文档库 最新最全的文档下载
当前位置:文档库 › 概率分布 速查表

概率分布 速查表

大学概率论与数理统计复习资料

第一章 随机事件及其概率 知识点:概率的性质 事件运算 古典概率 事件的独立性 条件概率 全概率与贝叶斯公式 常用公式 ) ()()()()()2(加法定理AB P B P A P B A P -+= ) ,,() ()(211 1 有限可加性两两互斥设n n i i n i i A A A A P A P ∑===) ,(0 )()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==) ()()()()5(AB P A P B A P B A P -==-) () ()()()(时当A B B P A P B A P B A P ?-==-))0(,,()()/()()()6(211 >Ω=∑=i n n i i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ) ,,()] (1[1)(211 1 相互独立时n n i i n i i A A A A P A P ∏==--=) /()()/()()()4(B A P B P A B P A P AB P ==) (/)()/()3(A P AB P A B P =) () /()() /()()/()7(1 逆概率公式∑== n i i i i i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P n r A P ==

应用举例 1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。 2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。 3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。 4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P ( )。 5、,,A B C 是三个随机事件,C B ?,事件()A C B - 与A 的关系是( )。 6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。 某日他抛一枚硬币决定乘地铁还是乘汽车。 (1)试求他在5:40~5:50到家的概率; (2)结果他是5:47到家的。试求他是乘地铁回家的概率。 解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的}, i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有 )|()()|()()(2221212A B P A P A B P A P B P += 由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P 35.05.03.04.05.0)(2=?+?=B P (2)由贝叶斯公式 7 4 35.04.05.0)()()|(22121=?== B P B A P B A P 8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛 后仍放回盒中,求:第三次比赛时取到3个新球的概率。 看作业习题1: 4, 9, 11, 15, 16

概率统计分布表(常用)

标准正态表

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

常用的概率分布类型其特征

常用的概率分布类型及其特征 3.1 二点分布和均匀分布 1、两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取0和1。它服从的分布称两点分布。 其概率分布为: 其中 Pk=P(X=Xk),表示X取Xk值的概率: 0≤P≤1。 X的期望 E(X)=P X的方差 D(X)=P(1—P) 2、均匀分布 如果连续随机变量X的概率密度函数f(x)在有限的区间[a,b]上等于一

个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E(X)=(a+b)/2 X的方差 D(X)=(b-a)2/12 3.2 抽样检验中应用的分布 3.2.1 超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0,1,…… X的期望 E(X)=nd/N

X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2)3.2.2 二项分布 超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: 0

卡方分布概念及表和查表方法

若n个相互独立的随机变量ξ?,ξ?,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。 目录 1简介 2定义 3性质 4概率表 简介 分布在数理统计中具有重要意义。分布是由阿贝(Abbe)于1863年首先提出的,后来由海尔墨特(Hermert)和现代统计学的奠基人之一的卡·皮尔逊(C K·Pearson)分别于1875年和1900年推导出来,是统计学中的一个非常有用的著名分布。 定义 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为分布(chi-square distribution), 卡方分布是由正态分布构造而成的一个新的分布,当自由度很大时,分布近似为正态分布。

对于任意正整数x,自由度为的卡方分布是一个随机变量X的机率分布。 性质 1) 分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数 的增大,分布趋近于正态分布;卡方分布密度曲线下的面积都是1。 2) 分布的均值与方差可以看出,随着自由度的增大,分布向正无穷方向延伸(因为均值越来越大),分布曲线也越来越低阔(因为方差越来越大)。 3)不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。 4) 若互相独立,则:服从分布,自由度为 。 5) 分布的均数为自由度,记为 E( ) = 。 6) 分布的方差为2倍的自由度( ),记为 D( ) = 。 概率表 分布不象正态分布那样将所有正态分布的查表都转化为标准正态分布去查,在 分布中得对每个分布编制相应的概率值,这通过分布表中列出不同的自由度来表示, 查分布概率表时,按自由度及相应的概率去找到对应的值。如上图所示的单侧概率(7)=的查表方法就是,在第一列找到自由度7这一行,在第一行中找到概率这一列,行列的交叉处即是。 表中所给值直接只能查单侧概率值,可以变化一下来查双侧概率值。例如,要在自由度为7的卡方分布中,得到双侧概率为所对应的上下端点可以这样来考虑:双侧概率指的是在

概率统计分布表(常用)

. 标准正态表 x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 .

