文档库 最新最全的文档下载
当前位置:文档库 › 高炉喷煤量精确控制

高炉喷煤量精确控制

高炉喷煤量精确控制
高炉喷煤量精确控制

高炉喷煤量精确控制

1、前言

随着钢铁工业的发展,焦炭需求量也随之增加。我国煤炭资源虽然丰富,但炼焦煤资源有限,仅占煤炭资源的27%左右;而其中强粘结性焦煤仅占炼焦煤的19%,粘结性肥煤仅占13%左右,而且炼焦煤资源分布也极不均匀,因此,高炉炼铁节焦和喷煤就是钢铁工业持续发展的重要课题之一。

高煤比冶炼技术既是世界性的热点技术同时也是高难度的系列集成技术。尽管世界上部分高炉的喷煤比曾经达到过200Kg/吨铁以上,但是,由于高炉原燃料条件的不一、风温、富氧等条件等的差异、资源条件的不同,以及许多技术壁垒,致使高炉喷煤仍然没有达到理想水平。

2.问题的提出

提高煤比是降低焦比、降低炼铁生产成本的重要措施,而实现喷煤量的精确控制、减少煤粉脉动瞬时波动,是影响高炉提高喷煤比的重要因素。

济钢1#1750m3高炉于2003年9月份投产,投产后,喷煤量一直不高,前期主要受设备故障多,加上炉况不正常影响,充分暴露出喷煤量控制及喷吹系统设计上没有考虑喷吹量自动精确控制的问题,主要表现在:(1)计量误差大(500Kg左右),计量信号因为罐压波动造成失真。

(2)高炉操作室内不能显示喷煤量瞬时值,操作工只能依据罐压靠人工计算求出瞬时煤量,再通过手动调节,如此落后的调节,非常不利于喷煤量的提高以及高喷煤量下炉况的稳定。

(3)由于影响煤量的参数较多,诸如罐压、阀门开度、补气量大小,冲压及卸压过程的波动等等,实际生产中这些参数并非不变的,单靠人工调节,往往顾此失彼,很难及时到位。

为保证高炉的高效、顺行,喷煤系统需要提供精确、均匀的喷煤量,而喷煤量受氮气压力、补气流量、煤粉质量等诸多因素的影响而变化,为了保证喷煤量精确均匀,操作工需不断调节罐内压和补气流量阀,这有一定的操作难度和工作强度,而且也无法保证长期性、连续性。

3、研究的思路及技术开发主要内容

喷煤控制系统的软件平台采用施耐德的MP7工控软件,MP7具有开放性好,但复杂的特点,以MP7软件为平台,把研究总结出的数学模型输入其中,既达到精确控制目的,而又不影响其原有的控制软件的使用及性能。

3.1 将模糊数学、神经自适应有效结合

模糊逻辑是一种处理不确定性、非线性问题的有力工具。它比较适合于表达那些模糊或定性的知识,其推理方式比较类似于人的思维方式,这都是模糊逻辑的优点。但它缺乏有效的自学习和自适应能力。

神经网络具有并行计算、分布式信息存储、容错能力强以及具备自适应学习能力等一系列优点。但一般来说,神经网络不适于表达基于规则的知

识,因此在对神经网络进行训练时,由于不能很好地利用已有的经验知识,常常只能将初始值取为零或随机数,从而增加了网络的训练时间或者陷入非要求的局部极值。

本课题中将模糊逻辑与神经网络结合,则网络中的各个结点及所有参数均有明显的物理意义,因此这些参数的初值可以根据系统的模糊或定性的知识来加以确定,然后利用学习算法可以很快收敛到要求的输入输出关系。同时,由于它具有神经网络的结构,因而参数的学习和调整比较容易。它能够提供更加有效的智能行为、学习能力、自适应特点、并行机制和高度灵活性。

3.2在自适应控制中引入模糊神经网络

在自适应控制中引入模糊神经网络,将进一步改善神经网络自适应控制的鲁棒性和实时性,特别适用于具有不确定性的非线性系统跟踪控制问题。但这类控制器的结构一般都是固定不变的,有可能造成如下两个问题。

(1)神经网络本身的结构和性能不一定最佳,有时甚至会出现局部最优问题,造成学习的效果不理想。同时不利于模糊控制规则的增减,有可能造成模糊规则的冗余或欠缺,影响控制量计算速度或控制精度。

(2)由于模糊规则的获取在一定程度上取决于先验知识,即有关被控制对象特征的知识,这对复杂的控制对象来说具有很大的困难。

针对问题(1),采用具有动态结构的神经网络进行推理,自动地选择最理想的神经网络结构用来控制。

对问题(2),通过神经网络的结构和参数的学习,在线调整模糊神经网络的结构、增减模糊控制规律,调整控制规则参数来改善控制性。

研究出各种变量对喷煤量的影响的数学模型,达到在各种工况下,喷煤量的精确均匀。

(1)总结出氮气压力,对喷煤量影响的数学模型。

(2)总结罐内压,对喷煤量影响的数学模型。

(3)总结出罐内煤粉重量,对喷煤量影响的数学模型。

(4)总结出罐内煤粉质量,对喷煤量影响的数学模型。

(5)总结出罐充压对罐重影响的数学模型。

(6)总结出喷枪压力,对喷煤量影响的数学模型。

(7)总结出罐称跳动的软件消除方法。

(8)倒罐过程的修正办法。

3.3具体要求

(1)能够计算和显示瞬时喷煤流量和一罐煤量的误差,能够显示喷煤车间实际班产量、日产量和设定班产量、日产量,能够生成班产量、日产量、月产量和年产量报表。

(2)通过鼠标或键盘方便地设置喷吹流量,由微机自动确定罐内压力和补气流量,使之能够实现喷煤量精确和均匀。

(3)能够进行自动、手动相互转换,尤其手动转自动时必须首先识

别现有喷吹状态,然后在此基础上调节,防止相互转换时波动太大,确保系统运行稳定。

(4)通过设计专用软件可以自动生成历史曲线打印生产统计报表。

(5)每喷完一罐煤粉能够自动核实校正一次补气流量和罐内压力,确保瞬时显示的准确性。

(6)所需的喷煤量在设定后由微机自动跟踪调节并瞬时显示,当实际喷煤量小于8t/h时,瞬时误差平均值应控制在设定喷煤量的2%以内;当实际喷煤量大于8t/h时瞬时误差平均值应控制在设定喷煤量的1%以内,并且能够迅速自动补偿实现喷煤量精确控制。

4、喷煤量精确控制发展现状

高炉煤粉喷吹是一个动态、非线性、时变、受强干扰作用、存在时间滞后和对象参数变化的多输入单输出系统。喷煤量调节的控制由于受煤粉流动性能、给料器的工作特性、煤粉在气力输送过程中的流动、高炉炉况的波动、喷吹量的检测精度等影响很大,使得喷吹系统的控制比较困难。目前,高炉煤粉喷吹量的调节方式主要有给料器开度(转速)调节、载送气体流量调节、喷吹罐罐压调节等方式,现代高炉一般同时具有两种或两种以上调节方式。为实现喷煤量的精确控制,喷吹量的准确计量是一个必不可少的环节。目前常用的喷吹量计量方法主要有电子称和煤粉流量计两种计量方式。

4.1喷煤量调节的控制技术发展现状

目前,国内外各高炉煤粉喷吹量调节的自动控制技术主要是以传统控制理论为基础的PID控制。基于数学模型的现代控制技术及基于专家知识的智能控制技术的应用还较少。

4.1.1各调节方式的控制手段现状

目前,各种调节方式的自动控制主要是将调节对象简化为线性系统来处理。对于同时存在的多种调节方式,一般采用单独的闭环回路实现各调节方式分离的半自动控制。

给料器开度(转速)调节及罐压调节的控制方式是将各自的调节对象简化为单输入、单输出(SISO)线性系统,即把喷吹率作为系统输出,开度(转速)或罐压作为控制输入,假设输入、输出在一定的工作区间满足线性关系。

载送气体流量调节的控制方式是将喷煤量调节的控制转化为载送气气体流量的控制,该控制方式根据喷吹系统的压力平衡关系,运用流体力学定理,推导出载送气流量与喷煤量的关系。当喷煤量给定后,可计算出载送气流量给定值,采用PID控制规律使得实际载送气流量跟随给定值,实现喷煤量的调节。这种控制方式将煤粉气固两相流动的控制转化为单相气体(压缩空气)流量的控制,在流量的检测及控制上单相气体都较气固两相流体要容易实现得多。但上述公式成立所必需的前提条件在实际中很难完全满足,系统装置常数随喷枪关闭或分配器堵塞、煤粉流动性能改变等发生变化。

