文档库 最新最全的文档下载
当前位置:文档库 › 肿瘤新疗法一代谢调节治疗

肿瘤新疗法一代谢调节治疗

肿瘤新疗法一代谢调节治疗
肿瘤新疗法一代谢调节治疗

肿瘤免疫治疗新方法

自体细胞免疫疗法 CIK (cytokine-induced killer,中文名:[自体细胞免疫疗法]多种细胞因子诱导的杀伤细胞) 是将人外周血单个核细胞在体外用多种细胞因子(如抗CD3单克隆抗体、IL-2和IFN-γ等)共同培养一段时间后获得的一群异质细胞。由于该种细胞同时表达CD3+和CD56+两种膜蛋白分子,故又被称为NK细胞样T淋巴细胞,兼具有T淋巴细胞强大的抗瘤活性和NK细胞的非MHC限制性杀瘤优点。因此,应用CIK细胞被认为是新一代抗肿瘤过继细胞免疫治疗的首选方案。CIK细胞中的效应细胞CD3+和CD56+细胞在正常人外周血中极其罕见,仅1%—5%。[1] CIK特点 CIK细胞中的效应细胞CD3+CD56+细胞在正常人外周血中极其罕见,仅1%~5%,在体外经多因子培养28~30天,CD3+CD56+细胞迅速增多,较培养前升幅可达1000倍以上。实验证明,扩增出的CD3+CD56+细胞来源于CD3+CD56-T细胞,而非 CD3-CD56+NK细胞。同时发现在CD3+CD56-的T 细胞中,除 CD4-CD8-T细胞外,其余三种T 细胞亚群(CD4-CD8+、CD4-CD8-、CD4+CD8+)均可通过体外多因子培养而获得CD56分子的表达,

而由于CD4+CD8+细胞和CD4-CD8-细胞在正常人外周血中含量极低而间接提示此CD3+CD56+细胞绝大多数来源于外周血中 CD4-CD8+T细胞。而由于CD4-CD8-T细胞在培养1个月后有近56%的T 细胞同时表达CD56和CD3,表明其也是CIK细胞的重要来源。比较CD3+CD56+CIK细胞中表达CD8+和CD8-,的两群细胞其杀瘤活性没有显著性差异,提示CIK细胞的细胞毒性与CD3CD56表达成相关趋势,而与CD8的表达未表现出相关性。 杀伤原理 CIK细胞能够通过三种途径杀灭肿瘤细胞和病毒感染细胞: ①CIK细胞对肿瘤细胞和病毒感染细胞的直接杀伤:CIK细胞可以通过不同的机制识别肿瘤细胞,释放颗粒酶/穿孔素等毒性颗粒,导致肿瘤细胞裂解。 ②CIK细胞释放的大量炎性细胞因子具有抑瘤杀瘤活性:体外培养的CIK细胞可以分泌多种细胞因子,如IFN-γ、TNF-α、IL-2等,不仅对肿瘤细胞有直接抑制作用,还可通过调节机体免疫系统反应性间接杀伤肿瘤细胞。 ③CIK细胞能够诱导肿瘤细胞的凋亡:CIK细胞在培养过程中表达FasL(Ⅱ型跨膜糖蛋白)通过与肿瘤细胞膜表达的Fas(Ⅰ型跨膜糖蛋白)结合,诱导肿瘤细胞凋亡。 CIK细胞发挥作用的三种途径

肿瘤发生的分子机制

肿瘤 从正常细胞转化成癌细胞,再从单个或少量癌细胞发展成为具有临床意义的肿瘤,是一个漫长的过程。肿瘤的发生是环境因素与机体因素相互作用、多基因参与、经多阶段发展的结果。 第一节肿瘤发生发展概述 一、肿瘤发生的多阶段性学说 化学致癌过程是一个多阶段的过程,多阶段理论认为肿瘤的发生发展可分为启动(initiation)、促进(promotion)、进展(progression)和转移(metastasis)等阶段。 二、肿瘤的克隆源性和肿瘤异质性 克隆(clone)是指单个细胞经无性繁殖而形成具有相同基因型的细胞群体。多数研究表明人类肿瘤为单克隆起源,也存在肿瘤的多克隆起源。 肿瘤的异质性(heterogeneity)是指肿瘤发生发展过程中产生在形态、核型、免疫表型、生化产物、增殖能力、分化程度、侵袭和转移能力以及药物敏感性等方面具有各自细胞学特征的肿瘤细胞亚群。 第二节肿瘤病因学 肿瘤的病因包括环境因素(外因)和机体自身因素(内因)两大方面。环境致癌因素可分为化学致癌因素、物理致癌因素、以及生物致癌因素三大类,机体自身因素包括遗传、免疫、内分泌和代谢以及精神神经等因素。 一、化学致癌因素 化学致癌物(chemical carcinogen)引起肿瘤约占人类肿瘤病因的80%,是最主要的导致肿瘤发生的环境因素。 共同特点:①化学致癌物的致癌作用具有剂量和时间效应;②不同化学致癌物同时或先后作用于机体可出现累积、协同或拮抗等不同效应;③化学致癌物所造成的细胞遗传性损伤可通过细胞分裂遗传到子代细胞;④大多数化学致癌物本身并不直接致癌,在体内经过生物转化,所形成的衍生物具有致癌作用的,称为间接致癌物(indirect carcinogen)。 (一)化学致癌物的分类 1. 芳烷化剂(aralkylating agents):其代表性的是多环芳烃类(polycyclic aromatic hydrocarbons,PAH),多环芳烃类是迄今已知致癌物中数量最多、分布

