文档库 最新最全的文档下载
当前位置:文档库 › 精细化工反应安全风险评估导则(试行)

精细化工反应安全风险评估导则(试行)

精细化工反应安全风险评估导则(试行)
精细化工反应安全风险评估导则(试行)

附件

精细化工反应安全风险评估导则(试行)

1 范围

本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。

本导则适用于精细化工反应安全风险的评估。精细化工生产的主要安全风险来自工艺反应的热风险。开展反应安全风险评估,就是对反应的热风险进行评估。

2 术语和定义

2.1 失控反应最大反应速率到达时间TMR ad

失控反应体系的最坏情形为绝热条件。在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。TMR ad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。

2.2 绝热温升ΔT ad

在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。

对于失控体系,反应物完全转化时所放出的热量导致

物料温度的升高,称为绝热温升。绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。

2.3 工艺温度T p

目标工艺操作温度,也是反应过程中冷却失效时的初始温度。

冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。

2.4 技术最高温度MTT

技术最高温度可以按照常压体系和密闭体系两种方式考虑。

对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。

2.5 失控体系能达到的最高温度MTSR

当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。在物料累积最大时,体系能够达到的最

高温度称为失控体系能达到的最高温度。MTSR与反应物料的累积程度相关,反应物料的累积程度越大,反应发生失控后,体系能达到的最高温度MTSR越高。

2.6 精细化工产品

原化学工业部对精细化工产品分为:农药、染料、涂料(包括油漆和油墨)、颜料、试剂和高纯物、信息用化学品(包括感光材料、磁性材料等能接受电磁波的化学品)、食品和饲料添加剂、粘合剂、催化剂和各种助剂、化工系统生产的化学药品(原料药)和日用化学品、高分子聚合物中的功能高分子材料(包括功能膜、偏光材料等)等11个大类。

根据《国民经济行业分类》(GB/T 4754-2011),生产精细化工产品的企业中反应安全风险较大的有:化学农药、化学制药、有机合成染料、化学品试剂、催化剂以及其他专业化学品制造企业。

3 反应安全风险评估

3.1 工艺信息

工艺信息包括特定工艺路线的工艺技术信息,例如:物料特性、物料配比、反应温度控制范围、压力控制范围、反应时间、加料方式与加料速度等工艺操作条件,并包含必要的定性和定量控制分析方法。

3.2 实验测试仪器

反应安全风险评估需要的设备种类较多,除了闪点测试

仪、爆炸极限测试仪等常规测试仪以外,必要的设备还包括差热扫描量热仪、热稳定性筛选量热仪、绝热加速度量热仪、高性能绝热加速度量热仪、微量热仪、常压反应量热仪、高压反应量热仪、最小点火能测试仪等;配备水分测试仪、液相色谱仪、气相色谱仪等分析仪器设备;具备动力学研究手段和技术能力。反应安全风险评估包括但不局限于上述设备。

3.3 实验能力

反应安全风险评估单位需要具备必要的工艺技术、工程技术、热安全和热动力学技术团队和实验能力,具备中国合格评定国家认可实验室(CNAS认可实验室)资质,保证相关设备和测试方法及时得到校验和比对,保证测试数据的准确性。

4 反应安全风险评估方法

4.1 单因素反应安全风险评估

依据反应热、失控体系绝热温升、最大反应速率到达时间进行单因素反应安全风险评估。

4.2 混合叠加因素反应安全风险评估

以最大反应速率到达时间作为风险发生的可能性,失控体系绝热温升作为风险导致的严重程度,进行混合叠加因素反应安全风险评估。

4.3 反应工艺危险度评估

依据四个温度参数(即工艺温度、技术最高温度、最大反应速率到达时间为24小时对应的温度,以及失控体系能达到的最高温度)进行反应工艺危险度评估。

对精细化工反应安全风险进行定性或半定量的评估,针对存在的风险,要建立相应的控制措施。反应安全风险评估具有多目标、多属性的特点,单一的评估方法不能全面反映化学工艺的特征和危险程度,因此,应根据不同的评估对象,进行多样化的评估。

5 反应安全风险评估流程

5.1 物料热稳定性风险评估

对所需评估的物料进行热稳定性测试,获取热稳定性评估所需要的技术数据。主要数据包括物料热分解起始分解温度、分解热、绝热条件下最大反应速率到达时间为24小时对应的温度。对比工艺温度和物料稳定性温度,如果工艺温度大于绝热条件下最大反应速率到达时间为24小时对应的温度,物料在工艺条件下不稳定,需要优化已有工艺条件,或者采取一定的技术控制措施,保证物料在工艺过程中的安全和稳定。根据物质分解放出的热量大小,对物料潜在的燃爆危险性进行评估,分析分解导致的危险性情况,对物料在使用过程中需要避免受热或超温,引发危险事故的发生提出要求。