4.1.2所用的控制技术现状

煤粉喷吹的自动控制技术主要有单闭环反馈控制系统,具有主、副回路的串级控制系统,维持载送气及煤粉固气比恒定的比值控制系统和基于现代控制理论的最优控制技术等。

单闭环的PID控制系统是目前最普遍采用的控制系统。带死区的PID控制器可在一定范围内消除偏差的频繁波动以适应喷吹量的动态波动特性;微分先行的PID控制器因具有超前控制作用可消除系统的时间滞后,因此它们和常规PID控制器是煤粉喷吹量调节的自动控制中较常采用的控制技术。

串级控制系统对进入副回路的干扰具有较强的克服作用。通常将喷煤量作为系统主控制参数,罐压或载送气流量作为副参数,主副回路采用PID或PI、PD控制规律。理论上这种控制系统具有较高的控制精度,但实际上由于计量环节的误差及对象的非线性特性,控制效果不太理想。

维持固气比恒定的比值控制系统是根据需输送的煤粉量设定载送气流量与其成比例。通过调节给料器阀门开度调节喷吹量的大小,固气比作为载送气流量控制回路的给定值以控制载送气流量的大小。

4.1.3控制技术的实现

喷煤量调节控制系统的实现一般可采用仪表控制系统、PLC控制、计算机控制或作为集散控制系统(DCS)的一部分。仪表控制系统在小型高炉及老龄高炉还有应用,现正逐渐被淘汰。

PLC控制系统常将喷煤量的调节与煤粉喷吹的过程控制结合在一起,构成完整的煤粉喷吹控制系统。

计算机控制系统硬件扩展方便,软件功能强大、灵活。

集散控制系统(DCS)具有危险分散,信息共享,扩展方便等优点,通常将煤粉喷吹量的调节作为高炉控制系统的一个子系统处理。

4.1.4喷煤量调节控制技术的新途径

由于上述各控制方式控制效果尚不理想,现在各高炉上应用较多的还是基于操作经验的手动控制或半自动控制方式。智能控制技术在高炉炉况的诊断、铁水微量元素含量的预测、高炉操作过程的优化等方面都取得了成功应用,这表明采用智能控制技术实现喷煤量调节具有广阔的前景。但是目前智能控制技术在煤粉喷吹量调节控制上的应用还不多。

高炉煤粉喷吹量的调节采用智能控制技术具有如下优势:

(1)煤粉喷吹对象的复杂性使得无法用传统方法建立其精确数学模型,这给建立在数学模型基础之上的经典控制造成极大困难;智能控制技术在系统模型的辨识等方面具有优势,为控制系统的实现带来方便。

(2)高炉煤粉喷吹系统手动控制的操作经验为智能控制规则信息的获得奠定了坚实的基础。

(3)煤粉气力输送的动态平衡特性,使得传统PID控制系统的稳定性难以保证,而智能控制技术可根据对象特性结合专家控制经验进行相应处理。

对于高炉煤粉喷吹系统的时变、非线性特性,可以采用自适应、动态辨

识网络实现系统的辨识;对于输出量的动态波动特性,可以采用小波变换、遗传算法或概率统计方法进行处理;系统控制策略可由自适应模糊控制或模糊神经网络控制等方式来实现。

5、技术难点

5.1高炉喷煤控制领域面临共性难点

高炉煤粉喷吹是一个动态、非线性、时变、受强干扰作用、存在时间滞后和对象参数变化的多输入单输出系统。喷煤量调节的控制由于受煤粉流动性能、给料器的工作特性、煤粉在气力输送过程中的流动、高炉炉况的波动、喷吹量的检测精度等影响很大,使得喷吹系统的控制比较困难。

(1)影响煤粉流动性能的因素主要有煤粉的粒度、湿度、挥发分含量、煤种、煤质等。粒度的大小和均匀性对煤粉流动性影响较大,煤种、煤质不同的煤粉流动性能有较大差异。湿度太大的煤粉和煤粉中所含有的杂质如纤维等容易造成分配器或喷枪阻塞,使得喷吹管道通畅程度具有随机性。

(2)给料器工作特性若不考虑罐压及载送气流量波动等因素,混合器给料器及可调煤粉给料器的开度或旋转给料器(星形给料器、螺旋给料器)的转速与给料器出料量在一定范围内是一种近似的线性关系,但当开度/转速超过某一范围后,其输入、输出将偏离线性关系,呈现明显的非线性特性。流态化给料方式是使煤粉呈现流化状态而从喷吹管道导出,通过改变注入喷吹管道的载送气体流量来调节喷煤量。由于煤粉流化过程的动态特性,导致煤粉流出量不均匀,给料器出料口上下压差的波动也使得喷煤量呈波动状态,所以,这种给料方式不仅具有非线性特性,而且具有很强的动态特性。

(3)煤粉的气力输送

粉体在气力输送管道中的流动存在复杂的流型变换和压力波动。流型的变换将使喷吹管道内的压力平衡关系遭到破坏,给料器出料口上下压差改变,影响给料器输出特性。由于管道内压力恢复平衡能力较弱,故喷吹量经常处于波动状态。另外,管道压力的频繁波动还可能引起载送气流量的大幅振荡,使得喷吹系统无法稳定工作。

(4)检测环节

喷吹量的计量主要有电子称和流量计两种方式。

电子称计量方式采用两次采样间隔内所喷吹的煤粉质量除以采样间隔时间得到煤粉喷吹率大小。

煤粉流量计根据喷吹管道内压力损失、煤粉浓度、煤粉速度等检测煤粉的质量流量,主要有电容噪声法流量测量、阻损法流量测量、相关测速法流量测量等。由于不同浓度的煤粉在喷吹管道内流动时气固两相流的介电常数将发生改变。电容噪声流量测量采用电容极板检测出气固两相流固相物浓度并计算喷吹量。煤粉输送时将在管路上产生压力损失,利用动量守恒定律可推导出煤粉质量流量计算公式。阻损法流量测量以此为原理,通过测量载送气体流量、检测部位压力及压差等参数计算煤粉质量流量。

目前,两种检测方式的精度都不高;另外,电子称检测方式存在较大的时间滞后,流量计检测方式因煤粉输送过程中的波动特性,测得喷吹量波动性较强,给实现闭环控制增加了难度。

对于采用串罐方式实现煤粉连续喷吹的系统,倒罐期间喷吹量的测量误差很大。为减小倒罐期间喷吹量的计量误差,通常可以采用电气补偿法、机械补偿法等方法实现喷吹量的连续计量。

通过上述分析可见,高炉煤粉喷吹是一个动态、非线性、时变、受强干扰作用、存在时间滞后和对象参数变化的多输入单输出系统。目前主要的喷煤量调节方式有调节给料器开度(转速)、调节载送气体流量、调节喷吹罐罐压等。由于各调节方式存在一定的耦合关系,采用单一的调节方式或各调节方式采用单独的控制回路将难以达到理想的控制效果。

5.2济钢条件下实施的难点

喷煤控制系统的软件平台采用施耐德的MP7工控软件,MP7具有开放性好,但复杂的特点,以MP7软件为平台,把研究总结出的数学模型输入其中,而又不能影响其原有的控制软件的使用及性能,有较高的技术难度。

喷煤生产是不间断的连续过程,在调试精确喷煤软件时不能影响生产。同时兼顾调试及生产,须小心一个模型一个模型输入调试,找出软件的缺陷性和不兼容性。加以修改。同时须找出数学模型中的可变量参数,以便修改参数,以使软件适应不同的工况状态。

6、技术重点

喷煤控制系统的软件平台采用施耐德的MP7工控软件,MP7具有开放性好,但复杂的特点,以MP7软件为平台,把研究总结出的数学模型输入其中,既达到精确控制目的,而又不影响其原有的控制软件的使用及性能。

6.1 将模糊数学、神经自适应有效结合

模糊逻辑是一种处理不确定性、非线性问题的有力工具。它比较适合于表达那些模糊或定性的知识,其推理方式比较类似于人的思维方式,这都是模糊逻辑的优点。但它缺乏有效的自学习和自适应能力。

神经网络具有并行计算、分布式信息存储、容错能力强以及具备自适应学习能力等一系列优点。但一般来说,神经网络不适于表达基于规则的知识,因此在对神经网络进行训练时,由于不能很好地利用已有的经验知识,常常只能将初始值取为零或随机数,从而增加了网络的训练时间或者陷入非要求的局部极值。

本课题中将模糊逻辑与神经网络结合,则网络中的各个结点及所有参数均有明显的物理意义,因此这些参数的初值可以根据系统的模糊或定性的知识来加以确定,然后利用学习算法可以很快收敛到要求的输入输出关系。同时,由于它具有神经网络的结构,因而参数的学习和调整比较容易。它能够提供更加有效的智能行为、学习能力、自适应特点、并行机制和高度灵活性。