肿瘤基因治疗的最新进展

肿瘤基因治疗的最新进展 王佩星 (徐州师范大学科文学院 08生物技术 088316103) 摘要:癌症是一种基因病,其发生、发展与复发均与基因的变异、缺失、畸形相关。人体细胞携带着癌基因和抑癌基因。癌症的基因治疗目前主要是用复制缺陷型载体转运抗血管生成因子、抑癌基因、前药活化基因(如HSV-1胸腺嘧啶激酶)以及免疫刺激基因。主要抗肿瘤机制为:抑制肿瘤细胞生长、诱导肿瘤细胞凋亡、诱导抗肿瘤免疫反应、提高肿瘤细胞对化疗的敏感性、提高肿瘤细胞对放疗的敏感性、切断肿瘤细胞的营养供应。 关键词:肿瘤、基因治疗、免疫、原癌基因、抑癌基因 The latest progress of cancer gene therapy WangPeiXing (xuzhou normal university institute of biotechnology 088316103 foremen who 2008) Abstract: the cancer is a genetic disease, its occurrence, development and recurrence are associated with genetic variation, loss, deformity related. Human body cell carries oncogenes and tumor-suppressor genes. Cancer gene therapy is now primarily with copy DCF with carrier transport antiangiogenic factors, tumor-suppressor genes, before medicine activated genes (such as HSV - 1 thymine bases kinase) and immune irritancy genes. Main antitumor mechanism for: inhibiting tumor cell growth, inducing tumor cell apoptosis, inducing antineoplastic immune response, improving the sensitivity of the tumor cells to chemotherapy, radiotherapy of tumor cells to improve sensitivity, cut tumor cells to nutrition. Keywords: tumor, gene therapy, immunity, protocarcinogenic gene, tumor-suppressor genes 从本质上来讲,癌症是一种基因病,其发生、发展与复发均与基因的变异、缺失、畸形相关。人体细胞携带着癌基因和抑癌基因。正常情况下,这两种基因相互拮抗,维持协调与平衡,对细胞的生长、增殖和衰亡进行精确的调控。在遗传、环境、免疫和精神等多种内、外因素的作用下,人体的这一基因平衡被打破,从而引起细胞增殖失控,导致肿瘤发生。基因治疗的策略有基因替代、基因修复、基因添加、基因失活,目前临床使用的最主要方式是基因添加。针对肿瘤的特异性分子靶点设计肿瘤治疗方案,具有治疗特异性强、效果显著、基本不损伤正常组织的优点。这种肿瘤靶向治疗是肿瘤治疗中最有前景的方案。 1.肿瘤基因治疗的历史进展 肿瘤、艾滋病、遗传病是困扰人们的三大疾病,对肿瘤的根治是人们一直迫不及待想要实现的愿望。

肿瘤的精准医疗:概念、技术和展望

肿瘤的精准医疗:概念、技术和展望 杭渤1,2,束永前3,刘平3,魏光伟4,金健1,郝文山5,王培俊2,李斌1,2,毛建华1 摘要精准医疗是指与患者分子生物病理学特征相匹配的个体化诊断和治疗策略。肿瘤为一复杂和多样性疾病,在分子遗传上具有很大异质性,即使相同病理类型的癌症患者,对抗癌药物反应迥异,因此肿瘤学科成为精准医疗的最重要领域之一。组学大数据时代的来临和生物技术的迅速发展奠定了精准医疗的可行性。本文介绍精准和个体化医疗的概念、基础和意义,简述近年来在此领域的最新进展,以及对实施精准医疗的方法和技术进行分析和归纳,首次将其分为间接方法(生物标志物检测及诊断)和直接方法(病人源性细胞和组织在抗癌药物直接筛选的应用),最后扼要阐述精准医疗的前景和面临的挑战。 关键词:精准医疗个体化医疗分子组学生物标志物检测病人源性细胞和组织 Precision cancer medicine: Concept, technology and perspectives HANG Bo1,2, SHU Yongqian3, LIU Ping3, WEI Guangwei4, JIN Jian1, HAO Wenshan5, WANG Peijun2, LI Bin1,2, MAO Jianhua1 Abstract Precision medicine is defined as an approach to personalized diagnosis and treatment, based on the omics information of patients. Human cancer is a complex and intrinsically heterogeneous disease in which patients may exhibit similar symptoms, and appear to have the same pathological disease, for entirely different genetic reasons. Such heterogeneity results in dramatic variations in response to currently available anti- cancer drugs. Therefore, oncology is one of the best fields for the practice of precision medicine. The availability of omics- based big data, along with rapid development of biotechnology, paves a way for precision medicine. This article describes the concept, foundation and significance of precision medicine, and reviews the recent progresses in methodology development and their clinical application. Then, various current available biotechniques in precision medicine are evaluated and classified into indirect (biomarker-based detection and prediction) and direct (patient-derived cells and tissues for direct anti-cancer drug screening) categories. Finally, perspectives of precision medicine as well as its facing challenge are briefly discussed. Key words: precision medicine personalized medicine omics biomarker detection patient-derived cells and tissue 2011年,美国国家科学院在“迈向精准医疗:构建生物医学研究知识网络和新的疾病分类体系”报告中,对“精准医疗(precision medicine)”的概念和措施做了系统的论述[1]。报告探讨了一种新的疾病命名的可能性和方法,该方法基于导致疾病的潜在的分子诱因和其他因素,而不是依靠传统的病人症状和体征。报告建议通过评估患者标本中的组学(omics)信息,建立新的数据网络,以促进生物医学研究及其与临床研究相整合。美国总统奥巴马在2015年1月20日的国情咨文中正式将“精准医疗计划”作为美国新的国家研究项目发布,致力于治愈癌症和糖尿病等疾病,让每个人获得个性化的信息和医疗,从而“引领一个医学新时代”。此举措很快得到了美国政府研究机构和医学界的热烈响应[2, 3],当然也包括来自医学界和社会的争议。 1 精准医疗与个体化医疗1.1 定义 什么是精准医疗(又称精确医学),其与通常所讲的个体化医疗(personalized medicine)又是什么关系?精准医疗就是与患者分子生物病理学特征,如基因组信息,相匹配的个体化诊断和治疗策略。个体化医疗利用诊断性工具去检测特定的生物标志物,尤其是遗传性标志物,然后结合患者的病史和其他情况,协助决定哪一种预防或治疗干预措施最适用于特定的患者。通俗地讲,个体化医疗就是考虑患者本身的个体差异,药物治疗因人而异,为理想化的治疗。而精准医疗着眼于一组病患或人群(图1),相对于个性化医疗针对个体病患的情况更为宽泛,更可行。两者有共同的内涵。也有医疗和研究机构将这两个概念放在一起,如杜克大学的“精准和个体化医疗中心”。 图1精准医疗的核心Fig. 1 Heart of precision medicine