5.2 目标反应安全风险发生可能性和导致的严重程度评估

实验测试获取反应过程绝热温升、体系热失控情况下工艺反应可能达到的最高温度,以及失控体系达到最高温度对应的最大反应速率到达时间等数据。考虑工艺过程的热累积度为100%,利用失控体系绝热温升,按照分级标准,对失控反应可能导致的严重程度进行反应安全风险评估;利用最大反应速率到达时间,对失控反应触发二次分解反应的可能性进行反应安全风险评估。综合失控体系绝热温升和最大反应速率到达时间,对失控反应进行复合叠加因素的矩阵评估,判定失控过程风险可接受程度。如果为可接受风险,说明工艺潜在的热危险性是可以接受的;如果为有条件接受风险,则需要采取一定的技术控制措施,降低反应安全风险等级;如果为不可接受风险,说明常规的技术控制措施不能奏效,已有工艺不具备工程放大条件,需要重新进行工艺研究、工艺优化或工艺设计,保障化工过程的安全。

5.3 目标反应工艺危险度评估

实验测试获取包括目标工艺温度、失控后体系能够达到的最高温度、失控体系最大反应速率到达时间为24小时对应的温度、技术最高温度等数据。在反应冷却失效后,四个温度数值大小排序不同,根据分级原则,对失控反应进行反应工艺危险度评估,形成不同的危险度等级;根据危险度等级,有针对性地采取控制措施。应急冷却、减压等安全措施均可以作为系统安全的有效保护措施。对于反应工艺危险度

较高的反应,需要对工艺进行优化或者采取有效的控制措施,降低危险度等级。常规控制措施不能奏效时,需要重新进行工艺研究或工艺优化,改变工艺路线或优化反应条件,减少反应失控后物料的累积程度,实现化工过程安全。

6 评估标准

6.1 物质分解热评估

对物质进行测试,获得物质的分解放热情况,开展风险评估,评估准则参见表1。

表1 分解热评估

分解放热量是物质分解释放的能量,分解放热量大的物质,绝热温升高,潜在较高的燃爆危险性。实际应用过程中,要通过风险研究和风险评估,界定物料的安全操作温度,避免超过规定温度,引发爆炸事故的发生。

6.2 严重度评估

严重度是指失控反应在不受控的情况下能量释放可能造成破坏的程度。由于精细化工行业的大多数反应是放热反应,反应失控的后果与释放的能量有关。反应释放出的热量越大,失控后反应体系温度的升高情况越显著,容易导致反应体系中温度超过某些组分的热分解温度,发生分解反应以及二次分解反应,产生气体或者造成某些物料本身的气化,而导致体系压力的增加。在体系压力增大的情况下,可能致使反应容器的破裂以及爆炸事故的发生,造成企业财产人员损失、伤害。失控反应体系温度的升高情况越显著,造成后果的严重程度越高。反应的绝热温升是一个非常重要的指标,绝热温升不仅仅是影响温度水平的重要因素,同时还是失控反应动力学的重要影响因素。

绝热温升与反应热成正比,可以利用绝热温升来评估放热反应失控后的严重度。当绝热温升达到200 K或200 K以上时,反应物料的多少对反应速率的影响不是主要因素,温升导致反应速率的升高占据主导地位,一旦反应失控,体系温度会在短时间内发生剧烈的变化,并导致严重的后果。而当绝热温升为50 K或50 K以下时,温度随时间的变化曲线比较平缓,体现的是一种体系自加热现象,反应物料的增加或减少对反应速率产生主要影响,在没有溶解气体导致压力增长带来的危险时,这种情况的严重度低。

利用严重度评估失控反应的危险性,可以将危险性分为

四个等级,评估准则参见表2。

表2 失控反应严重度评估

绝热温升为200 K或200 K以上时,将会导致剧烈的反应和严重的后果;绝热温升为50 K或50 K以下时,如果没有压力增长带来的危险,将会造成单批次的物料损失,危险等级较低。

6.3 可能性评估

可能性是指由于工艺反应本身导致危险事故发生的可能概率大小。利用时间尺度可以对事故发生的可能性进行反应安全风险评估,可以设定最危险情况的报警时间,便于在失控情况发生时,在一定的时间限度内,及时采取相应的补救措施,降低风险或者强制疏散,最大限度地避免爆炸等恶性事故发生,保证化工生产安全。