6.2在自适应控制中引入模糊神经网络

在自适应控制中引入模糊神经网络,将进一步改善神经网络自适应控制的鲁棒性和实时性,特别适用于具有不确定性的非线性系统跟踪控制问题。但这类控制器的结构一般都是固定不变的,有可能造成如下两个问题。

(1) 神经网络本身的结构和性能不一定最佳有时甚至会出现局部最优问题,造成学习的效果不理想。同时不利于模糊控制规则的增减,有可能造成模糊规则的冗余或欠缺,影响控制量计算速度或控制精度。

(2) 由于模糊规则的获取在一定程度上取决于先验知识,即有关被控制对象特征的知识,这对复杂的控制对象来说具有很大的困难。

针对问题(1),采用具有动态结构的神经网络进行推理,自动地选择最理想的神经网络结构用来控制。

对问题(2),通过神经网络的结构和参数的学习,在线调整模糊神经网络的结构、增减模糊控制规律,调整控制规则参数来改善控制性。

6.3自动精确控制原理图

6.4

研究出各种变量对喷煤量的影响的数学模型,达到在各种工况下,喷煤量的精确均匀。

(1)总结出氮气压力对喷煤量影响的数学模型

N P Pa m K PV ..1

=,400KPa <PN <530Kpa

N P Pa m K PV ..2=

,530KPa <PN <600Kpa 4/..3K P Pa m K PV N =

,600KPa <PN

注:Pv---瞬时煤量;

m---罐重;

Pa —前5分钟瞬时煤量

PN---氮气压力,Pa

(2)总结罐内压,对喷煤量影响的数学模型。

m m PNa

K PV ..5=,600KPa <PN

..6m PNa

K PV =

, m <8t 注:PNa----罐内压力,

(3)罐内煤粉重量对喷煤量影响的数学模型

Q m K PV .7

=

Q---补气流量

(4)罐内煤粉质量,对喷煤量影响的数学模型

Pv=K8×μR3/m

μR: 煤粉粘度

(5)罐充压对罐重影响的数学模型

Pv=K9×N dP dm

N dP dm

:煤粉重量随压力的变化

(6)喷枪压力对喷煤量影响的数学模型

.

.10

Q K PV =PNb3

PNb:喷枪压力

(7)罐称跳动的软件消除方法。

(8)倒罐过程的修正办法

7、项目开发应用后效果

(1)能将采集到的电子秤重量信号进行校核,自动去除机械设备因素造成的峰谷值,转化为模拟信号或数字信号,并使其瞬时值稳定,通过信号控制罐内压力和补流量,同时换算显示罐内压力和流量。

(2)所需的喷煤量在设定后由微机自动跟踪调节并瞬时显示,当实际喷煤量小于8t/h时,瞬时误差平均值控制在设定喷煤量的2%以内;当实际喷煤量大于8t/h时瞬时误差平均值应控制在设定喷煤量的1%以内,并且能够迅速自动补偿实现喷煤量精确控制。

(3)由于煤量控制精度提高。减少了煤量不稳对高炉生产的不利影响,炉况更趋稳定,产量提高,煤比增加。

(4)该项目在济钢炼铁厂厂1#1750m3高炉上应用,达到了预期目标,使喷煤量控制精度明显提高,并且已经在2#1750m3、3#1750m3高炉推广应用。

8.结论

(1)基于模糊数学与自适应神经网络基础开发的精确控制系统达到预期目标,控制精度高。

(2)项目投用后,既减轻了操作工的劳动强度,同时也明显改善高炉技术经济指标。

(3)该技术在国内领先,具有投资少、见效快的特点,值得大力推广。

钢铁厂高炉喷煤操作

高炉喷煤 一、喷吹煤粉已成为小高炉炼铁的当务之急 i.当前,钢铁冶金行业遭遇到全球性的原料价格上涨,焦炭、矿石的 价格涨幅惊人,冶炼成本普遍提高,这给小高炉炼铁业带来更大的 困难。因此,降低冶炼成本成了小高炉作业的重要目标。其中,降 低焦化,尤其重要。 b)从50年代起,人们就在努力向高炉内喷吹相对廉价的煤粉,以部分替代 价格相对昂贵的焦炭。经过半个世纪的努力,在喷煤技术方面取得了巨 大的成功,喷煤技术日趋成熟。但是,成功的喷煤作业绝大部分都是在 大高炉完成的,高炉喷煤技术还有待推广和完善。 二、高炉喷吹煤粉降低焦比的原理 i.焦炭在高炉内主要有三大作用:还原剂和料柱骨架。焦炭生产过程 相对复杂,对于原料有特殊要求,由于资源和设备投资方面的因素, 这些年来焦炭价格不断上涨,成为炼铁成本上升的主要原因。从高 炉风口向高炉的内喷吹煤粉,由于具有和焦炭同样的碳素,可以部 分替代焦炭低廉许多,从而可以在很大程度上降低生铁生产成本。 三、喷吹煤粉的技术效果 i.高炉喷煤后,除了焦比大幅度降低外,还给高炉操作增加了一个调 剂手段,高炉操作人员可以利用控制喷煤量来控制高炉的热状态; 喷煤后,由于煤比焦炭具有更多的挥发分,从而增加了煤气中氢的 含量,煤气还原能力增强,有利于发展间接还原,这实际上也是降 低焦比的原因之一。 四、高炉喷煤的特点

高炉喷煤之后,高炉压差并没有显著增加,也就是说,对于高炉透气性的影响不如大高炉那样明显。高炉由于整体能耗水平较高,喷煤后 效果比较明显,置换比好于大高炉,接近1.0。高炉采用球式热风炉,风 温相对较高,有利于喷煤。此外,小高炉喷煤的实践表明:喷煤后高炉 炉况进一步稳定,炉缸工作状态改善,普遍顺行。 五、重要意义 i.高炉喷煤对现代高炉炼铁技术来说是具有革命性的重大措施。它 是高炉炼铁能否与其他炼铁方法竞争,继续生存和发展的关键技 术,其意义具体表现为: b)以价格低廉的煤粉部分替代价格昂贵而日趋匮乏的冶金焦炭,使高炉 炼铁焦比降低,生铁成本下降; c)喷煤是调剂炉况热制度的有效手段; d)喷煤可改善高炉炉缸工作状态,使高炉稳定顺行; e)喷吹的煤粉在风口前气化燃烧会降低理论燃烧温度,为维持高炉冶炼 所必需的动力,需要补偿,这就为高炉使用高风温和富氧鼓风创造了 条件; f)喷吹煤粉气化过程中放出比焦炭多的氢气,提高了煤气的还原能力和 穿透扩散能力,有利于矿石还原和高炉操作指标的改善; g)喷吹煤粉替代部分冶金焦炭,既缓和了焦煤的需求,也减少了炼焦设 施,可节约基建投资,尤其是部分运转时间已达30年需要大修的焦 炉,由于以煤粉替代焦炭而减少焦炭需求量,需大修的焦炉可停产而 废弃; h)喷煤粉代替焦炭,减少焦炉炉座数和生产的焦炭量,从而可降低炼焦 生产对环境的污染。 六、工艺组成 高炉喷煤工艺系统主要由原煤贮运、煤粉制备、煤粉输送、煤粉喷吹、干燥气体制备和供气动力系统组成。 七、工艺模式 从煤粉制备和喷吹设施的配置上来分,高炉喷煤工艺有两种模式,即间接喷吹模式和直接喷吹模式。制粉系统和喷吹系统结合在一起直接向高炉喷吹的工艺叫直接喷吹工艺;制粉系统和喷吹系统分开,通过罐车或气动输送管道将煤粉从制粉车间送到靠近高炉的喷吹站,再向高炉喷吹煤粉的工艺

高炉喷煤基本知识

高炉喷煤基本知识 一、喷吹煤粉对高炉的影响: 1、炉缸煤气量增加,鼓风动能增加,燃烧带扩大。煤粉含碳氢化合 物高,在风口前气化后产生大量H2,使炉缸煤气量增加,煤气中的H/C比值越高,增加的幅度越大,无疑也将增大燃烧带; H2的粘度和密度均小,穿透能力大于CO,部分煤粉在风管和风口内就开始脱气分解和燃烧,所形成的高温混合气流其流速和动能远大于全焦冶炼时的风速和动能,故喷吹煤粉后,风口面积应适当扩大,以保持适宜的煤气流分布。 2、理论燃烧温度下降,而炉缸中心温度均匀并略有上升。理论燃烧 温度下降的原因:①喷入煤粉量冷态进入燃烧带;②煤粉中碳氢化合物在高温作用下先分解再燃烧,分解反应吸收热量;③燃烧生成的煤气量增加。 炉缸中心温度上升的原因:①煤气及动能增加炉缸径向温度梯度缩小;②上部还原得到改善,热支出减少;③高炉热交换改善。 3、料柱阻损增加,压差升高。①喷吹后煤气量增加流速加快;②料 柱中的矿/焦比值越大。 4、间接还原发展。①煤气中还原成份(CO+H2)浓度增加;②H2 的数量和浓度显著提高,炉内温度场变化。 二、喷吹燃料“热补偿” 喷吹燃料以常温态进入高炉要消耗部分热量需进行热补偿,经验