肿瘤治疗中的血脂代谢异常与处理

肿瘤治疗中的血脂代谢异常与处理 肿瘤代谢异常是肿瘤的重要特征之一,与持续的生长信号、死亡逃逸、永生复制、血管再生等肿瘤经典特征并列,在肿瘤发生发展过程中发挥着至关重要的作用[1]。肿瘤细胞本身便会出现脂质代谢的变化,肿瘤组织中常发现脂质合成的激活[1],这不仅可以为细胞的生长提供额外的能量,也能作为激素和第二信使前体物质参与到细胞信号传导等生命活动当中[3],借此影响肿瘤细胞生长、增殖、分化等多个环节[4] 一、肿瘤治疗中血脂异常 近年来,患者在接受抗肿瘤的治疗中出现血脂异常的问题已经引起了众多的关注,这得益于血脂与心血管事件的密切联系。血脂异常通常指血清中总胆固醇(TC)和(或)甘油三酯(TG)水平升高,俗称高脂血症。实际上广义的血脂异常包括低HDL-C血症在内的各种血脂异常。血脂异常是动脉粥样硬化性心血管疾病(atherosclerotic cardiovascular disease,ASCVD)重要的危险因素[5]。 引起血脂升高的治疗有:

1.内分泌治疗药物 内分泌治疗在乳腺癌和前列腺癌中均有着广泛的应用。内分泌药物对血脂的影响尚存在一定的争议,产生差异可能与人种、年龄等因素有关[6]。 以乳腺癌为例,内分泌治疗是激素受体阳性的患者重要的治疗方式之一[7]。内分泌治疗的药物主要包括:选择性雌激素受体调节剂(SERM,如他莫昔芬,托瑞米芬)、选择性雌激素受体下调剂(SERD,如氟维司群)、芳香化酶抑制剂(AIs,如阿那曲唑,来曲唑,依西美坦)和促性腺激素释放激素激动剂(GnRHa,如戈舍瑞林等)等。研究发现他莫昔芬及托瑞米芬具有降低TC、TG的作用,但托瑞米芬可升高HDL,而他莫昔芬则会降低HDL[8-10]。AIs对血脂的影响同样无定论,多个实验结果受药物种类及实验设计的不同而不同,多数文章认为依西美坦有轻度降低血脂的作用,而来曲唑和阿那曲唑则会轻度升高血脂或基本不影响血脂[6, 10, 11]。在前列腺癌及乳腺癌中均广泛使用的促性腺激素释放激素激动剂(GnRHa,如戈舍瑞林等)也会引起TC、TG、HDL的升高,但对LDL 影响较小[6]。 2.糖皮质激素

代谢物及细胞感受代谢物异常与肿瘤发生发展

“代谢物及细胞感受代谢物异常与肿瘤发生发展”重大项目指南 细胞代谢的改变是肿瘤的重要特征之一。大量研究发现肿瘤细胞发生了代谢重编程,并且对肿瘤代谢的认识已经不再局限于糖酵解和三羧酸循环的改变,诸多代谢通路包括脂肪酸代谢、胆固醇代谢、谷氨酰胺代谢、丝氨酸代谢、一碳单位代谢、胆碱代谢等,在肿瘤细胞中均发生了重编程变化。随着肿瘤生物学研究的不断深入,细胞代谢异常在肿瘤发生发展中的作用研究已成为活跃的国际学术前沿,细胞代谢异常先于肿瘤发生的理论也逐步在研究中得到了证实。近年来,研究发现葡萄糖缺乏可促进KRAS野生型的细胞获得KRAS及其信号通路分子的突变,首次证明细胞代谢异常可以导致原癌基因突变。2-HG竞争性抑制多种α-KG依赖的双加氧酶活性(如:介导DNA氧化去甲基化的Tet双加氧酶),以及其他表观遗传调控相关的酶(如:组蛋白去甲基化酶)等,从而影响表观遗传调控,启动肿瘤的发生、影响肿瘤的进展。这些研究发现提供了代谢改变可以促进肿瘤发生的直接证据,而且其调控的关键节点也正在成为肿瘤诊断和治疗中潜在的靶点。基于肿瘤代谢改变的研究成果,将为肿瘤的分子诊断、精确分型、预后分析、靶向治疗和药物反应性等提供重要的理论指导。 肿瘤代谢改变与肿瘤发生发展之间的关系涉及复杂的生物学过程和多种分子机制,而代谢物及细胞感受代谢物异常在其中的作用日益受到关注。例如:代谢产物乳酸可以直接增加某些蛋白的稳定性,从而促进细胞增殖和血管新生;肿瘤细胞能感受环境代谢物变化,增加肿瘤侵袭转移相关蛋白的合成;肿瘤细胞还能调整自身的能量感受通路,增强对代谢压力的适应,提高在低营养状态下的存活率,是肿瘤产生抗药性的因素之一。此外,肿瘤细胞还通过与免疫细胞竞争营养,而抑制抗肿瘤免疫,如:肿瘤细胞糖酵解增高可以引起肿瘤微环境中T细胞营养不良,抑制T细胞肿瘤免疫;调控胆固醇代谢途径可提高肿瘤特异的细胞毒T细胞的活性,增强抗肿瘤细胞免疫。肿瘤代谢研究的领域已进一步扩展到肿瘤微环境,以及对肿瘤免疫的影响。因此,发现代谢物异常、了解细胞如何感受代谢物异常、代谢异常对细胞的恶性转化作用以及对肿瘤免疫微环境的改造等是重要的前沿科学问题,阐明其内在的分子机制将为肿瘤预防、早期诊断和治疗提供新思路。 本立项拟以发现与肿瘤发生相关的代谢物为切入点,研究重要代谢物异常在细胞恶性转化中的作用及其分子机制;明确细胞感受代谢物失调的机制及其在肿瘤发生发展中的意义;探索代谢异常对肿瘤微环境的改造及其生物学效应和机制。从而阐释代谢异常在肿瘤细胞及其微环境的基因表达与信号转导中的作用和地位,深入理解代谢物(或包括相关代谢酶)和细胞感受代谢物失调在肿瘤发生发展中的功能与机制,为临床转化提供新的诊断靶标与治疗靶点。本项目的实施对促进代谢生物学、化学、免疫学与肿瘤学基础和临床研究的学科交叉,具有重要的意义。 一、科学目标 以我国常见高发的1-2种肿瘤为模型,发现一批在肿瘤发生发展中有明确调控作用的重要代谢物,研究这些代谢物异常在细胞恶性转化中的作用及其机制,确定代谢物和细胞相互作用失调在肿瘤发生中的作用与机制,解析代谢物对肿瘤细胞信号转导与基因表达的调控功能,阐明代谢异常对肿瘤微环境的改造及其生物学效应,建立适于转化研究的代谢物体外及体内研究的实验平台,发现可能用于肿瘤临床诊断的代谢物分子标记物,鉴定可能具有肿瘤临床治疗前景的代谢物分子靶标。 二、研究内容 选择我国常见高发的1-2种肿瘤为模型,开展如下四方面的研究: (一)肿瘤相关代谢物的发现:采用高通量代谢组学、蛋白组学和生物信息学等检测手段,发现、筛选和鉴定一批与肿瘤表型特征密切相关的代谢物;运用细胞模型、荷瘤小鼠及转基因小鼠等动物模型,证实其体内外对正常细胞的恶性转化作用。