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

概率统计分布表常用

标准正态表 x 0.00 0.01 0.02 0.03 0.04 0.05 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布 摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。 关键词:二项分布;Poisson 分布;正态分布;定义;性质 一、二项分布 二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生 这种分布的重要现实源泉是所谓的伯努利试验。 (一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布) 1.泊努利试验 在许多实际问题中,我们感兴趣的是某事件A 是否发生。例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。 为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = () q p A P =-=1。 2.泊努利分布 定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数, 则??? ? ??ξp q 10 ~,称ξ服从参数为)10(<

《概率统计》公式、符号汇总表

《概率统计》公式、符号汇总表及各章要点 (共3页) 第一章 均独立。 与与与此时独立与B A B A B A B P A P AB P B A B P AB P B A P ,,);()()( ) ()()( (1)?=?= ) () ()()( )()()()()( )3() (1)( )()( A B )()()( )()()()()( )()()()( )2(11A P B P B A P A B P B P B A P B P B A P A P A P A P B P A P AB P A P B A P A P A B P B P B A P AB P AB P B P A P B A P i i i n n ?= ?++?=-=-?-=-?=?=-+= 第二、三章 一维随机变量及分布:X , i P , )(x f X , )(x F X 二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F *注意分布的非负性、规范性 (1)边缘分布:∑ = j ij i p P ,? +∞ ∞ -= dy y x f x f X ),()( (2)独立关系:J I IJ P P P Y X =?独立与 或)()()(y f x f y x f Y X =, ),,(1 1n X X 与),,(21n Y Y 独立),,(1 1n X X f ?与),,(21n Y Y g 独立 (3)随机变量函数的分布(离散型用列表法) 一维问题:已知X 的分布以及)(X g Y =,求Y 的分布-------连续型用分布函数法 二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,max =、{}Y X N ,min =的分布- ? ? +∞ ∞ -+∞ ∞ --=-= dy y y z f dx x z x f z f Z ),(),()( M 、N 的分布---------连续型用分布函数法 第四章 (1)期望定义:离散:∑= i i i p x X E )( 连续:?? ? +∞∞ -+∞ ∞-+∞ ∞ -= = dxdy y x xf dx x xf X E ),()()( 方差定义:)()(]))([()(2 2 2 X E X E X E X E X D -=-= 离散:∑-=i i i p X E x X D 2 ))(()( 连续:? +∞ ∞ --= dx x f X E x X D X )())(()(2

概率统计公式大全(复习重点)汇总

第一章随机事件和概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点 第二章知识点: 1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。 2.常用离散型分布: (1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为 12{},{}1(01) P X x p P X x p p ====-<<, 则称X 服从 12 ,x x 处参数为p 的两点分布。 两点分布的概率分布:12{},{}1(01) P X x p P X x p p ====-<< 两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =- (2)二项分布: 若一个随机变量X 的概率分布由式 {}(1),0,1,...,. k k n k n P x k C p p k n -==-= 给出,则称X 服从参数为n,p 的二项分布。记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,. k k n k n P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =- (3)泊松分布: 若一个随机变量X 的概率分布为{},0,0,1,2,... ! k P X k e k k λ λλ-==>=,则称X 服从参 数为λ的泊松分布,记为X~P (λ) 泊松分布的概率分布:{},0,0,1,2,... ! k P X k e k k λ λλ-==>= 泊松分布的期望: ()E X λ=;泊松分布的方差:()D X λ= 4.连续型随机变量: 如果对随机变量X 的分布函数F(x),存在非负可积函数 ()f x ,使得对于任意实数x ,有 (){}()x F x P X x f t dt -∞ =≤=? ,则称X 为连续型随机变量,称 ()f x 为X 的概率密度函数, 简称为概率密度函数。 5.常用的连续型分布:

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为: ,,,,21i x x x ξ取每一个值),2,1( =i x 的概率p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