对于工业生产规模的化学反应来说,如果在绝热条件下

失控反应最大反应速率到达时间大于等于24小时,人为处臵失控反应有足够的时间,导致事故发生的概率较低。如果最大反应速率到达时间小于等于8小时,人为处臵失控反应的时间不足,导致事故发生的概率升高。采用上述的时间尺度进行评估,还取决于其他许多因素,例如化工生产自动化程度的高低、操作人员的操作水平和培训情况、生产保障系统的故障频率等,工艺安全管理也非常重要。

利用失控反应最大反应速率到达时间TMR ad为时间尺度,对反应失控发生的可能性进行评估,评估准则参见表3。

表3 失控反应发生可能性评估

6.4 矩阵评估

风险矩阵是以失控反应发生后果严重度和相应的发生概率进行组合,得到不同的风险类型,从而对失控反应的反应安全风险进行评估,并按照可接受风险、有条件接受风险

和不可接受风险,分别用不同的区域表示,具有良好的辨识性。

以最大反应速率到达时间作为风险发生的可能性,失控体系绝热温升作为风险导致的严重程度,通过组合不同的严重度和可能性等级,对化工反应失控风险进行评估。风险评估矩阵参见图1。

图1 风险评估矩阵

失控反应安全风险的危险程度由风险发生的可能性和风险带来后果的严重度两个方面决定,风险分级原则如下:I级风险为可接受风险:可以采取常规的控制措施,并适当提高安全管理和装备水平。

II级风险为有条件接受风险:在控制措施落实的条件下,可以通过工艺优化、工程、管理上的控制措施,降低风

险等级。

III级风险为不可接受风险:应当通过工艺优化、技术路线的改变,工程、管理上的控制措施,降低风险等级,或者采取必要的隔离方式,全面实现自动控制。

6.5 反应工艺危险度评估

反应工艺危险度评估是精细化工反应安全风险评估的重要评估内容。反应工艺危险度指的是工艺反应本身的危险程度,危险度越大的反应,反应失控后造成事故的严重程度就越大。

温度作为评价基准是工艺危险度评估的重要原则。考虑四个重要的温度参数,分别是工艺操作温度T p、技术最高温度MTT、失控体系最大反应速率到达时间TMR ad为24小时对应的温度T D24,以及失控体系可能达到的最高温度MTSR,评估准则参见表4。

表4 反应工艺危险度等级评估

针对不同的反应工艺危险度等级,需要建立不同的风险控制措施。对于危险度等级在3级及以上的工艺,需要进一步获取失控反应温度、失控反应体系温度与压力的关系、失控过程最高温度、最大压力、最大温度升高速率、最大压力升高速率及绝热温升等参数,确定相应的风险控制措施。6.6 措施建议

综合反应安全风险评估结果,考虑不同的工艺危险程度,建立相应的控制措施,在设计中体现,并同时考虑厂区和周边区域的应急响应。

对于反应工艺危险度为1级的工艺过程,应配臵常规的自动控制系统,对主要反应参数进行集中监控及自动调节(DCS或PLC)。

对于反应工艺危险度为2级的工艺过程,在配臵常规自动控制系统,对主要反应参数进行集中监控及自动调节(DCS 或PLC)的基础上,要设臵偏离正常值的报警和联锁控制,在非正常条件下有可能超压的反应系统,应设臵爆破片和安全阀等泄放设施。根据评估建议,设臵相应的安全仪表系统。

对于反应工艺危险度为3级的工艺过程,在配臵常规自动控制系统,对主要反应参数进行集中监控及自动调节,设臵偏离正常值的报警和联锁控制,以及设臵爆破片和安全阀等泄放设施的基础上,还要设臵紧急切断、紧急终止反应、

紧急冷却降温等控制设施。根据评估建议,设臵相应的安全仪表系统。

对于反应工艺危险度为4级和5级的工艺过程,尤其是风险高但必须实施产业化的项目,要努力优先开展工艺优化或改变工艺方法降低风险,例如通过微反应、连续流完成反应;要配臵常规自动控制系统,对主要反应参数进行集中监控及自动调节;要设臵偏离正常值的报警和联锁控制,设臵爆破片和安全阀等泄放设施,设臵紧急切断、紧急终止反应、紧急冷却等控制设施;还需要进行保护层分析,配臵独立的安全仪表系统。对于反应工艺危险度达到5级并必须实施产业化的项目,在设计时,应设臵在防爆墙隔离的独立空间中,并设臵完善的超压泄爆设施,实现全面自控,除装臵安全技术规程和岗位操作规程中对于进入隔离区有明确规定的,反应过程中操作人员不应进入所限制的空间内。