表明:喷煤量增加,50kg/t ·Fe 需补偿风温均80℃。 三、 热滞后: 煤粉在炉缸分解吸热增加,初期使炉缸温度降低直到新增加喷吹量带来的煤气量和还原气体浓度(尤其是H 2量)的改变而改善了矿石的加热和还原下到炉缸后,开始提高炉缸温度比过程所经历的时间为“热滞后”时间,即炉料从H 2代替C 参加还原的区域(炉身温度1100~1200℃处)下降到炉缸所经过的时间,一般滞后时间在2—4h 。 估算热滞后时间 ·V 13 V 2—每批料的体积m 3 N —下料批数 批/h 四、 煤粉喷入高炉后的去向: 风口前燃烧 煤粉 未燃煤粉 随煤气逸出炉外 五、 置换比煤粉的置换比常为0.7—0.9,一般取0.8。 六、 喷煤高炉操作 1、 应固定风温调剂煤量,用调节喷吹量来保持料速的基本稳定。 2、 喷煤纠正炉温波动的效能,随喷煤量的增加而减弱。

高炉喷煤制粉控制方案(王宏伟)

高炉喷煤控制系统 技术方案 辽宁中新自动控制有限公司 2003-2-17

目录 一、概述 二、高炉喷煤工艺流程及主要部分自动化控制说明 三、自动化系统硬件组成 四、控制策略 五、控制系统的监控与操作

一、概述 近年来,我国的高炉喷煤取得了巨大的成绩,已经形成了具有特色的、成熟配套的喷煤技术和工艺流程。在高炉炼铁过程中采用富氧大喷煤可以节省大量焦炭,能够较大幅度地降低炼铁成本。例如采用先进的配煤技术,能够把不同性能的煤种进行混合,以提高其燃烧率;采用中速磨进行煤粉制备,大幅度降低电耗和噪音污染;采用热风炉烟气做载气和干燥气,既节约了能耗又起到了防爆作用;采用布袋一次收粉,取消了一级、二级旋风收粉装置;采用一级风机,实现全负压操作;采用直接喷吹工艺,喷吹系统和制粉系统设在同一厂房内;喷吹罐可采用串联或并联方式,采用流化罐上出料及浓相输送技术,可以使出煤均匀,防止脉动和减少对输煤管道的磨损;采用总管加分配器工艺将煤粉送至高炉的各个风口;采用电容流量计进行总管及支管煤粉计量,配合其它设备可以形成闭环煤量自动控制;采用氧煤枪进行局部富氧以提高煤粉燃烧率;采用供氧及安全控制系统以防止氧气泄露。因此,如何在保证控制安全可靠的前提下,实现低成本自动化,是喷煤自动控制设计者主要考虑的问题。 二、高炉喷煤工艺流程及主要部分自动化控制说明 从工艺角度来讲,整个系统可分为制粉和喷吹两个子系统,制粉工艺系统又分为原料控制系统、干燥系统、磨煤系统,喷吹工艺系统又分为布袋除尘、喷吹系统、动力系统。如下面高炉喷煤主工艺图。其工艺流程见图

高炉喷煤工艺主流程图 1:排烟风机入口调节阀,2:布袋除尘事故充氮阀,3:布袋反吹阀,4:中速磨事故充氮阀,5:煤粉仓事故充氮阀,6:均压阀,7:煤粉仓流化阀,8、9:喷吹罐放散阀,10、11:蝶阀,12、13:球阀,14、15:充压阀,16、25:补压阀,17、18:喷吹罐流化阀,19、22:补气调节阀,20、23:出煤阀,24、快切阀,26:氮气空气切换阀,27:安全用氮减压阀,28:氮气总管调节阀电气控制主要设备: a、制粉系统: 圆盘给料机、胶带机、检铁器、犁式卸料器、定量给料机、热风炉废气引风机,助燃风机,中速磨(密封电机、液压电机、慢传电机、加热器、润滑泵)、排煤风机。 各种阀:热风炉废气放散阀,冷风阀、干燥剂放散阀,中速磨事故充氮阀,快切阀,输煤阀等。 b、喷吹系统: 主排烟风机、布袋叶轮给煤机 各种阀:排烟风机入口调节阀,布袋除尘事故充氮阀,布袋反吹阀,煤粉仓脉冲阀、停风阀、煤粉仓事故充氮阀,煤粉仓流化阀,均压阀,喷吹罐放散阀,蝶阀,球阀,充压阀,补压阀,喷吹罐流化阀,补气调节阀,出煤阀,快切阀,氮气空气切换阀,安全用氮减压阀,

我国高炉喷煤技术的现状及发展趋势

邯钢1000m3高炉提高喷煤比的探索 刘伟,樊泽安,王飞,徐俊杰 (河北钢铁集团邯郸钢铁公司炼铁部,河北邯郸056015) 摘要:邯钢4#高炉(有效容积1000m3)经过不断探索,加强原燃料管理、高炉的操作和维护,使喷煤比逐月提高、焦比和综合焦比不断下降。喷煤比由2008年的130.6 kg/t提高到2009年6月的163.1 kg/t,焦比由361kg/t下降到了305kg/t,综合焦比由524kg/t下降到了500kg/t,取得了良好的经济效益。 关键词:高炉;喷煤比;探索 引言 邯钢4#高炉有效容积917m3,2007年、2008年虽然炉况长期稳定顺行,但由于燃料变化比较大,有时甚至一天就变换数次焦炭,各项指标未达到最好水平,平均日产2600t上下,一级品率70%,焦比361kg/t,煤比130kg/t,焦丁比16kg/t风温1100℃,平均[Si]0.61%。进入2009年以来,4#高炉以“低耗高产”举措应对当前市场挑战,进一步探索好的经济技术指标成效显著,通过监督改善原燃料质量、适时调整煤气流分布、降低入炉焦比、提高富氧、增加喷煤、高风温协调互补、适当提高炉渣碱度等措施,基本实现了全捣固焦冶炼的长期稳定顺行,并实施了低硅冶炼,取得了很好的经济技术指标。2009年4月以来,平均日产达到2700t以上,利用系数达到3.0,一级品率93.45%,焦比降到305kg/t,煤(全无烟煤)比达到160kg/t以上,中焦比达到18kg/t,焦丁比达到16kg/t,风温达到1135℃,平均[Si]达到0.43%以下。通过优化高炉操作技术经过不断实践和探索,在喷吹全无烟煤的情况下煤比达到160kg/t以上实属难得(见表1)。 表1 4高炉生产指标 利用系/t. (m-2. d-1) 煤 比 /kg.t-1 入 炉焦比 /kg.d-1 焦 丁比 /kg.d-1 中 焦比 /kg.d-1 风 温/℃ R 2 [ Si]/% 20 08 2.88 6 1 30.6 361 14 20 1 107 1 .15 .61 20 09.4 3.0 1 51.7 327 16 18 1 132 1 .13 .44 20 3.001308 17 18 110

高炉喷煤技术方案 2

1 概述 上世纪60年代初,我国高炉喷煤试验获得成功后,高炉喷煤技术在我国逐渐推广应用。进入90年代,特别是经过“八五”“氧煤强化炼铁”项目攻关后,我国高炉喷煤技术发展跃上了一个新的台阶,已经赶上了世界先进水平,吨铁喷煤量和覆盖率大幅度增加。2002年全国54家重点(原重点和地方骨干)联合钢铁企业吨铁喷煤量已达到125kg/t,企业喷煤覆盖率达到85%以上。高炉喷吹煤粉及提高喷煤量已经成为现代高炉炼铁技术的发展方向,同时也是降低生产成本最直接和最有效的手段之一。当前我国炼铁生产规模正在迅速扩大,生产效率也在不断提高,对焦炭的需求量日益增加,导致冶金焦价格高,资源紧缺,高炉大量喷煤是解决这一矛盾的最佳措施。 贵公司现有两座高炉450立方米的高炉。年产生铁约126万吨。如两座高炉采用全焦冶炼,每年需要焦炭约70万吨。高炉生产成本较高,采用高炉喷煤技术,不但在很大程度上可以缓解焦炭的供需矛盾,减轻焦炭质量波动对高炉操作的影响,而且也会进一步降低炼铁生产成本,同时也为高炉操作增加了下部调节手段,有利于改善高炉生产的技术经济指标。 鉴于上述情况,以及着眼于贵公司长期的发展战略目标,拟建设高炉喷煤工程,工程建设指标为喷煤工艺及设备能力正常XX kg/t,最大达到XXX kg/t喷煤比能力,喷吹煤种为无烟煤浓相输送设计。置换比按X计算,可以代替约X万吨焦炭。

