX 年崇文区期末)城市生活垃圾要做到分类、回收、利用,实现废物资源化利用所遵循的生态工程原理是 A .物种多样性原理 B .整体性原理 C .物质循环再生原理 D .协调与平衡原理

食品生物技术(复习专用)

一、名词解释 1、基因:是具有遗传效应的DNA片段。 2、质粒:质粒存在于许多细菌以及酵母菌等生物中,是细胞染色体外能够自主复制的很小的环状DNA分子。 3、限制酶:是可以识别特定的核苷酸序列,并在每条链中特定部位的两个核苷酸之间的磷酸二酯键进行切割的一类酶 4、基因工程:又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 5、酶工程:是指工业上有目的的设置一定的反应器和反应条件,利用酶的催化功能,在一定条件下催化化学反应,生产人类需要的产品或服务于其它目的的一门应用技术。 6、末端转移酶:是一种无需模板的DNA聚合酶,催化脱氧核苷酸结合到DNA 分子的3'羟基端。 7、葡萄糖淀粉酶:又称糖化酶。它能把淀粉从非还原性未端水解a-1.4葡萄糖苷键产生葡萄糖,也能缓慢水解a-1.6葡萄糖苷键,转化为葡萄糖。同时也能水解糊精,糖原的非还原末端释放β-D-葡萄糖。 8、相对酶活力:具有相同酶蛋白量的固定化酶与游离酶活力的比值称为相对酶活力。 9、α-淀粉酶:可以水解淀粉内部的α-1,4-糖苷键,水解产物为糊精、低聚糖和单糖,酶作用后可使糊化淀粉的黏度迅速降低,变成液化淀粉,故又称为液化淀粉酶、液化酶、α-1,4-糊精酶。 10、甲基化酶:作为限制与修饰系统中的一员,用于保护宿主DNA 不被相应的限制酶所切割。 11、葡萄糖异构酶:也称木糖异构酶,能将D-葡萄糖、D-木糖、D-核糖等醛糖可逆地转化为相应的酮糖。 12、发酵工程:是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。13、补料分批发酵:又称“流加发酵”,是指在微生物分批发酵过程中,以某种方式向发酵系统中补加一定物料,但并不连续地向外放出发酵液的发酵技术,是介

食品生物技术复习资料

食品生物技术复习资料 1、生物技术:利用生物体系,应用先进的生物学和工程技术,加工或不加工底物原料,以提供所需的各种产品或达到某种目的的一门新型跨学科技术。 2.基因:具有生物学功能的DNA分子片断,是一个分子遗传的功能单位。其本质是DNA,以线形方式存在于染色体上。 第二章基因工程及其在食品工业中应用 基因工程:DNA重组技术的产业化设计与应用,包括上游技术和下游技术两大组成部分 (广义的基因工程)。上游技术指的是外源基因重组、克隆和表达的设计与构 建(即狭义的基因工程);而下游技术则涉及到含有重组外源基因的生物细胞 (基因工程菌或细胞)的大规模培养以及外源基因表达产物的分离纯化过程。 在食品工业中应用是:食品原料或食品微生物的改良。 1、限制性内切酶 (一)种类 I型:切点识别特异性差,应用价值不大。 II型:切点识别特异性强,识别序列和切割序列一致。广泛应用于基因工程。 2、DNA连接酶 由同尾酶产生的DNA片段,是能够通过其粘性末端之间的互补作用彼此连接起来的。 功能:催化DNA中相邻的3`-OH和5`-P之间形成磷酸二脂键。 来源:E.coli DNA连接酶:需要NAD作为辅助因子 3、质粒 概念:存在于细菌、放线菌及酵母细胞质中双螺旋共价闭环的DNA(cccDNA),能独立复制并保持恒定遗传的复制子。 4.目的基因采取的两条途径: (1) 生物学方法(2)酶促合成法或化学合成法 5.基因工程载体应具备的条件: 1、本身是一个复制子,能自我复制 2、相对分子质量要小 3、有选择标记 4、具有单一的限制性内切酶位点 6.基因重组:将目的基因在体外连接构建成重组子。主要靠T4 DNA连接酶 7.转化:是指受体细胞直接摄取供体细胞游离的DNA片段,将其同源部分进行碱基配对, 组合到自己的基因中,从而获得供体细胞的某些遗传性状。 8.感受态:指受体细胞能吸收外源DNA分子而有效地作为转化受体的生理状态。 9.基因工程在食品工业中应用 (1)改良食品加工原料 1、动物:牛生长激素:提高母牛产奶 猪生长激素:使猪瘦肉型化

相关文档
相关文档 最新文档