概率统计分布表

概率统计分布表 标准正态表 x 0、00 0、01 0、02 0、03 0、04 0、05 0、06 0、07 0、08 0、09 0、0 0、5000 0、5040 0、5080 0、5120 0、5160 0、5199 0、5239 0、5279 0、5319 0、5359 0、1 0、5398 0、5438 0、5478 0、5517 0、5557 0、5596 0、5636 0、5675 0、5714 0、5753 0、2 0、5793 0、5832 0、5871 0、5910 0、5948 0、5987 0、6026 0、6064 0、6103 0、6141 0、3 0、6179 0、6217 0、6255 0、6293 0、6331 0、6368 0、6406 0、6443 0、6480 0、6517 0、4 0、6554 0、6591 0、6628 0、6664 0、6700 0、6736 0、6772 0、6808 0、6844 0、6879 0、5 0、6915 0、6950 0、6985 0、7019 0、7054 0、7088 0、7123 0、7157 0、7190 0、7224 0、6 0、7257 0、7291 0、7324 0、7357 0、7389 0、7422 0、7454 0、7486 0、7517 0、7549 0、7 0、7580 0、7611 0、7642 0、7673 0、7704 0、7734 0、7764 0、7794 0、7823 0、7852 0、8 0、7881 0、7910 0、7939 0、7967 0、7995 0、8023 0、8051 0、8078 0、8106 0、8133 0、9 0、8159 0、8186 0、8212 0、8238 0、8264 0、8289 0、8315 0、8340 0、8365 0、8389 1、0 0、8413 0、8438 0、8461 0、8485 0、8508 0、8531 0、8554 0、8577 0、8599 0、8621 1、1 0、8643 0、8665 0、8686 0、8708 0、8729 0、8749 0、8770 0、8790 0、8810 0、8830 1、2 0、8849 0、8869 0、8888 0、8907 0、8925 0、8944 0、8962 0、8980 0、8997 0、9015 1、3 0、9032 0、9049 0、9066 0、9082 0、9099 0、9115 0、9131 0、9147 0、9162 0、9177 1、4 0、9192 0、9207 0、9222 0、9236 0、9251 0、9265 0、9279 0、9292 0、9306 0、9319 1、5 0、9332 0、9345 0、9357 0、9370 0、9382 0、9394 0、9406 0、9418 0、9429 0、9441 1、6 0、9452 0、9463 0、9474 0、9484 0、9495 0、9505 0、9515 0、9525 0、9535 0、9545 1、7 0、9554 0、9564 0、9573 0、9582 0、9591 0、9599 0、9608 0、9616 0、9625 0、9633 1、8 0、9641 0、9649 0、9656 0、9664 0、9671 0、9678 0、9686 0、9693 0、9699 0、9706 1、9 0、9713 0、9719 0、9726 0、9732 0、9738 0、9744 0、9750 0、9756 0、9761 0、9767 2、0 0、9772 0、9778 0、9783 0、9788 0、9793 0、9798 0、9803 0、9808 0、9812 0、9817

概率统计公式符号汇总表

《概率统计》公式、符号汇总表及各章要点 (共3页) 第一章 第二、三章 一维随机变量及分布:X , i P , )(x f X , )(x F X 二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F *注意分布的非负性、规范性 (1)边缘分布:∑=j ij i p P ,?+∞ ∞ -=dy y x f x f X ),()( (2)独立关系:J I IJ P P P Y X =?独立与 或)()()(y f x f y x f Y X =, ),,(11n X X Λ与),,(21n Y Y Λ独立),,(11n X X f Λ?与),,(21n Y Y g Λ独立 (3)随机变量函数的分布(离散型用列表法) 一维问题:已知X 的分布以及)(X g Y =,求Y 的分布-------连续型用分布函数法 二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,m ax =、{}Y X N ,m in =的分布- M 、N 的分布---------连续型用分布函数法 第四章 (1)期望定义:离散:∑= i i i p x X E )( 连续:? ? ? +∞∞-+∞ ∞ -+∞ ∞ -== dxdy y x xf dx x xf X E ),()()( 方差定义:)()(]))([()(2 2 2 X E X E X E X E X D -=-= 离散:∑-=i i i p X E x X D 2))(()( 连续:? +∞ ∞ --= dx x f X E x X D X )())(()(2 协方差定义:)()()())]())(([(),(Y E X E XY E Y E Y X E X E V X COV -=--= 相关系数定义:) ()(),(Y D X D Y X COV XY = ρ K 阶原点矩定义:)( K k X E ?μ K 阶中心矩定义:]))([( K k X E X E -?σ (2)性质:

概率分布查表联系

1. 若某班学生统计学成绩服从正态分布) ,(25 80~N X ,任从中抽取一个同学,试问该同学的成绩在以下范围内的概率: (1)85)P(X ≤=()8413.0)1(1 58085580= Φ=≤=?? ? ??-≤-Z P X P (2)75)P(X ≤ =()1587.08413.01)1(1)1(1580755 80=-=Φ-=-Φ=-≤=??? ??-≤-Z P X P (3)85)X P(75≤≤ =()[]6827 .018413.0*21)1(2)1(1)1()1()1(11580855805 8075=-=-Φ=Φ--Φ=-Φ-Φ=≤-=??? ??-≤-≤-=Z P X P π

(4)85) X P(70≤≤19772.08413.01)2()1()]2(1[)1()2()1(-+=-Φ+Φ=Φ--Φ=-Φ-Φ= (5)90)P(X ≥ 9772.01)2(1)2(1)2(-=Φ-=≤-=≥=Z P Z P 2. 查表计算有关t 分布 (1)132.2)4(t 0.05= (2)169.3)10(t -2 0.01-= (3)10.01.476)5(t ==αα, (4)05.0-2.447)6(t -2 ==αα, (5)103.169)n (t 0.005==n ,

