文档库 最新最全的文档下载
当前位置:文档库 › 碳纤维表面处理对碳纤维_NR复合材料性能的影响

碳纤维表面处理对碳纤维_NR复合材料性能的影响

碳纤维表面处理对碳纤维_NR复合材料性能的影响
碳纤维表面处理对碳纤维_NR复合材料性能的影响

碳纤维表面处理对碳纤维/NR 复合材料性能的影响

张岩梅1,2,陆春华1,许仲梓1

(1.南京工业大学材料学院,江苏南京 210009;2.徐州工业职业技术学院,江苏徐州 221140)

摘要:试验研究碳纤维表面处理对碳纤维/NR 复合材料性能的影响。结果表明,碳纤维经表面处理后表面沟槽加宽、加深,粗糙度增大,可改善其与橡胶基体的粘合性。与未处理碳纤维/NR 复合材料相比,浓硝酸表面处理3h 的碳纤维/NR 复合材料的拉伸强度提高46%,耐磨性提高5%;300℃×20min 高温氧化表面处理碳纤维/NR 复合材料的拉伸强度和耐磨性均提高38%;浓硝酸处理1h 后再加113份钛酸酯偶联剂的碳纤维/NR 复合材料拉伸强度提高25%;碳纤维经浓硝酸处理1h 后再进行表面浸胶,复合材料的耐磨性提高34%。 关键词:NR ;碳纤维;表面处理;复合材料

中图分类号:TQ332;TQ342+1742 文献标识码:B 文章编号:10002890X (2006)0920542204

作者简介:张岩梅(19672),女,江苏淮安人,徐州工业职业技术学院副教授,南京工业大学在读硕士研究生,主要从事高分子材料的研究。

碳纤维是由有机纤维或低分子烃气体原料加热至1000℃以上,在惰性气体保护下炭化制得的碳质量分数019以上的纤维状碳材料。它具有高强度、高模量、减震吸能、耐疲劳、耐腐蚀、导电、导热及耐磨损等优异性能,应用范围在不断扩大。碳纤维复合材料在航空航天、汽车工业、新能源、医疗器材和体育娱乐器材等领域得到广泛应用[1,2]。

碳纤维补强橡胶复合材料因碳纤维的加入使材料的物理性能提高,而且具有良好的导电和耐磨性能。碳纤维补强橡胶多采用碳短纤维制造,在制造过程中碳短纤维与橡胶的紧密粘合是首先要解决的问题。

碳纤维表层结构致密,经不同方法处理后,碳纤维表面不饱和碳原子易于氧化,成为新的活性点,而且能提高碳纤维的比表面积和表面粗糙度;同时碳纤维表面化学结构发生变化。碳纤维经表面处理后,不仅可除去碳纤维生产过程中产生的焦油等表面污染沉积物,而且因表面氧化而引入含氧基团,如羟基、羰基、羧基和酯基等。由于含氧量增大,碳纤维对水的润湿能力大幅度提高,反映出表面亲液性的改善,使得碳纤维与基体界面相容性提高,从而有很好的粘合效果[1]。

本工作研究碳纤维表面处理对碳纤维与NR 粘合性及复合材料性能的影响。1 实验111 原材料

NR ,海南省农垦总公司产品;PAN 基碳纤

维,上海合成纤维研究所产品;其它为市售配合剂。112 试验配方

NR 100,氧化锌 5,硬脂酸 2,硫黄 2.5,促进剂DM 1.5,促进剂TM TD 0.5,碳

纤维 3.4。113 主要仪器与设备

WQB 22500B 型拉力机,江都试验机械厂产

品;邵尔L X 2A 型橡胶硬度计,江都市真威试验机械有限责任公司产品;J SM 25900型扫描电子显微

镜(SEM ),日本电气公司产品。114 碳纤维的表面处理方法

常用的碳纤维表面处理方法有气相氧化法、液相氧化法、偶联剂法、阳极电解氧化法和等离子体刻蚀法等[3]。本工作采用高温氧化、浓硝酸、钛酸酯偶联剂法及浸胶法对碳纤维进行表面处理。

(1)浓硝酸处理:将碳纤维剪成8~10mm 的小段,在浓硝酸中分别浸泡0.5,1,3和6h 。

(2)高温氧化:将碳短纤维在300℃的烘箱中分别加热20,40,60和80min 。

(3)钛酸酯偶联剂处理:在混炼过程中分别加

入1.3,2和3份钛酸酯偶联剂。

(4)浸胶处理:用二甲苯将混炼胶溶解制成胶浆,再将经过浓硝酸处理0.5和1h 的碳纤维进行表面上浆,在80℃下烘干待用。115 混炼工艺

将经过不同方法处理得到的碳短纤维在开炼机上按常规加料程序加入到NR 胶料中进行混炼。116 性能测试硫化胶的各项物理性能均按相应国家标准进行测试。2 结果与讨论

211 碳纤维表面及复合材料断面形貌

未经表面处理的碳纤维表面及复合材料断面

形貌的SEM 照片分别如图1和2所示。从图1可以看到,碳纤维表面光滑,能看到表面浅而窄的沿纤维轴向平行排列的沟槽,这是碳纤维生产过程中原丝自身遗留下来的[4]。由图2可见,复合材料中祼露的碳纤维表面光滑,说明两相界面结合较差