7 反应安全风险评估过程示例

7.1 工艺描述

标准大气压下,向反应釜中加入物料A和B,升温至60℃,滴加物料C,体系在75℃时沸腾。滴完后60℃保温反应1小时。此反应对水敏感,要求体系含水量不超过0.2%。

7.2 研究及评估内容

根据工艺描述,采用联合测试技术进行热特性和热动力学研究,获得安全性数据,开展反应安全风险评估,同时还

考虑了反应体系水分偏离为1%时的安全性研究。

7.3 研究结果

(1)反应放热,最大放热速率为89.9 W/kg,物料C滴加完毕后,反应热转化率为75.2%,摩尔反应热为-58.7 kJ〃mol-1,反应物料的比热容为2.5 kJ〃kg-1〃K-1,绝热温升为78.2 K。

(2)目标反应料液起始放热分解温度为118℃,分解放热量为130 J/g。放热分解过程中,最大温升速率为5.1 ℃/min,最大压升速率为6.7 bar/min。

含水达到1%时,目标反应料液起始放热分解温度为105℃,分解放热量为206 J/g。放热分解过程最大温升速率为9.8 ℃/min,最大压升速率为12.6 bar/min。

(3)目标反应料液自分解反应初期活化能为75 kJ/mol,中期活化能为50 kJ/mol。

目标反应料液热分解最大反应速率到达时间为2小时对应的温度T D2为126.6℃,T D4为109.1℃,T D8为93.6℃,T D24为75.6℃,T D168为48.5℃。

7.4 反应安全风险评估

根据研究结果,目标反应安全风险评估结果如下:

(1)此反应的绝热温升△T ad为78.2 K,该反应失控的严重度为“2级”。

(2)最大反应速率到达时间为1.1小时对应的温度为

138.2℃,失控反应发生的可能性等级为3级,一旦发生热失控,人为处臵时间不足,极易引发事故。

(3)风险矩阵评估的结果:风险等级为II级,属于有条件接受风险,需要建立相应的控制措施。

(4)反应工艺危险度等级为4级(T p

(5)自分解反应初期活化能大于反应中期活化能,样品一旦发生分解反应,很难被终止,分解反应的危险性较高。

该工艺需要配臵自动控制系统,对主要反应参数进行集中监控及自动调节,主反应设备设计安装爆破片和安全阀,设计安装加料紧急切断、温控与加料联锁自控系统,并按要求配臵独立的安全仪表保护系统。

建议:进一步开展风险控制措施研究,为紧急终止反应和泄爆口尺寸设计提供技术参数。

8 参考文献

[1] Stoessel Francis. Thermal Safety of Chemical Processes:

Risk Assessment and Process Design[M]. 2008.

[2] Guidelines for Chemical Reactivity Evaluation and

Application to Process Design[M]. AIChE, 1995.

[3] Lucerne. Loss of Containment[J]. ESCIS, 1996(12).

[4] “Zurich” Hazard Analysis, A brief introduction to t he

“Zurich” method of Hazard Analysis [M]. Zurich Insurance, 1987.

[5] Stoessel Francis. What is your thermal risk?[J]. Chemical

Engineering Progress, 1993:68-75.

[6] Designing and Operating Safe Chemical Reaction

Processes[M]. Health and Safety Executive, 2000.

[7] Transport of Dangerous Good[M]. United Nations, 2009.

[8] Lucerne. Thermal Process Safety, Data Assessment, Criteria,

Measures[J]. ESCIS, 1993(8).

加强精细化工反应安全风险评估工作的实施方案

加强精细化工反应安全风险评估工作的实施 方案 为加强精细化工企业的安全管理,进一步落实企业安全生产主体责任,有效预防和遏制各类事故特别是重特大安全生产事故的发生,按照《山东省安监局关于加强精细化工反应安全风险评估工作的通知》(鲁安监发〔2017〕124号)要求,并结合我市实际,制定本实施方案。 一、认识开展精细化工反应安全风险评估的重要意义 我市精细化工企业数量众多,随着化工产业的快速发展和企业自主创新能力的不断增强,生产工艺呈现出多样化的趋势,新工艺、新装置和新产品大量涌现。各县市区、市属各开发区及有关企业认真贯彻落实《指导意见》,提高对开展精细化工反应安全风险评估重要性的认识,通过开展反应安全风险评估,准确识别和掌握反应系统存在的各种危害,确定反应工艺危险度和风险等级,系统编制工艺物质、工艺技术、工艺设备等安全信息,改进安全设施设计,完善风险控制措施,提升本质安全水平和安全生产保障能力。 二、有条不紊推进精细化工反应安全风险评估工作 (一)全面摸清底数。各县市区、市属各开发区要根据《指导意见》确定的评估范围和内容,对辖区内现有精细化工企业、危险化学品建设项目和在役装置进行全面排查,查明工艺技术来源和安全论证情况,了解安全生产现状和工艺技术水平,建立档案和“一企一册”,并组织企业认真填报《精细化工