2.喷煤设计工艺要求 2.1 喷煤量 根据贵公司对喷煤工程的要求,和参照国内外喷煤技术的发展…。 2.2 设计条件 喷吹用煤…。 2.3工艺流程 设计采用…方案,以节省投资和占地面积。…本喷煤工程包括…高炉。目前高炉喷煤系统有关的工艺参数如表1所示。 表1 喷吹系统有关的基本参数 2.4 喷吹站 喷吹站采用并罐浓相喷吹工艺。 喷吹站的操作全部自动联锁,整个系统各设备既可自动也可手动。 2.5 原煤理化指标

国外钢铁企业的高炉喷煤技术

2 国外钢铁企业的高炉喷煤技术 2.1浦项光阳厂和阿塞勒Gijon厂 近年来,浦项公司和阿塞勒公司的高炉生产者一直计划改进现有的喷煤装置,并对其静力分配器系统提出两种改进方案。改进现有喷煤装置的主要原因如下:1)焦炭的价格提高,质量较差,改进喷煤系统后,可以减少焦炭的使用量;2)寻求一种更经济、更稳定的高炉操作方式;3)高炉中修后,铁水生产能力提高;4)多年来的喷煤实践证明,喷吹煤粉可以实现高炉工艺最佳化,高煤比操作是可行的;5)原有喷煤装置的计量精度无法满足更高煤比的要求,即高煤比时不能保证稳定喷吹。 要想对原有的喷煤装置进行改进,有两个问题必须解决:首先,提高喷煤装置喷吹能力,应额外增加1台喷吹罐或优化喷吹罐的倒罐循环次序;其次,须检测煤粉总流量和流量精度。 对于单管流量控制系统或采用分配器的喷吹系统以及流量均衡喷嘴的系统,在安装测量和控制设备后,一般能够达到所要求精度,为了达到今后所必需的高精度,须改进喷煤装置。 2.1.1 单管流量控制 计划用一台喷吹罐取代静力分配器。喷吹罐后序的喷吹管线将安装煤粉流量的测量装置和煤粉流量控制阀,以对高炉各个风口煤粉喷吹过程实现闭环控制。喷吹罐前序的输送罐将用于向喷吹罐送煤。输送煤的载气一部分用于维持喷吹罐内的压力,另一部分通过布袋收粉器释放掉。布袋收粉器出口处的压力控制阀用于控制喷吹罐内的压力。这套方案具有单管流量控制装置的所有优点,如在喷吹管路中,煤粉流量精度的偏差小于1%、总流量控制偏差小于0.5%以及带入高炉的氮气量少等。实际上,由于喷吹罐的位置靠近高炉,因此喷吹罐内的喷吹压力较低,可实现高浓相输送。 此外,由于输送系统(输送罐到喷吹罐)与喷吹系统是分开的,所以总流量的波动不会影响喷吹流量。对简单分配器进行的第一套改进方案已在韩国浦项公司光阳厂的1号高炉成功实施,其原理见图1-1所示。

高炉喷煤量精确控制

高炉喷煤量精确控制 1、前言 随着钢铁工业的发展,焦炭需求量也随之增加。我国煤炭资源虽然丰富,但炼焦煤资源有限,仅占煤炭资源的27%左右;而其中强粘结性焦煤仅占炼焦煤的19%,粘结性肥煤仅占13%左右,而且炼焦煤资源分布也极不均匀,因此,高炉炼铁节焦和喷煤就是钢铁工业持续发展的重要课题之一。 高煤比冶炼技术既是世界性的热点技术同时也是高难度的系列集成技术。尽管世界上部分高炉的喷煤比曾经达到过200Kg/吨铁以上,但是,由于高炉原燃料条件的不一、风温、富氧等条件等的差异、资源条件的不同,以及许多技术壁垒,致使高炉喷煤仍然没有达到理想水平。 2.问题的提出 提高煤比是降低焦比、降低炼铁生产成本的重要措施,而实现喷煤量的精确控制、减少煤粉脉动瞬时波动,是影响高炉提高喷煤比的重要因素。 济钢1#1750m3高炉于2003年9月份投产,投产后,喷煤量一直不高,前期主要受设备故障多,加上炉况不正常影响,充分暴露出喷煤量控制及喷吹系统设计上没有考虑喷吹量自动精确控制的问题,主要表现在:(1)计量误差大(500Kg左右),计量信号因为罐压波动造成失真。 (2)高炉操作室内不能显示喷煤量瞬时值,操作工只能依据罐压靠人工计算求出瞬时煤量,再通过手动调节,如此落后的调节,非常不利于喷煤量的提高以及高喷煤量下炉况的稳定。 (3)由于影响煤量的参数较多,诸如罐压、阀门开度、补气量大小,冲压及卸压过程的波动等等,实际生产中这些参数并非不变的,单靠人工调节,往往顾此失彼,很难及时到位。 为保证高炉的高效、顺行,喷煤系统需要提供精确、均匀的喷煤量,而喷煤量受氮气压力、补气流量、煤粉质量等诸多因素的影响而变化,为了保证喷煤量精确均匀,操作工需不断调节罐内压和补气流量阀,这有一定的操作难度和工作强度,而且也无法保证长期性、连续性。 3、研究的思路及技术开发主要内容 喷煤控制系统的软件平台采用施耐德的MP7工控软件,MP7具有开放性好,但复杂的特点,以MP7软件为平台,把研究总结出的数学模型输入其中,既达到精确控制目的,而又不影响其原有的控制软件的使用及性能。 3.1 将模糊数学、神经自适应有效结合 模糊逻辑是一种处理不确定性、非线性问题的有力工具。它比较适合于表达那些模糊或定性的知识,其推理方式比较类似于人的思维方式,这都是模糊逻辑的优点。但它缺乏有效的自学习和自适应能力。 神经网络具有并行计算、分布式信息存储、容错能力强以及具备自适应学习能力等一系列优点。但一般来说,神经网络不适于表达基于规则的知

喷煤知识点

1、高炉喷煤定义: 是指从高炉风口向炉内直接喷吹磨细了的煤粉(无烟煤、烟煤、或无烟煤烟煤的混合煤粉以及烟煤粉),以代替焦炭向高炉提供热量和还原剂。 2、高炉喷煤的意义 (1)用粉代替焦炭提供热量和还原剂,降低焦比、降低生铁成本- 解决焦炭短缺问题; -降低生产成本; -综合能耗降低; (2)有利于采用高风温和富氧鼓风技术 -解决高风温产生的问题; -解决富氧鼓风产生的问题; (3)有利于调节炉况,改善高炉冶炼过程 -增加调节手段,调节炉温较快; -改善高炉内的还原过程 (4) 解决焦炭短缺问题 -焦煤资源短缺 -环境保护限制 炼焦生产环境负荷大,污染严重; 焦炉寿命25~30年,欧美焦炉多在70年代投产,已到寿命; 环境意识增强,限制新焦炉投产; (5)降低生产成本 -焦煤昂贵,焦炭价高,来源少; -煤资源丰富,来源广,价格低; -改善还原可以降低焦比。 (6)调节炉况 常用调节炉况的手段 风温:通常不使用 风量:通常不使用 焦炭负荷:滞后 鼓风湿分:灵敏,但不利于降低能耗 喷煤调节炉况:较快。 (7)改善还原 煤气含H2量增加,有利于降低直接还原,有利于降低焦比。 增加炉缸煤气量,改善还原。 3、喷煤技术的进步主要体现在以下几方面: (1)喷煤设备大型化和装备水平的提高。 (2)高炉富氧喷煤。 (3)喷吹烟煤或烟煤与无烟煤混合喷吹。 (4)浓相输送。 4、浓相输送浓相输送 高炉喷煤采用气力输送,按单位气体载运煤粉量的多少,可分为稀相输送和浓相输送。一般稀相输送的速度在20m/s以上,煤粉浓度在5-30kg/m3范围内。而浓相输送的速度则小于10m/s,煤粉浓度大于40kg/m3. 浓相输送的优点:喷吹浓度高,消耗介质量少,煤粉在管道内的流速低,对