图1 未经表面处理的碳纤维表面SEM

照片

图2 未经表面处理的碳纤维/NR 复合材料

断面形貌SEM 照片

经浓硝酸和高温氧化处理后的碳纤维表面

SEM 照片分别如图3和4所示,其复合材料断面形貌的SEM 照片如图5和6所示。由图3和4可见,经表面处理后碳纤维表面轴向沟槽明显加宽、加深,尤其是高温氧化处理后的碳纤维表面凹凸更明显、更粗糙,使其比表面积增大。比表面积增大有利于碳纤维与橡胶基体间产生物理锲合,即锚定效应,从而提高复合材料的物理性能。

由图5和6可见,碳纤维表面有粘附的橡胶,这是由于表面处理使碳纤维表面有一定程度的氧

化刻蚀,因而与基体的界面粘合性提高。

3 经浓硝酸表面处理的碳纤维表面SEM 照片

图4 经高温氧化表面处理的碳纤维表面SEM 照片

图5 经浓硝酸表面处理的碳纤维/NR 复合材料

断面形貌SEM 照片

图6 经高温氧化表面处理的碳纤维/NR复合材料

断面形貌SEM照片

212 复合材料物理性能

未处理碳纤维/N R复合材料的物理性能见表1。由表1可见,与未加碳纤维的N R胶料相比,加入未处理碳纤维后,材料的邵尔A型硬度、300%定伸应力和耐磨性明显提高,拉伸强度和拉断伸长率减小。这是由于未处理短纤维与橡胶的界面结合较差。

表1 未处理碳纤维/NR复合材料物理性能

项 目空白未处理碳纤维

邵尔A型硬度/度3645

300%定伸应力/MPa 1.72 4.39

拉伸强度/MPa21.0617.43

拉断伸长率/%690640

拉断永久变形/%2831

撕裂强度/(kN?m-1)3335

阿克隆磨耗量/cm30.6030.333

(1)浓硝酸表面处理

浓硝酸表面处理碳纤维/NR复合材料物理性能测试结果见表2。由表2可见,碳纤维表面经过浓硝酸处理后,复合材料邵尔A型硬度、拉伸强度、300%定伸应力和拉断伸长率(处理1和3h)均有所提高。浓硝酸处理时间为3h的复合材

表2 浓硝酸表面处理碳纤维/NR复合材料的物理性能

项 目

浓硝酸处理时间/h 015136

邵尔A型硬度/度46485148 300%定伸应力/MPa7.998.289.11 6.46拉伸强度/MPa21.4123.7425.4418.32拉断伸长率/%570950930600拉断永久变形/%30303030撕裂强度/(kN?m-1)48453423阿克隆磨耗量/cm30.4660.4140.3160.518料物理性能和耐磨性最佳,较未处理碳纤维/NR 复合材料的拉伸强度提高46%,耐磨性提高5%。

(2)高温氧化

高温氧化表面处理碳纤维/NR复合材料物理性能测试结果见表3。由表3可知,碳纤维经过300℃×20min高温处理后,复合材料拉伸强度和耐磨性均较未处理碳纤维/N R复合材料提高38%;随着高温氧化时间的延长,材料性能有所下降,因此高温氧化时间不宜太长。

表3 高温氧化表面处理碳纤维/NR复合材料物理性能项 目

高温氧化时间/min

20406080

邵尔A型硬度/度47444444 300%定伸应力/MPa 4.05 3.73 2.83 2.97

拉伸强度/MPa24.0023.6122.6822.48

拉断伸长率/%580610630610

拉断永久变形/%30313030

撕裂强度/(kN?m-1)44353633

阿克隆磨耗量/cm30.2070.2520.3570.411

(3)加入钛酸酯偶联剂

加入钛酸酯偶联剂对复合材料物理性能的影响见表4。由表4可知,未经处理碳纤维中加2份偶联剂效果较好。碳纤维经过浓硝酸处理1h 后再加1.3份偶联剂复合材料物理性能较等量未处理碳纤维复合材料有所提高,其中复合材料拉伸强度提高25%。

表4 钛酸酯偶联剂对复合材料物理性能的影响项 目

偶联剂用量/份

1131)21)31)1132)