企业基本情况表》(见附件2)。根据全面排查情况,确定本辖区需要开展反应风险评估的企业名单。 (二)组织示范试点。各县市区、市属各开发区要根据本辖区实际,科学制订工作方案,选取有代表性的危险性较大的1-2家精细化工企业,组织风险评估技术实力强的机构开展反应风险评估试点示范,及时总结经验,指导和督促辖区内精细化工企业全面开展反应安全风险评估,积极跟踪评估结论,掌握并研判本地区精细化工企业的风险情况,采取有针对性措施整体推进。 (三)分阶段完成评估工作。对涉及重点监管危险化工工艺和金属有机物合成反应的间歇和半间歇反应的企业,曾因反应工艺问题发生过安全生产事故的,或者具有国内首次使用的新工艺、新配方投入工业化生产的,以及国外首次引进新工艺的企业,务必于2018年年底前组织完成反应风险评估工作。2019年年底前,全面完成《指导意见》规定纳入评估范围的所有企业的评估工作。从2020年开始,凡列入评估范围,但未进行反应安全风险评估的精细化工生产装置,不得投入运行。 三、加强精细化工反应安全风险评估结果运用,不断完善风险管控措施 各县市区、市属各开发区要高度重视反应安全风险评估结果的运用,督促有关企业进一步完善工艺路线和工艺控制,不断提高精细化工安全风险防控能力;督促相关设计单位和评价单位切实履行安全责任,依据评估结果进一步识别和分析原设计

公路桥梁工程施工安全风险评估指南

公路桥梁工程 施工安全风险评估指南 二O一O年十一月

前言 《公路桥梁工程施工安全风险评估指南》(简称《指南》)旨在指导和规全国公路桥梁工程施工风险评估工作开展,预防施工安全生产事故发生,提高工程施工安全水平。 本《指南》结合我国公路桥梁工程建设实际情况,提出桥梁工程施工风险评估的具体方法和流程,按总体安全风险评估和专项安全风险评估两个层次开展,其中专项安全风险评估分一般风险源及重大风险源两类。 本《指南》共7章,包括:总则、术语、总体风险评估、专项风险评估、专项风险估测方法、安全风险控制、安全风险评估报告编制。

目次 1 总则 (1) 2 术语 (2) 3 总体风险评估 (4) 3.1 一般要求 (4) 3.2 桥梁工程安全风险总体评估 (4) 4 专项风险评估 (7) 4.1 一般要求 (7) 4.2 风险源辨识流程 (7) 4.3 辨识方法 (9) 4.4 风险估测 (9) 5 专项风险估测方法 (10) 5.1 一般规定 (10) 5.2 一般风险源风险估测方法 (10) 5.3 重大风险源风险估测方法 (10) 6 安全风险控制 (21) 6.1一般规定 (21) 6.2 风险控制管理 (23) 7 风险评估报告编制 (26) 附录A重大风险源辨识与评估常用表 (28) 附录B施工作业活动与风险事故对照表 (37) 附录C 作业活动分解 (39) 附录D 专家调查法 (41) 附录E 施工评估报告格式 (43) 附录F案例 (46)

1总则 1.0.1为贯彻落实“安全第一、预防为主、综合治理”的安全生产方针,提高我国桥梁工程施工安全风险管理水平,预防施工安全生产事故的发生,特制定本指南。 1.0.2 本指南确定了桥梁工程施工阶段进行安全风险评估的工作原则、操作程序、评估方法、风险分级标准和评估报告形式要求,旨在规风险评估工作,提高评估的质量和效率,完善风险管理的实际操作程序。 1.0.3 桥梁工程施工安全风险评估分为总体风险评估和专项风险评估。总体风险评估针对桥梁工程整体上发生重大事故的风险进行估测,确定整座桥梁的施工安全风险等级。专项风险评估针对桥梁工程具体施工作业活动进行风险源辨识、风险分析、风险估测,确定其风险等级。 1.0.4 施工安全风险评估应在设计阶段安全风险评估的基础上,实施性施工组织设计完成后进行;开工前由建设单位组织进行总体风险评估,施工单位组织进行专项风险评估。 1.0.5 施工安全风险评估前提是基于“正常施工”,即施工单位具有完成工程的各项技术能力,按现行相关施工安全规定组织施工。 1.0.6 本指南适用于新建公路桥梁施工安全风险评估,改扩建桥梁工程可参照本指南开展相关风险评估。 1.0.7桥梁施工阶段安全风险评估除遵守本指南规定外,尚应符合国