-国内最好的肿瘤治疗技术

国内最好的肿瘤治疗技术是什么 肿瘤,不知吞噬了多少人的生命。为了战胜肿瘤、攻克癌症,不知有多少医务工作者不懈努力,无私地奉献出他们所有的青春和力量。而肿瘤的治疗能及时清除体内产生的癌细胞,按照正常的逻辑思维,癌症的发病率应该不会太高,但逐渐抬升的发病率确实令人难以琢磨。这一反常现象引起了包括生物治疗医学转化中心专家在内的几乎所有医学科学家的关注,经过多年的针对人体免疫系统的研究终于发现,肿瘤疾病频发的症结在于免疫系统的针对性不够,即免疫系统针对肿瘤的杀伤作用太弱,不足以及时清除每天都会产生的癌细胞。 他们在研究中发现,免疫系统针对肿瘤的杀伤作用,主要跟DC和CIK 两种免疫细胞有关,前者被研究人员形象地喻为免疫系统的“雷达”,能够及时发现癌细胞并将癌细胞的信息传递给后者,后者负责专门捕杀癌细胞。 在正常的人体内,两种免疫细胞在免疫系统有条不紊的指挥下,从容应对着每天都会产生的癌细胞,保证机体不被癌细胞所侵蚀,但在肿瘤病人的体内,两种免疫细胞的活性和数量明显不足,不足以对抗癌细胞的恶性增殖,肿瘤的出现也就不可避免了。 目前,他们已经找到了应对这种问题的途径,即细胞免疫疗法,运用生物技术在体外大量扩增两种免疫细胞,使它们的生物活性和数量大大提升,完全能达到有效清除癌细胞的能力,然后再回输到人体内,借以实现免疫系统针对性的提升。 国内最好的肿瘤研究基地生物治疗医学转化中心专家说,肿瘤生物治疗是继手术、放疗、化疗之后的第四大治疗方法。由于传统的手术、放化疗的发展已进入平台期,人们把越来越多的目光投到肿瘤的生物治疗上。近年来,肿瘤的生物治疗得到长足的发展,在改善患者生存质量,降低复发率方面的重要作用已得到越来越多的认可和重视。 DC-CIK细胞免疫治疗技术是继手术治疗、放疗、化疗后,被世界认可的第四种治疗癌症的方式,同时也被称为21世纪有望完全战胜癌症的治疗手段。由于其安全性高、无毒副作用的优点,更是被称为瘤学科的“绿色生物疗法”。但这并不意味着传统治疗手段从此退出历史舞台。DC-CIK细胞免疫治疗是一种应用最广、最成熟的肿瘤生物治疗技术。 生物治疗医学转化中心专家解释,人之所以患肿瘤,是因为人体内对肿瘤具有识别杀伤的免疫细胞遭到破坏,从而不能有效的去识别杀伤肿瘤细胞。近几年来随着生物医学的发展,生物免疫治疗被国内外广大医学者纷纷进行研究并运用到临床治疗上,取得了良好的治疗效果。生物免疫治疗它是以通过调动机体的防御机制,调节机体的免疫力,增强抗癌能力,从而抑制肿瘤生长、转移、复发的治疗方法。它被世界卫生组织公认为继传统手术,放疗和化疗后第四种肿瘤治疗新模式。 DC-CIK生物治疗:拉尔夫斯坦曼于1973年提出树突状细胞(DC细胞)的理念,这些细胞有着激活并调节适应性免疫系统的本领。它们会激发T淋巴细胞,从而启动适应性免疫系统,引起一系列癌症治疗的理念,他的这项研究于2011年获得诺贝尔医学奖。