邵尔A型硬度/度48414249 300%定伸应力/MPa 5.11 2.42 2.71 4.45

拉伸强度/MPa12.5219.2116.7621.72

拉断伸长率/%480660640605

拉断永久变形/%31312831

撕裂强度/(kN?m-1)32393139

阿克隆磨耗量/cm30.8130.6880.7230.784

注:1)未处理碳纤维;2)经浓硝酸处理1h碳纤维。

(4)碳纤维表面浸胶

碳纤维表面浸胶对复合材料物理性能的影响见表5。由表5可知,经浓硝酸处理1h再浸胶的碳纤维/NR复合材料物理性能与未浸胶碳纤维/ N R复合材料相比,300%定伸应力、撕裂强度和拉断伸长率减小,但耐磨性提高34%。这是由于

表5 碳纤维表面浸胶对复合材料物理性能的影响

项 目

浓硝酸处理时间/h 11)0151)12)

邵尔A型硬度/度474348 300%定伸应力/MPa 6.63 3.088.28

拉伸强度/MPa17.4416.7423.74

拉断伸长率/%570540950

拉断永久变形/%313030

撕裂强度/(kN?m-1)442345

阿克隆磨耗量/cm30.219 1.0240.414

注:1)浸胶;2)未浸胶。

浸胶后碳短纤维易结成块状,混炼时不易分散均匀,但碳纤维浸胶后与橡胶的粘合性能提高。

3 结论

碳纤维经表面处理后表面沟槽加宽、加深,粗糙度增大,改善了其与橡胶基体的粘合性。

与未处理碳纤维/N R复合材料相比,浓硝酸表面处理3h的碳纤维/N R复合材料的拉伸强度提高46%,耐磨性提高5%;300℃×20min高温氧化处理碳纤维/NR复合材料的拉伸强度和耐磨性均提高38%;浓硝酸处理1h后再加113份钛酸酯偶联剂的碳纤维/NR复合材料拉伸强度提高25%;碳纤维经浓硝酸处理1h后再进行表面浸胶,复合材料的耐磨性提高34%。

参考文献:

[1]贺 福.碳纤维及其应用技术[M].北京:化学工业出版社,

2004.

[2]吴人洁.复合材料[M].天津:天津大学出版社,2000.

[3]乌云其其格.碳纤维表面处理[J].高科技纤维与应用,2001,

26(5):25227.

[4]刘 杰,郭云霞,梁节英.碳纤维表面电化学氧化的研究[J].

化工进展,2004,23(3):282.

第3届全国橡胶工业用织物和骨架材料技术研讨会论文

河南轮胎集团两子午线轮胎项目开工中图分类号:U4631341+16 文献标识码:D

河南轮胎集团年产15万条工程机械子午线轮胎和500万条轿车子午线轮胎项目近日在河南焦作西部工业集聚区开工建设。

这两个子午线轮胎项目是2006年河南省重点建设项目,计划总投资20亿元,投产后每年可新增销售收入30亿元、利税5亿元。

河南轮胎集团负责人表示,该集团将认真落实项目建设环境保护设施必须与主体工程同时设计、同时施工、同时投产的“三同时”规定,加大环保设施的投入力度,并力争使该项目早日投产见效。

(摘自《中国化工报》,2006207207)

埃尼计划在华组建4万t级橡胶工厂中图分类号:TQ33315 文献标识码:D

法国化工巨头埃尼公司与重庆长寿化工集团计划合资组建一个年产量为4万t的CR合资公司,目前合资方式已基本确定。

重庆长寿化工集团是国内两大CR生产商之一,年产量为2万多吨。两家合资建立的新公司主要以法国埃尼公司的设备进行生产,新公司将成为国内最大的CR生产企业。法国埃尼公司主要将生产设备和部分生产技术折算成现金入股,大约5000万欧元。重庆长寿化工集团则负责将其生产设备进行改造后,以电石为原料进行生产。

(摘自《中国化工报》,2006207211)

超低温翻胎胶料Supercool

中图分类号:TQ33611+6 文献标识码:D

英国《轮胎与配件》2006年5期74页报道:

G oodway橡胶工业公司是一家胶料和其它有关制品,包括翻胎的供应商。该公司采用创新技术获得一种性能优异的胶料———Supercool Hi2 M。这种胶料已通过了几个国家在公路和高速公路上进行的试验,获得良好声誉。

技术先进的Supercool Hi2M胶料可保证翻新轮胎在公路上长时间连续稳定地安全行驶,即使在任何干、湿和高、低温条件下的沥青路上快速行驶,也能提供优异的抓着性和行驶稳定性。

已证明该胶料采用N R/SR并用并加入了专用助剂,能有效地控制生热和提高耐磨性能。对于运输公司来说,有可能使油耗量降至最低,减小单位里程运输成本。

最终结果是提高了轮胎使用性能。实际上一家亚洲汽车运输公司对Supercool Hi2M赞不绝口,采用该胶料翻新的5条轮胎创下了每条行驶14万km的记录,轮胎性能优异且稳定。一条Super2 cool Hi2M翻新轮胎的价格只有新胎价格的1/2。