高炉喷煤自动控制系统

高炉喷煤自动控制系统 姚瑞英 喷煤控制系统由烟气炉、原煤储运、制粉、喷吹四部分组成,主要实现了生产工艺设备的自动/手动控制及保护、工艺数据的自动采集和处理、PID回路的自动调节、工艺画面动态显示、历史和实时趋势显示纪录、紧急停喷报警等功能。 系统介绍 1 硬件配置 系统采用Modicon TSX Quantum系列可编程控制器,烟气炉有一套单独的PLC系统,原煤储运、制粉、喷吹公用一套PLC系统,并采用远程I/O网络结构,原煤储运为主站,通过同轴电缆连接制粉、喷吹两个远程站。两套PLC均通过以太网进行通讯。 2 软件配置 运用Concept2.5软件对PLC系统组态编程,画面监控软件选用IFIX软件。 3 网络结构 喷煤PLC系统包括烟气炉PLC系统和高炉喷煤PLC系统,如图1所示。每个控制系统通过以太网进行数据传输和现场设备的控制。共设两个控制室,5台上位机,其中烟气炉、制粉、喷吹以及主引风机高压变频监控站在一个控制室,原煤储运单独在一个控制室,各上位机之间通过交换机互联,其中由于原煤储运控制室距另外的控制室较远,为确保数据传输的准确性,两台交换机通过光纤介质互联,其他上位机及PLC之间通过双绞线互联。高压变频监控站通过MB+网控制变频器的频率。

图1 喷煤系统网络拓扑该网络结构有两种方式可以为将来与高炉联网做准备,一是交换机预留光纤口,通过光纤与高炉进行数据通讯;二是通过CPU的MB+口进行数据通讯,实现数据的透明化。 工艺控制 1 原煤储运系统 该系统包括8条皮带机、1#~4#圆盘给料机,1#、2#电磁分离器、犁式卸料器,主要负责向1#、2#原煤仓上煤。根据现场设备情况,可以选择4个圆盘给料机中任何一个或两个圆盘给料机同时给1#或2#煤仓供料,这样共有12个料流可以选择,被选中的皮带则根据料流的方向逆启顺停。 操作人员根据原煤仓需煤量的大小选择相应的料流。当某一料流运转时,从画面将程序打在“联动”位,若该料流的任一设备出现故障,则系统联停,设备停止顺序与启动顺序相反。 2 烟气炉系统 该系统为制粉系统提供干燥原煤和输送煤粉的干燥气。干燥气是热风炉废气与烟气炉烟气的混合气体,主要采用热风炉废气,不足热量由烟气炉烟气补充。为了保证磨煤系统所需的一定温度及流量的一次混合干燥气,必须实现干燥气流量和温度的动态调节,使出口温度处于规定值内,并通过磨煤机出口温度变化情况进一步控制和调节磨煤机入口的热风炉废气调节阀的开度。当高炉煤气压力高于高定值或低于低定值时,系统自动关闭高炉煤气切断阀。冷空气调节系统由操作人员根据中速磨所需热风的温度的高低,通过计算机手动调节阀门开度来混兑冷空气。 3 制粉系统 制粉系统主要包括给煤机、磨煤机、稀油站、布袋收尘器、主引风机和螺旋输送机等。其中给煤机可以从上位机控制,也可由设备带来的PC控制。 (1)入磨一次风量调节:可分为自动/手动两种方式,自动方式时,预先设定原煤水分、入口干燥气温度、给煤机给煤量等可变量的值,计算机进行计算后得出循环废气和烟气需要量,并调节废气和烟气调节阀开度,达到调节入磨风量的目的。手动方式时,由操作人员根据实际观察的结果,手动调节相应阀的开度。 (2)开车顺序:开主引风机→开布袋收尘器→开密封风机→开磨煤机(操作回路动作)→开给煤机。停车顺序与开车顺序相反。

钢铁厂高炉喷煤操作

钢铁厂高炉喷煤操作

高炉喷煤 一、喷吹煤粉已成为小高炉炼铁的当务之急 i.当前,钢铁冶金行业遭遇到全球性的原料价格上涨,焦炭、矿石的 价格涨幅惊人,冶炼成本普遍提高,这给小高炉炼铁业带来更大的 困难。因此,降低冶炼成本成了小高炉作业的重要目标。其中,降 低焦化,尤其重要。 b)从50年代起,人们就在努力向高炉内喷吹相对廉价的煤粉,以部分替 代价格相对昂贵的焦炭。经过半个世纪的努力,在喷煤技术方面取得了 巨大的成功,喷煤技术日趋成熟。但是,成功的喷煤作业绝大部分都是 在大高炉完成的,高炉喷煤技术还有待推广和完善。 二、高炉喷吹煤粉降低焦比的原理 i.焦炭在高炉内主要有三大作用:还原剂和料柱骨架。焦炭生产过程 相对复杂,对于原料有特殊要求,由于资源和设备投资方面的因素, 这些年来焦炭价格不断上涨,成为炼铁成本上升的主要原因。从高 炉风口向高炉的内喷吹煤粉,由于具有和焦炭同样的碳素,可以部 分替代焦炭低廉许多,从而可以在很大程度上降低生铁生产成本。 三、喷吹煤粉的技术效果 i.高炉喷煤后,除了焦比大幅度降低外,还给高炉操作增加了一个调 剂手段,高炉操作人员可以利用控制喷煤量来控制高炉的热状态; 喷煤后,由于煤比焦炭具有更多的挥发分,从而增加了煤气中氢的 含量,煤气还原能力增强,有利于发展间接还原,这实际上也是降 低焦比的原因之一。 四、高炉喷煤的特点

高炉喷煤之后,高炉压差并没有显著增加,也就是说,对于高炉透气性的影响不如大高炉那样明显。高炉由于整体能耗水 平较高,喷煤后效果比较明显,置换比好于大高炉,接近 1.0。 高炉采用球式热风炉,风温相对较高,有利于喷煤。此外,小高 炉喷煤的实践表明:喷煤后高炉炉况进一步稳定,炉缸工作状态 改善,普遍顺行。 五、重要意义 i.高炉喷煤对现代高炉炼铁技术来说是具有革命性的重大措施。它 是高炉炼铁能否与其他炼铁方法竞争,继续生存和发展的关键技 术,其意义具体表现为: b)以价格低廉的煤粉部分替代价格昂贵而日趋匮乏的冶金焦炭,使高炉 炼铁焦比降低,生铁成本下降; c)喷煤是调剂炉况热制度的有效手段; d)喷煤可改善高炉炉缸工作状态,使高炉稳定顺行; e)喷吹的煤粉在风口前气化燃烧会降低理论燃烧温度,为维持高炉冶炼 所必需的动力,需要补偿,这就为高炉使用高风温和富氧鼓风创造了 条件; f)喷吹煤粉气化过程中放出比焦炭多的氢气,提高了煤气的还原能力和 穿透扩散能力,有利于矿石还原和高炉操作指标的改善; g)喷吹煤粉替代部分冶金焦炭,既缓和了焦煤的需求,也减少了炼焦设 施,可节约基建投资,尤其是部分运转时间已达30年需要大修的焦 炉,由于以煤粉替代焦炭而减少焦炭需求量,需大修的焦炉可停产而 废弃; h)喷煤粉代替焦炭,减少焦炉炉座数和生产的焦炭量,从而可降低炼焦 生产对环境的污染。 六、工艺组成 高炉喷煤工艺系统主要由原煤贮运、煤粉制备、煤粉输送、煤粉喷吹、干燥气体制备和供气动力系统组成。 七、工艺模式 从煤粉制备和喷吹设施的配置上来分,高炉喷煤工艺有两种模式,即间接喷吹模式和直接喷吹模式。制粉系统和喷吹系统结合在一起直接向高炉

高炉喷煤自动化系统

高炉喷煤自动化系统 采用西门子S7-400PLC介绍了高炉喷煤自动化系统的的硬件配置,软件编程,以及调试。 标签:PLC自动控制;西门子PLC;高炉喷煤 一、高炉喷煤工艺及作用 现代高炉冶炼需用焦炭,它在高炉中的作用是提供冶炼过程需要的热量;还原铁矿石需要的还原剂;以及维持高炉料柱透气性的骨架。高炉喷煤是从高炉风口向炉内直接喷吹磨细了的无烟煤粉或烟煤粉或这两者的混合煤粉,以替代焦炭起提供热量和还原剂的作用。以价格低廉的煤粉部分替代冶金焦炭,不仅可以降低生产成本,且减少焦炭的需求量,可降低炼焦生产对环境的污染。其工艺流程图如下: 二、控制系统硬件配置 本套自动化系统采用一套,两台上位机完成对整个系统的监控及数据采集等。自动控制系统采用S7-400 系列PLC硬件组成基础自动化系统。采用Intouch10.0监控软件,编程软件采用STEP7V5.4,系统平台为Windows XP,组成计算机操作系统,实现人机通讯。 控制器与上位机之间采用环形工业以太网进行通讯。主机控制单元接受由I/O接口收集的信号进行开关量和模拟量的处理后,将信号经I/O接口实现对设备的控制,与监控站及上位机通讯。系统中所用PLC模块型号如下:电源模块6ES7 407-0KA02-0AA0;CPU 6ES7416-2XN05-0AB0;以太网通讯模块6GK7 443-1EX20-0XE0;总线接口模块6ES7 153-1AA03-0XB0;数字量输入模块6ES7 321-1BH02-0AA0;数字量输出模块6ES7 322-1BH01-0AA0;模拟量输入模块6ES7 331-7KF02-0AB0;模拟量输出模块6ES7 332-5HD01-0AB0。系统配置图如下: 三、控制系统组成 这里是以某厂已投用喷煤项目对控制系统做相关介绍。该系统根据工艺可分成以下几个分系统。 (一)制粉系统 制粉系统主要工艺流程如下:原煤从定量给煤机通过皮带进入原煤仓,经阀门进入给煤机皮带,通过皮带进入磨煤机,在磨煤机内经不断碾压成粉状。原煤在磨制的同时,被吸入磨机的干燥气体干燥。通过分离器进行粒度分级,合格的通过分离器,不合格的粗粉返回磨机重磨,合格的煤粉被主排风机吸入布袋收