精细化工反应安全风险评估导则解读修订稿

精细化工反应安全风险 评估导则解读 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

附件 精细化工反应安全风险评估导则(试行)2017年一月 1 范围 本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。 本导则适用于精细化工反应安全风险的评估。精细化工生产的主要安全风险来自工艺反应的热风险。开展反应安全风险评估,就是对反应的热风险进行评估。 2 术语和定义 失控反应最大反应速率到达时间TMR ad 失控反应体系的最坏情形为绝热条件。在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。TMR ad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。 绝热温升ΔT ad 在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。

对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。 工艺温度T p 目标工艺操作温度,也是反应过程中冷却失效时的初始温度。 冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。 技术最高温度MTT 技术最高温度可以按照常压体系和密闭体系两种方式考虑。 对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。 失控体系能达到的最高温度MTSR 当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝

精细化工反应安全风险评估导则

精细化工反应安全风险评估导则(试行) 1 范围本导则给出了精细化工反应安全风险的评估方法、评估 流程、评估标准指南,并给出了反应安全风险评估示例。本导则适用于精细化工反应安全风险的评估。精细化工 生产的主要安全风险来自工艺反应的热风险。开展反应安全风险评估,就是对反应的热风险进行评估。 2术语和定义 2.1 失控反应最大反应速率到达时间TMR ad 失控反应体系的最坏情形为绝热条件。在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。TMR ad 是 温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。 2.2绝热温升厶忌在冷却失效等失控条件下,体系不能进行能量交换, 放 热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。 对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。绝热温升与反应的放热量 成正比,对于放热反应来说,反应的放热量越大,绝热温升

越高,导致的后果越严重。绝热温升是反应安全风险评估的 重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。 2.3 工艺温度T p 目标工艺操作温度,也是反应过程中冷却失效时的初始温度。 冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。 2.4 技术最高温度MTT 技术最高温度可以按照常压体系和密闭体系两种方式考虑。 对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。 2.5 失控体系能达到的最高温度MTSR 当放热化学反应处于冷却失效、 热交换失控的情况下, 由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。在物料累积最大时,体系能够达到的最高温度称为失控体系能达到的最高温度。MTSF与反应物料的累积程度相关,反应物料的累积程度越大,反应发生失控后,体系能达到的最高温度MTSR越高。 2.6 精细化工产品 原化学工业部对精细化工产品分为:农药、染料、涂料(包括油

精细化工反应安全风险评估导则【最新版】

精细化工反应安全风险评估导则1范围 本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。 本导则适用于精细化工反应安全风险的评估。精细化工生产的主要安全风险来自工艺反应的热风险。开展反应安全风险评估,就是对反应的热风险进行评估。 2术语和定义 2.1 失控反应最大反应速率到达时间TMR ad 失控反应体系的最坏情形为绝热条件。在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。TMR ad是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。 2.2 绝热温升ΔT ad

在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。 对于失控体系,反应物完全转化时所放出的热量导致 物料温度的升高,称为绝热温升。绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。 2.3 工艺温度T p 目标工艺操作温度,也是反应过程中冷却失效时的初始温度。 冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。 2.4 技术最高温度MTT

技术最高温度可以按照常压体系和密闭体系两种方式考虑。 对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。 2.5 失控体系能达到的最高温度MTSR 当放热化学反应处于冷却失效、热交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。在物料累积最大时,体系能够达到的最 高温度称为失控体系能达到的最高温度。MTSR与反应物料的累积程度相关,反应物料的累积程度越大,反应发生失控后,体系能达到的最高温度MTSR越高。 2.6 精细化工产品 原化学工业部对精细化工产品分为:农药、染料、涂料(包括油漆和油墨)、颜料、试剂和高纯物、信息用化学品(包括感光材料、磁性材料等能接受电磁波的化学品)、食品和饲料添加剂、粘合剂、催化剂和各种助剂、化工系统生产的化学药品(原料药)和日用化学品、高

公路桥梁和隧道工程设计安全风险评估指南(无水印版)