(涂学忠摘译)

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

聚丙烯腈基碳纤维的制备-表面处理

碳纤维表面处理 碳纤维作为一种具有高强度高模量的先进材料,通常需要与其他基体材料进行复合制备成复合材料进行使用。由于碳纤维本身经过1300℃以上的高温处理,纤维中90%以上由碳元素组成,纤维表面活性官能团很少,具有较强的惰性,与高分子树脂等基体进行复合时,纤维与树脂的结合较差,影响纤维优异力学性能的发挥,并最终影响复合材料的性能。因此在碳纤维制备过程中,通常需要对碳纤维进行表面处理,增加其表面的活性基团,增强与树脂等基体之间的结合。 5.3.1 表面处理方法 由于碳纤维表面处理对其复合材料性能提高的作用,因此表面处理方法的研究也是碳纤维制备技术研究的重点。经过多年的研究,科研工作者开发了多种对碳纤维进行表面处理方法,表5.11列出了可以对碳纤维进行表面处理的不同方法及其影响因素。在这些处理方法中,目前应用在工业化生产上的基本上都是电解氧化法。 表5.11 碳纤维表面处理方法和影响因素 序 号 类型处理方法影响因素 1 气相氧化O2、O3、NO2、NO、SO2、NH3、空气、水蒸气/空气、NO/ 空气 时间、温度、浓度、流量2 液相氧化HNO3、H2O、KMnO4、NaClO3、Na2Cr2O7/H2SO4、H2O2/ H2SO4、 NaClO3/ H2SO4、KMnO4/ H2SO4 时间、温度、组成比例、 3 电解氧化氨水、碳酸氢铵、H2SO4、HNO3、H3PO4、NaOH、KOH、NaCl、 Na2CO3、NH4NO3、NaHCO3等水溶液时间、电压、电流密度、电解质浓度 4 催化氧化硝酸铜、醋酸铜、硝酸铅、硝酸亚铅、硝酸铁、硫酸铁、硝 酸铋、钒酸盐、钼酸盐 时间、温度、催化剂量 5 电引发聚 合物涂层丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯腈、苯乙烯、 醋酸乙烯、丙烯酰胺、乙烯基吡咯烷 时间、电压、电流、溶剂、 单体浓度 6 聚合物电 沉积涂层苯乙烯、乙酸乙烯酯、甲基丙烯酸甲酯、乙烯基甲基醚与马 来酸酐共聚物 时间、电压、电流、溶剂、 共聚物离子浓度 7 表面涂覆PVA、PVC、PAN、硅烷物,硬性聚氨酯炭黑树脂组成含量、涂覆量 8 高温气相 沉积SiC、TiC、TiO2、ErC、NiC、B、BN、NbC、TaC、石墨晶须、 碳 温度、时间、载气、试剂 含量 9 表面聚合 物接枝丙烯酸、丙烯酸甲酯、苯乙烯、丙烯腈-苯乙烯、丙烯腈、异 氰酸酯 时间、氧化程度、接枝量、 浓度 10 等离子体 处理O2、NH3、Ar、N2、空气、SiC涂层、AN聚合时间、真空度、功率、流 动速度 11 电子辐照γ射线等辐照剂量、时间 5.3.1.1 气相氧化法 气相氧化法是将碳纤维暴露在气相氧化剂(如空气、氧等)中,在加温、加催化剂等特殊

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维表面处理

学院:材料科学与工程学院 研究方向:炭纤维及复合材料题目:炭纤维表面处理研究进展

炭纤维表面处理研究进展 摘要:本文简单介绍了炭纤维的表面性质,比如比表面积、粗糙度、表面化学结构、表面的润湿性,并针对国内外对炭纤维进行表面处理的气相氧化法、液相氧化法、电化学氧化法等方法进行论述,以及SEM、TMA、ILSS、XPS等表征手段进行分析,由于界面表征手段的多样性,和界面作为另一新相的特点,对未来研究工作的研究重点进行论述。 关键词:炭纤维;表面处理;表征方法;复合材料 1. 前言 ℃) —1400℃) 2000—3000℃)上图为制取沥青基炭纤维的整个过程,但是炭纤维一般很少直接