代谢与肿瘤的关系

丙酮酸脱氢酶与肿瘤的防治 正常细胞的能量代谢特点是使用葡萄糖在线粒体内进行氧化磷酸化 ( OXPHOS),这种代谢方式既经济,效率也高。肿瘤细胞能量代谢的特点表现 在活跃地摄取葡萄糖,进行有氧糖酵解。这种看上去很不经济的能量供给方式 对肿瘤细胞却是必需的,它既为肿瘤细胞的不断生长提供能量,也为它们提供 了生物合成的原料。肿瘤细胞这种能量代谢方式早在20 世纪 20 年代就被德国 科学家Otto Warburg观察到,基于这一发现,Warburg提出假设:肿瘤细胞有氧糖 酵解的产生反映了线粒体呼吸链的破坏,而且,糖代谢的异常可视为肿瘤发生 的始动因素。大多数体内肿瘤细胞及体外的转化细胞,在氧气充足的情况下, 依然呈现葡萄糖高摄取率,增强的糖酵解代谢及代谢产物乳酸增加的这一现象 则是普遍存在,并被称之为Warburg Effect[1]。而在正常细胞中,ATP的产生主 要是通过OXPHOS,丙酮酸脱氢酶是连接糖酵解和Krebs的纽带,作为细胞进入 三羧酸循环的关键限速酶,在调节糖酵解和糖氧化磷酸化中起重要作用。因此,丙酮酸脱氢酶的活性可能与肿瘤的发生和发展有关系。 1、丙酮酸脱氢酶的简介 丙酮酸脱氢酶(PDH),是由丙酮酸脱氢酶E1α亚单位(PDHA1)和E1β 亚单位(PDHB)基因编码的α和β亚基组成的结合硫胺素焦磷酸盐(TPP)的异 四聚体[2]。Koike等[3]首先克隆和测序了编码人类PDHE1α和E1β亚单位的cDNA 序列。PDHA1的基因组DNA全长15.92kB,含有11个外显子,位于X染色体短臂上(Xp22.1~22.2)。其中含有保守的硫辛酸焦磷酸盐结合区,位于外显子6的 编码195氨基酸残基和外显子7的编码255氨基酸残基之间。此外,在4号染色体 上有一段与PDHA1同源的无内含子的序列,主要在睾丸组织表达。PDHB基因 位于3p13~q23,全长1.5kB,含有10个外显子。 在线粒体中,丙酮酸脱氢酶并不是单独存在的,而是以丙酮酸脱氢酶复合 体的形式存在。丙酸酸脱氢酶复合体(pyruvate dehydrogenase complex,PDHc)是定位在线粒体中的多酶复合物, PDHc包含3个催化酶和2个调节酶,以及3个 辅因子和1个结合蛋白。催化酶分别是丙酮酸脱氢酶(E1)、二氢硫辛酰胺转 乙酰酶E2和二氢硫辛酸脱氢酶E3。E3不是PDHc特定的,但是被其他两个丙酮 酸脱氢酶复合物组份共享,从而E3活性不足通常有超越预期分离的丙酮酸脱氢 酶复合体缺乏的后果。丙酮酸脱氢酶复合体的所有蛋白均是核编码的。高等生 物中丙酮酸脱氢酶复合体的快速调节主要是由PDH激酶(PDK)和磷酸酶(PDP)介导E1α亚基可逆性磷酸化实现的,丙酮酸脱氢酶E1α亚基存在三个磷酸化位点。而细菌的PDHc活性主要是通过别构效应来调节,PDHc缺陷导致代谢障碍,组 织受损[4]。 2、丙酮酸脱氢酶复合体的功能 PDHc是一组限速酶,催化丙酮酸不可逆氧化脱羧转化成乙酰辅酶A,同时

肿瘤放射治疗基本知识

1.什么是放射线? 在1895年12月的一个夜晚,德国的一位世界著名的物理学家伦琴(ROentgen 1845~1923年)在物理实验室进行阴极射线特点的研究的试验中发现:放电的玻璃管不仅发射看得见的光,还发射某种看不见的射线,这种射线穿透力很强,能穿透玻璃、木板和肌肉等,也能穿透黑纸使里面包着的底片感光,还能使涂有氰酸钡的纸板闪烁浅绿色的荧光,但对骨头难以穿透。伦琴还用这种射线拍下他夫人手骨的照片。他认为新发现的射线本质很神秘,还只能算一个未知物,于是就把数学中表示本知数的"X"借用过来,称之为"X射线"。后来又经过科学家们多年的研究,才认清了"X射线"的本质,实质上它就是一种光子流,一种电磁波,具有光线的特性,是光谱家族中的成员,只是其振荡频率高,波长短罢了,其波长在1~0.01埃(1埃=10-10米)。X射线在光谱中能量最高、围最宽,可从紫外线直到几十甚至几百兆电子伏特(MeV)。因为其能量高,所以能穿透一定厚度的物质。能量越高,穿透得越厚,所以在医学上能用来透视、照片和进行放射治疗。 科学家们在放射线研究的过程中,还发现放射性同位素在衰变时能放射三种射线:α、β、γ射线。α射线实质上就是氦原子核流,它的电离能力强,但穿透力弱,一薄纸就可挡住;β射线实质上就是电子流,电离能力较α射线弱,而穿透力较强,故常用于放射治疗;γ射线本质上同X射线一样,是一种波长极短,能量甚高的电磁波,是一种光子流,不带电,以光速运动,具有很强的穿透力。因此常常用于放射治疗。 2.什么是放射治疗? 放射治疗是指用放射性同位素的射线,X线治疗机产生的普通X线,加速器产生的高能X线,还有各种加速器所产生的电子束、质子、快中子、负兀介子以及其它重粒子等用来治疗癌瘤。 广义的放射治疗既包括放射治疗科的肿瘤放射治疗,也包括核医学科的用同位素治疗(如131碘治疗甲状腺癌和甲状腺功能亢进,32磷治疗癌性胸水等)。狭义的放射治疗一般仅指前者,即人们一般所称的肿瘤放射治疗。放射治疗有两种照射方式:一种是远距离放疗(外照射),即将放射源与病人身体保持一定距离进行照射,射线从病人体表穿透进人体一定深度,达到治疗肿瘤的目的,这一种用途最广也最主要;另一种是近距离放疗(照射),即将放射源密封置于肿瘤或肿瘤表面,如放入人体的天然腔或组织(如舌、鼻、咽、食管、气管和宫体等部位)进行照射,即采用腔,组织间插植及模型敷贴等方式进行治疗,它是远距离60钴治疗机或加速器治疗癌瘤的辅助手段。近年来,随着各医院医疗设备的不断改进,近距离放疗也逐渐普及。 体、外放射治疗有三个基本区别:①和体外照射相比,体照射放射源强度较小,由几个毫居里到大约100毫居里,而且治疗距离较短;②体外照射,放射线的能量大部分被准直器、限束器等屏蔽,只有小部分能量达到组织;体照射则相反,大部分能量被组织吸收;③体外照射,放射线必须经过皮肤和正常组织才能到达肿瘤,肿瘤剂量受到皮肤和正常组织耐受量的限制,为得到高的均匀的肿瘤剂量,需要选择不同能量的射线和采用多野照射技术等;而体照射,射线直到肿瘤组织,较深部的正常组织受照射量很小。 3.有人把放射治疗称为"烤电",对不对? 有人把放射治疗称为"烤电",这是普通百姓对放射治疗的一种不确切的称谓。可能源于放射治疗使病人放射野的皮肤发红,甚至由于色素沉着增多而变"黑",而联想到用电灯或其它电器设备烘烤皮肤而出现类似的皮肤改变所致。殊不知两者的作用机理并不相同。放射治疗是用放射治疗设备