浅谈高炉经济喷煤比

浅谈高炉经济喷煤比 王立杰尹焕岭赵杨 (唐钢不锈钢) 摘要:高炉喷煤是降低铁水成本,增加利润的重要手段;同时,直接喷吹煤粉,不经过焦化工艺,减少了环境污染。提高喷煤比应具备的条件是:稳定的原燃料质量、合适的理论燃烧温度、精细的操作和合理煤气分布。高炉提高喷煤比是冶炼技术发展的必然趋势,然而各单位能满足的条件不同,因此各单位的经济煤比也应根据自身条件确定。 关键词:高炉经济喷煤比理论燃烧温度未燃煤粉置换比 0 前言 高炉喷吹煤粉则是部分替代焦炭的“提供热量”及“还原剂和渗碳剂”,即以价格低廉的煤粉部分替代价格日趋昂贵的冶金焦炭,以缓解因炼焦用主焦煤匮乏所造成的冶金焦炭产量渐显不足的矛盾,最终降低高炉炼铁焦比和生铁成本。当前高炉生产的一些习惯性认识和操作,直接影响到高炉喷煤的科学性,且给高炉喷煤效益乃至生铁成本带来不良影响,因此选择合理的喷煤比就是实现企业效益最大化的重要一项。 1 经济喷煤比的概念 所谓经济喷煤比,是在一定的生产条件下(产量、原燃料质量、炉料结构、煤和焦炭的市场价格等),喷煤比最高且稳定、焦比和燃料比最低的操作煤比。可见,经济喷煤比的大小取决于喷煤量水平、煤交置换比和能量消耗利用程度,最终有总燃料消耗、工序成本来确定。喷煤对高炉工序降低值的影响可按下式计算:△J=PCR(P k×R—P m)/1000(1) 式中△J——高炉工序成本降低值,元/t; PCR——喷煤比,kg/t; R——未校正煤焦置换比; P k——焦炭价格,元/t; P m——煤粉工序成本,元/t。 从图1曲线可见,喷煤生产操作中存在经济喷煤比。由于原燃料质量、炉况参数在一定范围内波动,因此经济喷煤比是一个操作范围。 2 提高喷煤比的关键技术 2.1稳定原燃料条件 2.1.1提高焦炭质量,特别是焦炭的热性能,保证高炉必要炉料柱透气性。

高炉喷煤的现状及提高喷煤比的措施

高炉喷煤的现状及提高喷煤比的措施 摘要: 本文介绍了国内高炉喷煤现状, 分析了提高喷煤量的限制因素如炉缸热状态,煤粉燃烧,置换比,以及提高高炉喷煤比的措施,通过提高焦炭质量、改善鼓风质量、采用氧煤喷吹、混合喷吹等技术和工艺措施可有效提高喷煤比。 关键词:喷吹煤粉限制因素措施 1 前言 由于受自然资源和技术条件的限制, 我国在今后相当长的一段时间内仍将采用高炉炼铁工艺生产生铁。这是因为非高炉炼铁技术如直接还原炼铁, 目前只有在天然气资源丰富的国家或地区得到较大发展, 熔融还原炼铁正处于开发和完善阶段, 同时, 现有高炉生产能力很大, 还有大量的存量资产, 对现有的焦炉和高炉进行改造, 所需投资远比利用非高炉炼铁技术新建的炼铁设施要省得多。因此, 高炉炼铁技术在炼铁生产中仍将处于主导地位。但是, 高炉生产目前正受到投资、资源、成本、环保和运输等各方面的巨大压力。如何减轻这些压力是推动高炉炼铁继续生存与向前发展的关键。因此, 大力发展喷煤技术, 提高喷煤量是高炉炼铁技术发展的必然趋势。而高炉喷煤对优化高炉生产, 提高其经济效益有很重要的意义, 它可以扩展风口前的回旋区, 缩小呆滞区; 增加煤气中的氢气含量, 改善还原过程; 增加矿石在炉内停留的时间, 提高一氧化炭的利用率; 有利于提高风温和采用富氧鼓风, 对降低焦比和提高高炉的产量有显著效果; 它可以大量代替价格较高的焦炭, 降低生铁成本, 同时富化高炉煤气, 改善钢铁联合企业的能源供应。 2 高炉喷煤的现状 我国高炉喷煤具有较长的历史。进入90年代后高炉喷煤技术有了快速发展, 主要表现在高炉喷煤的一些重要技术问题取得突破, 如: 大高炉喷煤粉分配技术、串联罐软连接连续计量技术、可调混合器调节喷煤量技术、风口单支管煤粉计量技术流化上出料浓相输送技术等。目前, 重点企业喷煤高炉有51座, 占78%, 地方骨干企业喷煤高炉33座, 占28%。全国高炉喷煤总量从1990年的218万t 增加到1997年的638万t, 重点企业高炉喷煤总量达到489万t, 喷煤比达到84Kg/ t, 地方骨干企业喷煤量达到149万t,通过理论研究和生产实践, 确定了所追求的喷吹煤粉的目标: 吨铁燃料消耗500kg以下, 其中焦炭250kg以下, 煤粉250kg以上, 喷煤率(煤比/燃料比100%)达到50%以上。目前, 上述目标只有个别高炉短期内达到过, 如宝钢1号高炉1999年9月月平均焦比达到249. 7kg/ ,t 煤比260. 6kg/,t但燃料比超过了 500kg/,t 为510. 3kg/ t。该高炉1999年全年平均焦比为264kg/ ,t 煤比238kg/,t燃料比502kg/t。目前, 全球还没有高炉能够达到年平均焦比低于250kg/ ,t 同时煤比高于250kg/t 的。 3 提高喷煤量的限制因素 3.1 炉缸热状态 理论和实践表明, 只要高炉下部热量充沛, 上升的煤气通过热交换就能够保证上部的冶炼过程所要求的温度和热量。因此, 炉缸热状态成为高炉生产的关键。表明炉缸热状态的指标有多种,如风口前燃料燃烧的火焰温度(也称理论燃烧温度T理)、焦炭进入燃烧带时的温度Tc、必要的临界炉缸热贮备量等。世界各国炼铁工作者都把T理作为评价炉缸热状态的参数, 并根据各自的原燃料等操作条件和生产业绩, 统计归纳出各种T理的计算式, 以指导生产。应当指出, 各国的生产条件不同, 操作习惯也不同, 因此经验计算式不是万能的, 不能不顾自身条件随意套用。

高炉喷煤喷吹自动化控制系统毕业设计说明书[1]

……………………………………………………………精品资料推荐………………………………………………… 摘要 本次毕业设计主要阐述了高炉喷煤喷吹自动化控制系统,不包括制粉过程的控制,控制范围是从煤粉仓、中间罐、喷吹罐、喷吹总管、由炉前煤粉分配器到喷吹支管的自动控制过程。本次毕业设计只考虑了一个喷煤喷吹序列作为控制对象。 本次设计包含:课题本身的背景、由来、意义、主要工艺类型、国内外高炉喷煤喷吹技术的发展现状以及对未来发展的展望;阐述了所需传感器、阀、开关等硬件设备,主要进行了煤粉从煤粉仓到中间罐倒罐控制,煤粉从中间罐到喷吹罐倒罐控制,煤粉从喷吹罐喷到高炉风口中的控制,停喷控制,中间罐和喷吹罐的压力控制,煤粉仓、中间罐及喷吹罐温度、压力的安全连锁控制,喷吹风压力的自动测量等控制项目;本设计主要选用的PLC控制系统的选型、硬件配置选择、I/O表编写、硬件接线图的绘制的工作。 关键词:PLC;高炉喷煤;传感器