应用,大多是经过深加工制成中间产物或复合材料使用,由于在高温惰性气体中炭化处理,随着非碳元素的逸走和碳的富集,使其表面活性降低,表面张力降低,与基体的润湿性变差。此外,为了提高炭纤维的拉伸强度应尽可能的减少表面缺陷,因此比表面积也较小,一般不超过1㎡/g。这样平滑的表面与基体的锚定效应也较差,导致复合材料的层间剪切强度的降低,达不到实用设计的要求,为使炭纤维表面由增液性变为亲液性,就要对炭纤维表面处理使它的ILSS由55—70MPa提高到90MPa或95MPa,因此对炭纤维进行表面处理是使炭纤维用于实际投入市场的关键步骤,使性能达到实用和设计的要求。石墨纤维更需要表面处理。 2 炭纤维的表面性质 2.1 炭纤维的比表面积和表面粗糙度 对于高性能炭纤维,比表面积一般在1㎡/g以下,活性比表面积更小。经过表面处理后,活性表面积显著提高,炭纤维几乎提高2倍,ILSS也随之提高很多 2.2 炭纤维的表面化学结构 炭纤维表面不仅有焦油污染物而且含活性基团较少,表现出憎液性,表面处理时,不仅氧化刻蚀除去表面沉积物,而且进行表面氧化而引入含氧基团,呈现亲液性,化学反应历程如下:由C-H氧化成羟基进而成羰基最后氧化成羧基。处理后引入含氧官能团,表面含氧量显著增加,对水的润湿性大幅度提高,最终导致复合材料ILSS的显著提高。

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

碳纤维的表面处理

新产品与新技术 碳纤维的表面处理 吴 庆 陈惠芳 潘 鼎 (东华大学材料学院 上海200051) 摘 要 本文综述了碳纤维的表面结构与性能,介绍了两种通用的碳纤维表面处理方法:电化学氧化法和等离子氧化法;同时也总结了碳纤维表面处理对提高碳纤维/树脂复合材料界面的粘接机理。 关键词 碳纤维,表面处理,复合材料界面,粘接机理,IL SS SURFACE TREATMENT OF CARBON FIBER Wu Qing Chen Huifang Pan Ding (Material Depatment of Donghua University,Shanghai200051) Abstract A review of the surface structure and performance of carbon fiber is presented.Two general surface treatment method of carbon fiber is introduced:electrochemical and plasma oxidation; The adhesion mechanisms contributing to the improvements in the interface of carbon fiber/resin com2 posites are also summarized. K ey w ords carbon fiber,surface treatment,composite interface,adhesion mechanism,IL SS 碳纤维(CF)具有高比强度、高比模量、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异的性能[1],这些性能使其成为近年来最重要的增强材料之一,从而在很多领域都得到了广泛的应用。 碳纤维绝大多数是以复合材料的形式使用,其中,又以碳纤维增强树脂基复合材料(CFRP)为应用的主要形式[2]。复合材料的性能不仅取决于其组成材料,更取决于其组成材料之间的界面质量,良好的界面结合能有效地传递载荷,充分发挥增强纤维的高强高模的特性,提高复合材料的机械性能[3]。但碳纤维/树脂两相界面之间的粘接性能相当差[4]。这就导致两者间较差的应力转移,以致不能充分发挥出复合材料潜在的力学性能。所以必须对碳纤维进行表面处理[5],从而提高复合材料的层间剪切强度(IL SS)。 本文将首先简要介绍碳纤维的表面结构与性能,在此基础上介绍两种通用的表面处理方法,并尝试对表面处理对界面粘接强度的促进机理作出解释。 1 碳纤维的表面结构与性能 111 碳纤维的结构 碳纤维一般是用分解温度低于熔融点温度的纤维状聚合物通过千度以上固相热解而制成的[6]。因此,碳纤维实际上几乎是纯碳(含碳量90%以上)。在热裂解下,排出其它元素,形成石墨晶格结构。但实际的碳纤维结构并不是理想的石墨点阵结构,而是属于“乱层石墨结构”[7]。在乱层石墨结构中,石墨层片是一级结构单元,其直径约为200!;碳纤维的二级结构单元是石墨微晶,石墨微晶一般由数张到数十张层片组成,微晶厚度L c约100!,微晶直径L a约200!,层片与层片之间的距离叫面间距d(d约为314!);由石墨微晶再组成原纤结构,其直径为500!左右,长度为数千!,这是纤维的三级结构单元。最后由原纤结构组成碳纤维的单丝,直径一般为6~8μm。 通过在氧气(O2)等离子体中用腐蚀方法研究碳