肿瘤科护理新技术

龙源期刊网 https://www.wendangku.net/doc/2b655548.html, 肿瘤科护理新技术 作者:俞静杨雪丽 来源:《健康必读(上旬刊)》2019年第04期 引言: 肿瘤科护理人员可以对患者进行PICC穿刺、足三里按压护理等新技术,病人恶心等不适感觉会明显缓解,睡眠舒畅,头痛感觉也会显著消失,穴位注射也是一种新型的技术,患者的不适反应将会降低,获得病人的广泛认可。 1 肿瘤科护理新技术概述 护理人员还会对每名患者进行个性化的评估,对其实施规律性的用药,保证患者具有科学的饮食习惯与生活习惯,并对患者进行疼痛强度的评估,保证护理过程更加专业化。无缝隙护理是一种系统的护理模式,每个护理步骤紧密结合在一起,护理效率较高,护患纠纷降低,当前无缝隙护理模式已经获得患者的积极认可。现今伴随社会的逐步发展与环境的不断变化,肿瘤患者的人数逐年上升,此种病症具有反复发作、治愈不彻底的特点,同时,护理人员的护理工作量将显著增大。而责任制整体护理模式具有良好的效果,它能使护理质量提高,病人尽快回归到正常的生活模式中。无缝隙护理管理模式注重患者的护理需求与满意度,病人能感受到医护人员无微不至的关怀,每一项护理流程都具备科学化、规范化的特点,护理中产生较少的漏洞。在运用无缝隙护理管理模式时,每一名人员的职责分工都明确,呈现主动的护理模式,工作中充满责任感,此外,护理人员的护理理念应该发生变化,掌握更多的肿瘤科护理知识,促使护理质量显著提升,护理效果发生质的变化,保障患者的护理需求能被全面满足。 对于肿瘤科中的病人而言,良好的护理模式十分重要,护理人员应运用各种新型的护理技术,保证护理质量发生变化,达到积极的护理效果,护理质量迈上崭新的台阶,及时发现各种护理隐患。同时,护理人员间也会充满竞争意识,其会具备良好的学习理念,不断学习更多的护理知识,丰富自身的实践经验,护理工作技能增长,赢得患者的广泛认可。常规的护理模式不完善,每一名人员的责任分工混乱,也不具备优良的应急处理能力,当发生危险事件时,会处于慌乱的状态中,病人的生命安全不能获得保障,呈现消极的护理效果。无缝隙护理模式中的每一个环节紧密相连,护理人员间会协同合作,共同解决护理中的各种事件,护理人员与患者间产生良好的相处氛围,保证护理质量迈上崭新的阶段,护理效果发生积极的变化,肿瘤科护理质量优良,病人出院时间提前,出现过少的并发症。无缝隙护理管理在优质护理中占据重要的分量,临床中出现较少的护理漏洞,病人对护理人员的满意度显著上升,因此,此种护理模式应获得人们的高度重视。 2 肿瘤科护理新技术的作用

肿瘤营养代谢调节治疗(完整版)

肿瘤营养代谢调节治疗(完整版) 【摘要】越来越多的研究证实,肿瘤的生物学本质是一种代谢性疾病,基于肿瘤代谢靶点的代谢调节治疗因此成为肿瘤治疗的新方向。肿瘤代谢调节治疗的手段很多,如药物、手术、运动及营养素,单纯使用营养素实施代谢调节治疗者为营养代谢调节治疗。营养素包括宏量营养素和微量营养素,目前的研究更多聚焦于碳水化合物、蛋白质/氨基酸及脂肪三大宏量营养素代谢调节,包括减少葡萄糖供给,提高蛋白质供给,选择合适的脂肪酸及生酮饮食。营养代谢调节治疗不仅仅是提供营养素、提供能量,更加重要的是发挥营养素的代谢调节作用。肿瘤细胞具有高度代谢异质性,不同肿瘤细胞对同一种营养素的代谢表现出显著的差异,营养代谢调节治疗因此同样要求精准调节。由于肿瘤细胞的高度代谢适应性,当任何一条代谢通路遇到障碍时,肿瘤细胞会自动切换或启用其他通路,从而逃避应激损害,因此,肿瘤营养代谢调节治疗应该联合阻断或调控多个代谢途径,从而更好地发挥抗肿瘤作用,提高治疗效果。 【关键词】肿瘤;营养;代谢;调节;治疗 肿瘤的生物学本质是决定肿瘤治疗方向的重大问题,肿瘤究竟是遗传性疾病还是代谢性疾病,历史上的认识有过反复,今天仍然在争论[1]。人类有1000多种肿瘤相关基因,包括250多种癌基因、700多种抑癌基因。研究发现它们绝大多数在细胞代谢中发挥关键作用,主要涉及有氧糖酵解、

谷氨酰胺分解、一碳代谢、磷酸戊糖通路及脂肪酸从头合成。上述5条代谢通路使肿瘤细胞由单纯的产生ATP转变为产生大量氨基酸、核苷酸、脂肪酸以及细胞快速生长与增殖需要的其他中间产物,这些代谢产物反过来服务于上述代谢通路,从而促进肿瘤生长、抑制肿瘤凋亡。据此有人认为肿瘤是一种代谢性疾病[2-4],并提出肿瘤营养代谢调节治疗[5,6]。本文从三大宏量营养素讨论肿瘤营养代谢调节治疗。 1 碳水化合物 与正常细胞不同,肿瘤细胞特征性依靠葡萄糖供能[7],并且即使在氧气充足条件下也主要依靠糖酵解途径供能,是为有氧糖酵解,即Warburg效应[8]。肿瘤细胞的这种代谢特点是营养代谢调节治疗的靶点。经典的肿瘤糖代谢调节治疗原则是减少葡萄糖供给[9],降低血糖浓度[10]、维持血糖稳定[11],主要手段是抑制葡萄糖有氧糖酵解,促进有氧氧化[12-14]。最新研究发现,甘露糖可以明显抑制肿瘤细胞生长[15]。其机制是甘露糖增加AMPK磷酸化水平,增加己糖-6-磷酸。甘露糖与葡萄糖共用载体进入细胞,甘露糖并不抑制细胞对葡萄糖的摄取,反而使细胞内葡萄糖升高。甘露糖代谢产物甘露糖-6-磷酸抑制了参与葡萄糖代谢的三个酶:己糖激酶、磷酸葡萄糖异构酶及葡萄糖-6-磷酸脱氢酶,进而影响了三羧酸循环、磷酸戊糖途径及聚糖合成,从而抑制肿瘤生长,并增强化疗药的敏感性,促进肿瘤细胞凋亡。另外一个研究发现,D-甘露糖通过促进TGF-β活化,刺激调节性T细胞分化,提高其比例,抑制自身免疫性疾病,包括恶性肿瘤[16]。甘露糖是与葡萄糖一样的己糖,这一研究的重要意义在于为肿瘤糖代谢调节治疗开创了一个新思路,并在免疫治疗、代谢治疗之间架起了