附件 公路桥梁和隧道工程设计安全风险评估指南 (试行)

目录 1 总则 (1) 2 术语 (2) 3 安全风险等级确定 (5) 3.1 风险发生概率等级与判断标准 (5) 3.2 风险损失等级与判断标准 (5) 3.3 风险等级的确定 (6) 4 评估方法 (7) 4.1 风险源的评估方法 (7) 4.2 风险源发生概率的评估方法 (8) 4.3 风险损失的评估方法 (9) 4.4 风险等级的评估方法 (9) 5 安全风险评估程序与要求 (10) 5.1 评估程序 (10) 5.2 评估小组及评估人员要求 (10) 5.3 评估报告内容及格式 (11) 6 安全风险应对与管理 (13) 6.1 一般规定 (13) 6.2 安全风险应对 (13) 6.3 风险管理 (13) 7 桥梁工程初步设计阶段安全风险评估 (15) 7.1 一般规定 (15) 7.2 评估流程 (15) 7.3 风险源 (17) 7.4 风险事件与风险源辨识 (18) 7.5 风险控制 (20) 8 桥梁工程施工图设计阶段安全风险评估 (22) I

8.1 一般规定 (22) 8.2 评估流程 (22) 8.3 风险评估 (24) 9 隧道工程初步设计阶段安全风险评估 (25) 9.1 一般规定 (25) 9.2 评估流程 (25) 9.3 风险源 (27) 9.4 风险事件与风险源辨识 (28) 9.5 评估方法 (34) 9.6 风险评估 (34) 9.7 风险控制 (35) 10 隧道工程施工图设计阶段安全风险评估 (37) 10.1 一般规定 (37) 10.2 评估流程 (37) 10.3 风险评估 (39) 附录A 表格 (40) 附录B 专家调查法 (43) 附录C 风险发生概率和风险损失量化方法 (45) 附录D 评估报告格式 (48) II

精细化工反应安全风险评估导则解读

附件 精细化工反应安全风险评估导则(试行)2017 年一月 1范围 本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。 本导则适用于精细化工反应安全风险的评估。精细化工生产的主要安全风险来自工艺反应的热风险。开展反应安全风险评估,就是对反应的热风险进行评估。 2术语和定义 失控反应最大反应速率到达时间TMR ad 失控反应体系的最坏情形为绝热条件。在绝热条件下,失控反应到达最大反应速率所需要的时间,称为失控反应最大反应速率到达时间,可以通俗地理解为致爆时间。TMR ad 是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。 绝热温升厶T ad 在冷却失效等失控条件下,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达到的最坏情形。 对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果

越严重。绝热温升是反应安全风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。 工艺温度T p 目标工艺操作温度,也是反应过程中冷却失效时的初始温度。 冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全地确定工艺操作温度。 技术最高温度MTT 技术最高温度可以按照常压体系和密闭体系两种 方式考虑。 对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。 失控体系能达到的最高温度MTSR 当放热化学反应处于冷却失效、热 交换失控的情况下,由于反应体系存在热量累积,整个体系在一个近似绝热的情况下发生温度升高。在物料累积最大时,体系能够达到的最高温度称为失控体系能达到的最高温度。MTSF与反应物料的累积程度相关,反应物料的累积程度越大,反应发生失控后,体系能达到的最高温度MTSR越高。 精细化工产品原化学工业部对精细化工产品分为:农药、染料、涂料 (包括油漆和油墨)、颜料、试剂和高纯物、信息用化学品(包括感光材料、磁性材料等能接受电磁波的化学品)、食品和饲料添加剂、粘合剂、催化剂和各种助剂、化工系统生产的化学药品(原料

公路桥梁安全风险评估报告

××××工程 ××××阶段 安全风险评价报告 承担单位名称 评价报告完成日期 ××××工程 ××××阶段 安全风险评价报告 单位负责人: 技术负责人: 项目负责人: 主要参加人员: 承担单位名称及用章 承担单位资质证书名称及编号 平交报告完成日期 目录 第一章概述 (1) 一、评估目得 (1) 二、编制依据 (1) 第二章工程概述 (2) 一、工程概况 (2) 二、设计标准 (2)