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

碳纤维表面处理

碳纤维表面处理阅读报告 碳纤维是用分解温度低于熔融温度的纤维聚合物, 通过千度以上固相热解而制成的具有比强度高、比模量高、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能, 在航天、航空等高科技领域中被广泛用于碳纤维增强复合材料。 表面物理性能主要包括表面形貌、表面沟槽大小及分布、表面粗糙度、表面自由能等。从表面形态上看, 碳纤维的表面有很多孔隙、凹槽、杂质及结晶, 这些对复合材料的粘结性能有很大影响。碳纤维表面的化学反应活性与其活性基团的浓度密切相关,而这些活性基团主要为羟基、羧基和环氧基团等含氧官能团,故O/C比(氧元素与碳元素比值)可以间接反映碳纤维的化学活性 传统的粘合理论认为被粘物表面的不规则性有利于粘合剂的填入,固化后粘合剂和被粘物表面发生咬合而固定,同时表面粗糙的被粘物会增加真实的粘结面积,粘合强度亦随表面粗糙度的增加而增加,所以碳纤维表面沟槽状态和表面粗糙度可能对其界面强度有影响。常用的表面处理方法有氧化法和非氧化法两大类。 氧化法 1.气相氧化法 气相氧化法是将碳纤维暴露在气相氧化剂(如空气、O3等) 中, 在加温、加催化剂等特殊条件下使其表面氧化生成一些活性基团(如羟基和羧基)。经气相氧化法处理的碳纤维所制成的CFRP,弯曲强度、弯曲模量、界面剪切强度(IFSS) 和层间剪切强度(ILSS) 等力学性能均可得到有效提高, 但材料的冲击强度降低较大。此法按氧化剂的不同, 通常分为空气氧化法和臭氧氧化法。采用空气氧化时, 氧化温度对处理效果有显著影响。臭氧氧化法由于具有时间短、设备工艺简单、氧化缓和等特点, 也得到了广泛的应用。近年来, 利用惰性气体氧化法进行表面处理,也得到了研究人员的关注。 2. 液相氧化法 液相氧化法是采用液相介质对碳纤维表面进行氧化的方法。常用的液相介质有浓硝酸、混合酸和强氧化剂等。液相氧化法相比气相氧化法较为温和, 一般不使纤维产生过多的起坑和裂解。但是其处理时间较长, 与碳纤维生产线匹配难, 多用于间歇表面处理 3. 阳极氧化法 阳极氧化法, 又称电化学氧化表面处理, 是把碳纤维作为电解池的阳极、石墨作为阴极, 在电解水的过程中利用阳极生成的“氧”, 氧化碳纤维表面的碳及其含氧官能团, 将其先氧化成羟基, 之后逐步氧化成酮基、羧基和CO2的过程4等离子体氧化法 等离子体法主要是通过等离子体撞击碳纤维表面,从而刻蚀碳纤维表层,使其表面的粗糙度增加,表面积也相应增加。由于等离子体粒子一般具有几个到几十个电子伏特的能量,使得碳纤维表面发生自由基反应,并引入含氧极性基团。等离子体法还有可能使碳纤维表面微晶晶格遭到破坏,从而减小其微晶尺寸。 非氧化法 1. 表面涂层改性法 表面涂层改性法的原理是将某种聚合物涂覆在碳纤维表面, 改变复合材料 界面层的结构与性能, 使界面极性等相适应以提高界面粘结强度, 同时提供一个可消除界面内应力的可塑界面层。活性涂层可显著改善复合材料的剪切性能, 而

碳纤维表面处理的方法有

填空题 1. 碳纤维表面处理的方法有、、 和。 2. 纤维增强树脂的机械性能特点:、、 、。 3. 玻璃纤维增强水泥(GRC)中玻璃纤维的掺量范围。 4. 复合材料选用聚合物需要考虑的因素、、 。 5. 玻璃纤维表面处理方法有:、、。 6. 无机胶凝材料根据硬化条件不同分为和。 7. 镁质胶凝材料的原料主要有和。 8. 碳纤维表面处理的方法有、、 和。 9. 提高纤维增强塑料耐水性的方法有:、、 和。 判断题 1. 无碱玻璃纤维比有碱玻璃纤维耐酸性好。( ) 2. 菱镁矿的煅烧温度比白云石要高,菱镁矿的煅烧温度约为800~850°C,白云石的煅烧温度约为650~760°C。( ) 3. β型半水石膏硬化浆体比α型半水石膏硬化浆体的强度高。( ) 4. 在高分子化合物中引入庞大的侧基可以提高高分子化合物的热变形性。( ) 5. 用聚丙烯腈原丝制备碳纤维的碳化阶段,随热处理温度提高,纤维弹性模量和拉伸强度均提高。( ) 6. 活性填料与惰性填料在不同的场合,对于不同的树脂可以相互转化。( ) 7. 纤维状、片状填料既可以提高材料的机械强度也可提高材料的成型加工性能。( ) 8. 纤维增强塑料(FRP)的疲劳强度随纤维体积含量增加而提高。( ) 9. 树脂的电性能与其分子结构密切相关,一般,分子极性越大,电绝缘性越好。( ) 10. 纺织型浸润剂在玻璃钢成型时不必除去,可直接使用。( ) 11. 硅橡胶属于通用合成橡胶。( ) 12. 结晶聚合物没有精确的熔点,只存在一个熔融范围。( ) 13. 合成橡胶比天然橡胶工艺性好。( ) 14. 无碱玻璃纤维比有碱玻璃纤维耐水性好。( ) 15. 玻璃纤维增强水泥(GRC)的强度随纤维掺量增加而提高。( ) 16. 在玻璃纤维增强水泥(GRC)中,采用粉煤灰或细砂代替部分水泥用量,不仅能大大提高基体的体积稳定性,而且能提高GF的增强效果和复合材料的基本性