(6)112.718)n (t 2 0.02==n , 3. 查表计算有关2 χ分布 (1)307.18102 0.05 =)(χ (2)975.04.404122==αχα,) ( (3)511.072n 20.05==n ,)(χ (4)看下图查表,在( )处写出正式表达方式和具体数值。

概率统计分布表(常用)

标准正态表 x0.000.010.020.030.040.050.060.070.080.09 0.00.50000.50400.50800.51200.51600.51990.52390.52790.53190.5359 0.10.53980.54380.54780.55170.55570.55960.56360.56750.57140.5753 0.20.57930.58320.58710.59100.59480.59870.60260.60640.61030.6141 0.30.61790.62170.62550.62930.63310.63680.64060.64430.64800.6517 0.40.65540.65910.66280.66640.67000.67360.67720.68080.68440.6879 0.50.69150.69500.69850.70190.70540.70880.71230.71570.71900.7224 0.60.72570.72910.73240.73570.73890.74220.74540.74860.75170.7549 0.70.75800.76110.76420.76730.77040.77340.77640.77940.78230.7852 0.80.78810.79100.79390.79670.79950.80230.80510.80780.81060.8133 0.90.81590.81860.82120.82380.82640.82890.83150.83400.83650.8389

1.00.84130.84380.84610.84850.85080.85310.85540.85770.85990.8621 1.10.86430.86650.86860.87080.87290.87490.87700.87900.88100.8830 1.20.88490.88690.88880.89070.89250.89440.89620.89800.89970.9015 1.30.90320.90490.90660.90820.90990.91150.91310.91470.91620.9177 1.40.91920.92070.92220.92360.92510.92650.92790.92920.93060.9319 1.50.93320.93450.93570.93700.93820.93940.94060.94180.94290.9441 1.60.94520.94630.94740.94840.94950.95050.95150.95250.95350.9545 1.70.95540.95640.95730.95820.95910.95990.96080.96160.96250.9633 1.80.96410.96490.96560.96640.96710.96780.96860.96930.96990.9706 1.90.97130.97190.97260.97320.97380.97440.97500.97560.97610.9767 2.00.97720.97780.97830.97880.97930.97980.98030.98080.98120.9817 2.10.98210.98260.98300.98340.98380.98420.98460.98500.98540.9857 2.20.98610.98640.98680.98710.98750.98780.98810.98840.98870.9890 2.30.98930.98960.98980.99010.99040.99060.99090.99110.99130.9916 2.40.99180.99200.99220.99250.99270.99290.99310.99320.99340.9936 2.50.99380.99400.99410.99430.99450.99460.99480.99490.99510.9952 2.60.99530.99550.99560.99570.99590.99600.99610.99620.99630.9964

概率分布期望方差汇总

1.编号1,2,3的三位学生随意入座编号为 1, 2 , 3的三个座位,每位学生坐一个座位 设与座位编号相同的学生的个数是 X. (1) 求随机变量X 的分布列; (2) 求随机变量X 的数学期望和方差. 解(1)P ( X=0)= _L =1 - A 33 ; P ( X=1)=-C3 = 1 ; P ( X=3)= 2 =丄; A 3 2 A 3 6 (2) E (X ) =1 X 丄 +3 X 丄=1. 2 6 D (X ) =(1-0) 2 1 +(1-1) 2 丄+(3-1) 2 1 =1. 3 2 6 2某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次 随机地摸岀一个球,记下颜色后放回,摸岀一个红球可获得奖金 10元;摸岀两个红 球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次,令X 表示 甲、乙两人摸球后获得的奖金总额.求: (1 ) X 的分布列; (2) X 的均值. 解 (1 ) X 的所有可能取值为0,10,20,50,60. 9 1 9 P(X=50)= X =- 10 102 1 000 1 1 P(X=60)= 3 = . ' 103 1 000 故X 的分布列为 P (X=0 ) @ 1 = 729 10 = 1 000 P ( X=10)」X 「2 X C 2 X 丄 10 〔0 丿 10 10 9 X 一 = 243 1 000 P(X=20)= 丄 X C 2 X 丄 X ?= 10 10 10 18 1 000

729 243 18 9 (2 ) E ( X ) =0 X +10 X -243+20 X 18+50 X — +60 X 1 000 1 000 1 000 1 000 1 =3.3(兀). 1 000 ' ' 3 (本小题满分13分) 为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生 产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含 (1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量; (2)当产品中的微量元素x,y满足x》175 ,且y》75时,该产品为优等 品。用上述样本数据估计乙厂生产的优等品的数量; (3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数?的分布列极其均值(即数学期望)。 & 98 解:(1)7,5 7=35,即乙厂生产的产品数量为35件。 14 (2)易见只有编号为 2 , 5的产品为优等品,所以乙厂生产的产品中

相关文档