肿瘤常见治疗方法的优劣

郑州市管城中医院肿瘤科 肿 瘤 常 见 治 疗 方 法 的 优 劣 肿瘤治疗各种方法的优劣

论肿瘤治疗各种方法的优劣 因为环境因素、生活习惯、工作压力等各种内在和外在因素的影响,癌症越来越威胁着人们的健康,据统计,全世界每年的肿瘤发病人数都在1000万人以上,而且许多病人发现时已经是中晚期。越来越多的疗法也干扰者人们的选择,郑州市管城中医院的专家为大家详细介绍了肿瘤治疗各种方法的优劣,供患者及其家属参考。 手术治疗: 理论依据:肿瘤是一类以"局部肿块病变"为主的"全身性"疾病,因此从理论上讲,手术切除局部肿块可以起到治疗肿瘤的作用,也应作为治疗肿瘤的主要手段。临床实践也证明了这两点:对于多数肿瘤来说,手术常是目前的主要治疗手段,手术确能治愈部分病例。 手术治疗主要适应于除血液系统的恶性肿瘤(如白血病、恶性淋巴瘤)外,大多数实体瘤都可以采用手术疗法。尤其是早、中期癌症,良性肿瘤以及没有发生局部和远处转移患者,一般病灶<3厘米,治愈率达90%以上;中期病灶<5厘米,治愈率达60%;晚期病灶>5厘米,治愈率达10%左右。 优势:1. 疗效直接,是绝大多数肿瘤的首选治疗方法是早期手术切除完全的肿瘤有完全治愈的机会。 2. 肿瘤对手术切除没有生物抵抗性,不像肿瘤对放疗存在有敏感性的问题。 缺点:1.有危险性,尤其对于部位敏感的癌症,手术风险较大。 2.由于手术是局部疗法,对于已经发生转移的癌症患者仅能做姑息性局部切除,且由于手术对人体的创伤较大,会使患者的免疫力降低,并且易出现一系列并发症。 3.复发率极高。 4.有种植的可能。 放射治疗(伽马刀): 理论依据:肿瘤是一类细胞增殖、分化异常的疾病,化疗药有"细胞毒"和促进分化等作用,可以杀死肿瘤细胞、抑制肿瘤细胞的生长繁殖和促进肿瘤细胞的分化等,从而可以治疗或治愈肿瘤。俗称“烤电”,是1895年法国物理学家伦琴发现的,所谓放疗是利用X光射线较强的贯穿能力透过皮肤、骨骼直达人体深部组织,从而将敏感的肿瘤细胞杀死,达到治疗癌症的目的。 以下几种情况应避免使用放疗: 1.肺癌合并大量胸水及肝癌合并大量腹水者; 2.食管癌已穿孔、腔内合并大量积液; 3.有其他严重疾病者,如急性感染;

肿瘤细胞代谢机制

肿瘤细胞能量代谢机制 1.正常细胞能量代谢以及warburg效应 三磷酸腺苷(adenosine triphosphate, ATP)是细胞中的能量通货,用于储存和传递化学能。ATP是一种高能磷酸化合物,它和二磷酸腺苷(adenosine diphosphate,ADP)的相互转化实现了储能和放能。细胞中产生ATP主要通过胞液中进行的糖酵解(glycolysis,Gly)和线粒体中进行的氧化磷酸化(oxidative phosphorylation,OxPhos)两种途径产生。 在正常组织中,90%ATP来源于氧化磷酸化,而仅有10%来源于糖酵解[1]。并且在有氧条件下,糖酵解受到抑制,称为Pasteur效应。 1920年,Nobel奖获得者Warburg发现肝癌细胞糖酵解活性明显强于正常肝细胞,并且进一步研究表明,在有氧条件下,糖酵解活性也很强。肿瘤细胞在氧气充足条件下,依然呈现葡萄糖高摄取率,增强的糖酵解代谢及代谢产物乳酸增加的这一现象则是普遍存在,并被称之为Warburg Effect[2]。Warburg认为这种糖酵解活性增强是由于肿瘤细胞线粒体呼吸链出现不可逆性损伤造成的。但是现在对于这一观点有很多不同看法。 2.糖酵解优势 虽然肿瘤细胞中糖酵解占据优势,但是Koppenol表明肿瘤细胞中氧化磷酸化产生的ATP和正常细胞大致相同,但是肿瘤细胞葡萄糖摄取量却是正常细胞的10倍。而且,每13个葡萄糖分子中一个被氧化磷酸化而12个进行糖酵解。所以通过氧化磷酸化产生36分子ATP同时经糖酵解产生24分子ATP[3]。所以可以看出肿瘤细胞糖酵解活跃。尽管糖酵解的效率低,但是肿瘤细胞可以从糖酵解中受益:①由于肿瘤细胞生长迅速,所以对能量需求量大,而糖酵解多产生的ATP也有利于肿瘤生长。②糖酵解的中间产物6-磷酸葡萄糖,丙酮酸可以合成脂肪酸、核酸,调节细胞代谢和生物合成,有助于肿瘤细胞的迅速生长。③糖酵解酶己糖激酶(hexokinase ,HK)拮抗细胞凋亡。④糖酵解产物使肿瘤周围微环境酸化,这种酸化的微环境不利于正常细胞生长,但有利于肿瘤细胞的浸润和转移[4]。 3.糖酵解活跃机制 肿瘤细胞中糖酵解活跃的机制比较复杂,是多种因素综合作用调节引起的。主要包括以下几个方面:有利于糖酵解的跨膜结构,酶代谢异常,肿瘤微环境,癌基因及信号转导通路异常等。 3.1 有利于糖酵解的跨膜结构 肿瘤细胞摄取葡萄糖能力是正常细胞的10倍左右,所以肿瘤细胞膜表面应存在大量葡萄糖转运体(GLUT),并且肿瘤细胞糖酵解活跃,生成大量乳酸,所以细胞膜表面应存在大量的单羧酸转运泵以及氢离子相关转运体,否则会造成细胞内乳酸堆积,导致酸中毒,致使细胞死亡。 3.1.1葡萄糖转运体 葡萄糖以被动转运的方式进入胞内,由于葡萄糖为水溶性有机物,所以需葡萄糖转运体(GLUT)协同进入胞内。GLUT至少有14种,其中GLUT1,GLUT3,GLUT4和葡萄糖亲和力较高,具有转运葡萄糖的活性。且在大量恶性肿瘤GLUT3,GLUT4过量表达,GLUT1在正常组织中表达,在恶性肿瘤组织中表达增高[5]。 3.1.2单羧酸转运泵和氢离子相关转运体