碳纤维及复合材料的种类、制备和应用

碳纤维及复合材料的种类、制备及应用 杨晨材研0906 (北京化工大学材料学院,100029) 摘要:本文主要陈述总结了复合材料及其碳纤维的种类、制备及应用方面的相关知识。 关键词:碳纤维;复合材料;种类;制备;应用 1.复合材料 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。具有比强度高,比模量高,剪切强度和剪切模量高,高温性能高,耐热性高等特性广泛应用于各个领域。 1.1种类 复合材料按其性能高低可分为常用复合材料和先进复合材料;根据其用途可分为结构复合材料和功能复合材料;按照复合方式可分为宏观复合材料和微观复合材料。根据不同增强体形式可分为纤维复合材料、颗粒复合材料、片材复合材料和叠层复合材料。还有,可以根据基体材料的不同细分为:聚合物基复合材料、金属基复合材料和无机非金属基复合材料。本文主要以基体材料的细分方式介绍复合材料的制备及其应用。 其生产流程见图1.1。 图1.1 复合材料制品的生产流程图 1.2聚合物基复合材料 聚合物基复合材料是聚合物或俗称树脂作为基体与粒状、片状、纤维状填充组分作为增强体的复合材料。按基体的不同还可以分成热固性树脂基、热塑性树脂基和橡胶基。

1.2.1制备 其主要制备方法有:预浸料、手糊成型工艺、喷射成型、袋压成型、模压成型、纤维缠绕成型、拉挤成型、熔融流动成型、增强反应注射成型和树脂传递模塑。 1.2.2应用 聚合物基复合材料在建筑、化学、交通运输、机械电器、电子工业及医疗、国防、航天航空及火箭等领域都有广泛应用。如手糊成型制得的广播卫星抛物面天线、太阳能电池帆板;纤维缠绕成型可制得雷达罩、火箭发动机壳、压力容器;模压成型制得的整体浴室和汽车保险杠等等。 1.3金属基复合材料 金属基复合材料是以金属、合金和金属间化合物为基体,以无机纤维和金属间化合物等为增强体,通过浸渗、固结工艺制成的复合材料。根据其基体的种类可细分为轻金属基、高熔点金属基和金属间化合物基。 1.3.1制备 金属基复合材料的主要制备工艺方法有:固相法、液相法和原位复合法。固相法主要有粉末冶金、固态热压法、热等静压法;液态法主要有真空压力浸渍法、挤压铸造法;原位复合法主要包括共晶合金定向凝固、直接金属氧化物法、反应生成法。 1.3.2应用 金属基复合材料主要可应用于航天、航空、汽车、医疗、体育用品等领域。如航天飞机中段主机身的B/Al关键桁架、臂状支柱;齿轮;高尔夫球杆击球头及各种支架等等。 1.4无机非金属基复合材料 无机非金属复合材料主要有陶瓷基复合材料、水泥基复合材料和碳基复合材料。 1.4.1陶瓷基复合材料 陶瓷基复合材料是以陶瓷材料为基体,并以陶瓷、碳纤维和难熔金属的纤维、晶须、晶片和颗粒为增强体,通过适当的复合工艺所构成的复合材料。主要可细分为高温陶瓷基复合材料、玻璃基复合材料和玻璃陶瓷基复合材料。 其制备工艺主要有:粉末冶金法(颗粒)、浆体法(液体法)、热压烧结法、液态浸渍法、直接氧化法、溶胶-凝胶法、化学气相浸渍法(CVI)、先驱体转化和反应熔融浸渗(RMI)等。 陶瓷基复合材料可应用于切削工具方面及航空航天领域的研究。如刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强炭化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

碳纤维复合材料

碳纤维复合材料 编辑本段概况 在复合材料大家族中,纤维增强材料一直是人们关注的焦点。自玻璃纤维与有机树脂复合的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,性能不断得到改进,使其复合材料领域呈现出一派勃勃生机。下面让我们来了解一下别具特色的碳纤维复合材料。 编辑本段结构 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。 碳纤维是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。 碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。 编辑本段用途 碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。 碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。