Abstract The graduation project focused on the automatic control of blast furnace coal injection system, does not include coal grinding process control. Cntrol the process of automation and control, includingo coal powder storage warehouse, the middle tank,the injection tank, injection Explorer,front-end from the blast furnace coal injection powder distribution device to the branch pipe. The graduation project, a PCI only consider as a controlled injection sequence. The design includes: That the issue of background, origin, meaning, the main type of technology, at home and abroad PCI jet technology development prospects and the future development of.On the need for the sensors, valves, switches and other hardware equipment.Mainly carried out coal powder from the coal powder position to control the middle of the tank,pulverized coal injection in the middle tank to tank can back control from the pulverized coal injection into blast furnace tuyere spray cans of control, stop the injection control, the middle tank and the injection pressure control tank, coal stores, intermediate and spray cans blow tank temperature and pressure control of the security chain, hair spray, such as automatic measurement of the pressure control projects; the design of the main selection of the PLC control system selection, hardware configuration options, I / O table prepared mapping hardware wiring work. KeyWords:PLC; blast furnace pulverized coal injection; sensor

高炉喷煤方案及概算

1、概述 1.1现状 高炉喷煤是冶金企业节焦降耗行之有效的重要途径。我厂目前有750m3高炉两座,120m3高炉四座,均已有喷煤设施。750m3高炉目前平均喷煤量160㎏/t铁,120m3高炉平均喷煤量70㎏/t铁。喷煤车间现有ZGM95型中速磨煤机一台,制粉铭牌出力为36t/h,刚好满足上述高炉喷煤。 2#750m3高炉易地大修投产后,一台ZGM95型中速磨煤机的生产能力已不能满足所有高炉的喷煤要求,须新上制粉设备。喷吹系统也不能满足新高炉的喷煤需要。同时,煤场实际贮煤量只有3640t,当喷吹量都为最大时,煤场贮煤量只能满足2.8 d生产,若都按目前正常喷吹量,则煤场贮煤量能满足3.5 d生产。显然煤场太小,需要扩建。烟气炉的能力也需进一步加大。 1.2设计依据 莱芜钢铁股份有限公司规划部[2001]96号文《关于下达2#750m3高炉大修设计任务计划的通知》。 1.3设计原则 (1)优化设计,做到先进、适用、经济、顺行、高效。 (2)设计中做到总体考虑,合理布局,兼顾将来的进一步发展;尽量不影响现有设施的生产;尽量减少占地、拆迁和工程量。 (3)按照喷吹烟煤设计,制粉系统设气氛保护。 (4)制粉系统采用短流程,用高浓度布袋收粉器作为一级收粉设备,不设旋风收粉器。为减少危险点,布袋与煤粉仓之间不设螺旋输 送机。 (5)喷吹采用浓相输送技术。 (6)考虑检修、备品备件方便,制粉采用ZGM95型中速磨煤机。

(6)严格执行国家有关环保、安全、工业卫生和消防等规定。 1.4设计范围 本工程设计范围包括:原煤场扩建及贮运,烟气系统,制粉系统,喷吹系统。 1.5主要经济技术指标 1.6设计特点及采用的新技术 ⑴按照喷吹烟煤设计,系统设惰性气体保护措施。 ⑵制粉采用以中速磨煤机为核心的短流程工艺,用一级高浓度袋式煤粉收集器收粉。 ⑶节能,每吨煤粉耗电28度。 ⑷煤场的煤仓及圆盘给料机可以适应喷吹烟煤、无烟煤、混合煤各煤种的

5高炉喷煤的一些知识

高炉喷煤的一些知识 高炉喷吹燃料是将气体、液体或固体燃料通过专门的设备从风口喷入高炉,以取代高炉炉料中部分焦炭的一种高炉强化冶炼技术。1964年首都钢铁公司和鞍山钢铁公司在高炉上喷吹无烟煤成功。 煤粉喷入炉缸燃烧,经历煤粉加热分解、挥发分燃烧和结焦与残焦燃烧3个阶段,这3个阶段是在有限空间、有限时间、高速加热和高压下交织进行的。煤粉从煤枪出口经部分直吹管、风口到风口前燃烧带共1600~2000mm的不大空间里;在煤粉从煤枪出口到离开燃烧带的0.01~0.04s的短暂时间中;从70~80℃迅速加热到1500~2000℃;在250~450KPa的热风压力下煤粉以这种接近爆炸火焰的加速度和温度燃烧,其燃烧过程和燃烧产物完全不同于其在锅炉内的燃烧。煤粉在炉缸内燃烧形成的最终产物是CO、H2、N2,而锅炉内的燃烧产物是CO2、H2O、和N2。 高炉所喷吹煤粉中含碳氢化合物越多,在风口前气化后产生的H2越多,炉缸煤气量增加越多。在风口面积不变的情况下鼓风动能增加,燃烧带扩大。鼓风动能增加和煤气中H2量的增加,有利于煤气向炉缸中心渗透,使炉缸工作均匀。并且由于炉缸中心部位的热量收入增加;上部还原得到改善,炉子中心直接还还原数量减少,热支出减少;热交换因H2的增加而改善,所以炉缸中心温度有所升高。由于煤粉进入燃烧带时的温度远低于焦炭进入燃烧带时的温度,焦比的降低使燃料带入燃烧带的物理热减少,煤粉气化时挥发分分解吸热使燃烧放出的热量降低,加之燃烧产物煤气量增加煤气带走的热量增加,所以理论燃烧温度有所下降。对高炉风口区和炉缸热平衡产生影响。为了维持高炉冶炼正常进行,在喷吹燃料时,要相应提高风温或富氧,一般喷吹1Kg煤粉要相应提高风温2~2.5℃或富氧0.04~0.05%。喷吹煤粉以后,煤粉代替焦炭,使料柱中矿/焦比增大,焦炭数量减少,料柱的空隙度下降,煤气上升时的阻力增加,压差升高;同时上升煤气量的增加,使煤气速度增大,阻损也随之升高。虽然煤气中H2量增加,由于其黏度和密度较小,有利于阻损的下降,但总的阻损还是升高的。煤气中还原性组分CO+H2数量和浓度的增加,以及矿石在炉内停留时间的增加,都加速了间接还原的发展。 在高炉炼铁的条件下,喷入炉缸的煤粉在有限空间和短暂的时间内不可能100%完全气化,而且挥发份中碳氢化合物还不可避免地产生有很高抗表面氧化能力的炭黑微粒,一般要求这些未燃煤粉量应低于喷煤量的15%~20%。

【高炉悬料】基础知识

1.悬料的定义 悬料是炉料透气性与煤气流运动极不适应,高炉料停止下降时间超过1~2批料的时间,或者依靠大减风才能使炉料塌落的高炉料难行的失常现象。 2.悬料的种类 按悬料的时间及坐料难易程度分为短期料难行、长时间悬料、顽固性悬料。其中,顽固性悬料是指经过3次或以上坐料未下的悬料情况。 按悬料的位置分为高炉上部悬料和高炉下部悬料。上部悬料时上部压差过高,下部悬料时下部压差过高。 3.悬料的征兆 1)探尺下降缓慢或停止; 2)风压急剧升高,风量相应减少或锐减; 3)炉顶温度升高,且四点温度差别缩小; 4)高炉压差升高,透气性指数显著降低;

5)风口不活跃,个别风口出现大块; 4.悬料的原因 1)高炉原燃料质量恶化:入炉料的粒度变小、粉末增多、强度变差、RDI指数降低;料仓槽位过低等。 2)操作制度不合理导致压差过高:装料制度不合理,中心、边缘气流均受抑制,导致透气性差;气流分布不合理,边缘过重或严重不均匀,导致操作炉型严重变化。 3)监控不到位或操作失误:风压急剧波动持续上升到高位,未及时发现并处置;未按照压差规范操作,风压急剧升高时减风慢或未减风。 4)高炉热制度变化过大:炉温急剧变化(急热急凉),煤气流分布短期内难以调整与适应,导致透气性急剧恶化。如空焦下达热量调整不及时、高炉向热时操作反向、长时间高硅高碱度、一段时间集中提温等。 5)渣铁未及时出净:短期内由于出铁不畅或由于设备故障,不能及时见渣,导致炉缸储渣铁量过多而引起透气性恶化。

5.高炉下部悬料产生的原因是什么? 高炉下部悬料产生的原因有两个方面:一是由于热制度的波动引起软熔带位置的变化,已经软化的矿料再次凝固,使散料层空隙度急剧下降,从而使Δp/H上升而悬料;另一方面是液泛现象,液态渣铁或由于数量过多,或由于粘度过大,被气流滞留在焦炭层中,极大地增加了对气流的阻力。 6.悬料的预防及操作注意事项 悬料是高炉难行、管道和崩料的最终结局。在遇到高炉难行时,操作上应注意如下问题: 1)低料线、净焦下到成渣区域,不许加风或提高风温; 2)原燃料质量恶化时,禁止采取强化措施; 3)渣铁出不净时,不允许增加风量; 4)恢复风温时,每小时不允许超过50℃; 5)增加风量时,每次不允许大于150m3/min; 6)向热料慢加风困难时,可酌情降低喷煤量或适当降低风温, 为增加风量创造有利条件。

相关文档