肿瘤治疗新方法 碘125粒子植入

肿瘤治疗新方法碘125粒子植入 恶性肿瘤是一种多发病和常见病。我国每年死于肿瘤的人数超过140万。对于恶性肿瘤的治疗,除早期手术切除外,常规方法存在较多的局限。如副作用大,患者不易耐受,易复发等。近一年多来我科新开展的碘125粒子植入法,已治疗恶性肿瘤数十例,取得较好临床疗效。该疗法能扬长避短,弥补常规治疗的不足。 特点:直接植入肿瘤内。碘125粒子植入治疗,其实也是一种放射治疗肿瘤的方法。不过,它是在CT、超声等影像引导下,将发出低能量γ射线的碘125粒子直接植入肿瘤组织内,对肿瘤组织进行持续性的杀伤。 我们知道,常规治疗肿瘤的方式主要有3种:手术切除、化疗和放射治疗,还有生物治疗等,然而这几种疗法并非对所有肿瘤都适宜。放射性治疗由于辐射面积较大、放射性射线剂量大和贯穿人体,对人体的正常组织结构损伤很大。与常规外照射治疗相

比,在CT和超声引导下植入碘125粒子优势显著:内照射射线剂量小,作用时间更长,治疗定位更准确【达到了真正意义上的影像引导放射治疗(IGRT)和适形放疗】,对肿瘤局部作用剂量高,辐射半径小,对周围正常组织损伤极小,是一种非常好的局部治疗措施。与化疗和其它全身治疗配合,治疗肿瘤的效果更加明显(可以杀灭远处的微转移病灶)。 该技术对肿瘤的局部治疗可以达到或 接近手术和其他毁损病灶疗法的效果。对于某些经手术后,出现复发或者局限转移的肿瘤,碘125粒子植入具有明显优势。此外,还可作为常规放射治疗的补充和协同治疗 的手段,会取得更好的治疗效果。 应用:不只是辅助治疗。在很多人眼中,碘125粒子植入只是治疗肿瘤的辅助方式。其实不然,它不但可以作为治疗肿瘤的主要手段,而且对部分肿瘤可以作为优先选择的治疗方法。 对于不愿行根治性手术以及一些无法 手术的实体肿瘤患者,碘125粒子植入是不

2018年《肿瘤放射治疗技术》复习题(六十六)(河南省)

2018年《肿瘤放射治疗技术》复习题(六十六)(河南省) 单选题-1/知识点:章节测试 在放射治疗过程中,氧效应的机制主要为 A.增加自由基产生 B.固定DNA损伤 C.减少肿瘤的加速再增殖 D.促进DNA损伤的修复 E.以上都不对 单选题-2/知识点:章节测试 鼻腔—鼻窦癌单纯放射治疗剂量为 A.5000~6000cGy B.6000~7000cGy C.7000~8000cGy D.7500~8500cGy E.6500~7500cGy 单选题-3/知识点:章节测试 以下关于模拟定位机结构描述错误的是 A.模拟定位机是一台安装在可以等中心旋转的机架上的诊断X射线机 B.其射线源是MV级的X射线球管 C.其准直器内装有模拟X线射影的光学系统

D.其焦轮距的可变范围一般在60~140cm E.其准直器由遮线器和射野井字界定线组成 单选题-4/知识点:章节测试 关于喉癌放射治疗描述不正确的是 A.单纯放疗6000~7000cGy/6~7w B.采用侧卧位,垂直照射 C.声门上区癌放疗包括范围较广 D.早期声门癌放疗不必包括淋巴引流区 E.声门下区癌野下界应包括锁骨及食管颈段、主气管、甚至上纵隔 单选题-5/知识点:章节测试 下列肿瘤中应首选根治性放射治疗的是 A.病变较小的表浅的T 期舌癌 B.齿龈癌 C.病变较小比较靠后的舌癌 D.高分级的小涎腺来源的囊性腺样上皮癌 E.累及相邻颌骨的T 、T 颊黏膜癌 单选题-6/知识点:章节测试

美国医学物理学家学会(AAPM)规定加速器机头旋转等中心误差为 A. 0.2mm B. 1mm C. 1.5mm D. 2mm E. 2.5mm 单选题-7/知识点:章节测试 鼻腔鼻窦恶性肿瘤的转移 A.早期可由淋巴转移 B.常直接侵犯眶、鼻咽、腭 C.很快发生耳前、颌下淋巴结转移 D.发生远隔器官转移较多 E.早期可破坏骨壁而侵入颅底 单选题-8/知识点:章节测试 直肠癌三野等中心照射定位时,侧野前界一般放在 A.股骨头前1/3处

相关文档
相关文档 最新文档