碳纤维复合材料

碳纤维的研究现状与发展 摘要:碳纤维主要是由碳元素组成的一种特种纤维,分子结构界于石墨和金刚石之间,含碳体积分数随品种而异,一般在0.9以上。 关键词:碳纤维复合材料性能与应用 正文 一、碳纤维的性能 1.1分类 根据原丝类型分类可分为聚丙烯腈(PAN)基、沥青基和粘胶基3种碳纤维,将原丝纤维加热至高温后除杂获得。目前,PAN碳纤维市场用量最大;按力学性能可分为高模量、超高模量、高强度和超高强度4种碳纤维;按用途可分为宇航级小丝束碳纤维和工业级大丝束碳纤维,其中小丝束初期以1K、3K、6K(1K为1000根长丝)为主,逐渐发展为12K和24K,大丝束为48K以上,包括60K、120K、360K和480K等。 1.2性能 碳纤维的主要性能:(1)密度小、质量轻,密度为1.5~2克/立方厘米,相当于钢密度的l/4、铝合金密度的1/2;(2)强度、弹性模量高,其强度比钢大 4-5倍,弹性回复l00%;(3)具有各向异性,热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂;(4)导电性好,25。C时高模量纤维为775μΩ/cm,高强度纤维为1500μΩ/cm;(5)耐高温和低温性好,在3000。C非氧化气氛下不融化、不软化,在液氮温度下依旧很柔软,也不脆化;(6)耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀。此外,还有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。

通常,碳纤维不单独使用,而与塑料、橡胶、金属、水泥、陶瓷等制成高性能的复合材料,该复合材料也具有轻质、高强、耐高温、耐疲劳、抗腐蚀、导热、导电等优良性质,已在现代工业领域得到了广泛应用。 1.3应用领域 由于碳纤维具有高强、高模、耐高温、耐疲劳、导电、导热等特性,因此被广泛应用于土木建筑、航空航天、汽车、体育休闲用品、能源以及医疗卫生等领域。此外,碳纤维在电子通信、石油开采、基础设施等领域也有着广泛的应用,主要用于放电屏蔽材料、防静电材料、分离铀的离心机材料、电池的电极,在生化防护、除臭氧、食品等领域种也有出色的表现。碳纤维复合材料片。碳纤维复合材料片是采用常温固化的热固性树脂(通常是环氧树脂)将定向排列的碳纤维束粘结起来制成的薄片。把这种薄片按照设计要求,贴在结构物被加固的部位,充分发挥碳纤维的高拉伸模量和高拉伸强度的作用,来修补加固钢筋混凝土结构物。日本、美国、英国将该材料用于加固震后受损的钢筋混凝土桥板,增强石油平台壁及耐冲击性能的许多工程上,获得了突破性进展。碳纤维复合材料片具有轻质(比重是铁的1/4~1/5),拉伸模量比钢高10倍以上,耐腐蚀性能优异,可以手糊,工艺性好等优点。因此,碳纤维复合材料片在修补加固已劣化的钢筋混凝土结构物(约束裂纹发展、防止混凝土削落)和提高结构物耐力以及对用旧标准设计建成的钢筋混凝土结构物的补强、加固应用将越来越多。 二、生产工艺 通常用有机物的炭化来制取碳纤维,即聚合预氧化、炭化原料单体—原丝—预氧化丝—碳纤维。碳纤维的品质取决于原丝,其生产工艺决定了碳纤维的优劣。以聚丙烯腈(PAN)纤维为原料,干喷湿纺和射频法新工艺正逐步取代传统的碳纤维制备方法。 2.1干喷湿纺法 干喷湿纺法即干湿法,是指纺丝液经喷丝孔喷出后,先经过空气层(亦叫干段),再进入凝固浴进行双扩散、相分离和形成丝条的方法。经过空气层发生的物理变化有利于形成细特化、致密化和均质化的丝条,纺出的纤维体密度较高,

碳纤维制备工艺简介

碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。 一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、

管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。 虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国

碳纤维及其复合材料

碳纤维及其复合材料研究进展 摘要:本文简述了碳纤维的基本特性及其制造方法,并阐述了不同基体碳纤维增强复合材料的性能与制备工艺,以及当前碳纤维增强复合材料的研究应用现状,并展望其未来的发展方向。 关键词:碳纤维结构与性能增强复合材料 碳纤维(carbon fiber)它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。与传统的玻璃纤维(GF)相比,杨氏模量是其3倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。有学者在1981年将PAN基CF浸泡在强碱NaOH溶液中,时间已过去30多年,它至今仍保持纤维形态。碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能。此外,还具有纤维的柔曲性和可编性。碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用。因此碳纤维及其复合材料近几年发展十分迅速。 1碳纤维的结构、特性以及分类 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。其是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。 碳纤维是纤维状的碳材料,由有机纤维原丝在1000℃以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料。 碳纤维的结构取决于原丝结构和碳化工艺, 但无论用哪种材料, 碳纤维中碳原子平面总是沿纤维轴平行取向。用x-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构,如图1-1。构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面。在层

相关文档
相关文档 最新文档