四、地形、地貌 (4) 五、水文及水文地质条件 (4) 六、不良地质 (4) 七、主要工程数量 (4) 第三章风险评估程序与评估方法 (5) 一、风险评估过程 (5) 二、指标体系评估方法 (6) (一)桥梁工程评估方法 (6) (二)高边坡工程评估方法 (14) 第四章总体风险评估 (32) 一、桥梁工程总体风险评估 (32) (一)xxxxxxxxxxxxxxxx桥总体风险评估 (32) (二)xxxxxxxxxxxxx桥总体风险评估 (34) (三)xxxxxxxxxxxxxx桥总体风险评估 (36) (四)xxxxxxxxxxxx道桥总体风险评估 (37) (五)xxx体风险评估 (39) (六)xxxxxxxxxxxxx桥总体风险评估 (41) (七)xxxxxxxxxxx总体风险评估 (42) (八)xxxxxxxxxxx道桥总体风险评估 (44) 二、xxxxxxxxxxxx总体风险评估 (46) 三、XXXXXXXXXXXXXX总体风险评估 (47) (一)xxxxxxxxxxxxxx段路堑边坡总体风险评估 (48) (二)Kxxxxxxxxxxxxxxxxx路堑边坡总体风险评估 (49) (三)xxxxxxxxxxxxxx段路堑边坡总体风险评估 (51) (四)xxxxxxxxxxxx路堑边坡总体风险评估 (52) 四、隧道工程总体风险评估 (54) 五、总体风险评估等级统计 (57) 第五章 xxxxxxxxxx专项风险评估 (58) 一、风险源辨识 (58) 二、风险分析 (60) 三、风险分类 (70) 四、重大风险源风险估测 (78) (一)深基坑施工风险估测 (78) (二)高墩施工风险估测 (80) (三)梁架设风险估测 (81) (四)人工挖孔(钻孔灌注)桩风险估测 (82) (五)现浇箱梁风险估测 (84) (六)xxxxxxx施工重大风险源风险等级 (85) 第六章 xxxxxxxxxxxxxx路堑边坡专项风险评估 (86)

生产安全事故风险评估报告36397

三门峡立达化工有限公司 生产安全事故风险评估报告 三门峡立达化工有限公司 2017年8月20日

1 总则 (1) 1.1编制原则 (1) 1.2编制依据 (1) 2 生产经营单位基本概况 (4) 2.1生产经营单位基本信息 (4) 2.2生产经营单位危险有害因素辨识情况 (4) 2.3生产经营单位安全管理情况 (9) 2.4现有事故风险防控与应急措施情况 (10) 3 事故发生可能性及其后果分析 (16) 4 划定事故风险等级 (19) 5 现有控制及应急措施差距分析 (21) 6 制定完善生产安全事故风险防控措施和应急措施 (24) 7 评估结论 (27)

1.1 编制原则 针对我公司生产过程中存在的主要危险、有害因素和我单位安全生产管理情况,结合可能发生的事故情景,对我单位现有事故风险防控与应急措施在事故救援过程中控制事故危害后果和影响范围的效果进行分析评估,确定现有控制及应急措施的差距,完善生产安全事故风险防控和应急措施,从而降低我单位发生生产安全事故的可能性,提高我单位在事故救援过程中的应急处置能力,将损失降到最低。 1.2 编制依据 1.2.1主要法律法规 1、《中华人民共和国安全生产法》(2014.12.1实施) 2、《中华人民共和国消防法》((2008年10月28日第十一届全国人民代表大会常务委员会第五次会议修订2009.5.1实施) 3、《中华人民共和国环境保护法》(2015.1.1实施) 4、《中华人民共和国职业病防治法》(中华人民共和国主席令第48号) 5、《中华人民共和国突发事件应对法》(2007年主席令69号) 6、《生产安全事故报告和调查处理条例》(国务院令第493号) 7、《危险化学品安全管理条例》(国务院令第591号) 8、《河南省安全生产条例》(2010.10.01) 9、《使用有毒物品作业场所劳动保护条例》(国务院令第352号) 10、《生产安全事故应急预案管理办法》(国家安全生产监督管理总局令第88号)

精细化工反应风险评估解决方案

精细化工反应风险评估解决方案 背景: 精细化工是我国化学工业中重要的分支和经济增长点之一。但行业基础薄弱,管理水平落后于其他发达国家。由于部分工业技术欠缺,法律和评估水平的不完备,工艺优化不足等因素,导致精细化工产业发展进程与安危水平不匹配,各类安危事故多发频发,带来重大的人员和财产损失。近年来多发的精细化工行业安危事故,一方面是由于企业发展重效益;另一方面,生产工艺多涉及磺化、硝化、重氮化、氧化等危险反应类型,一旦失效会导致短时间迅速升温、剧烈放热,热风险性巨大。 政策: 目前行业生产呈现出多样化的趋势,新产品、新技术大量涌现,部分企业和研发单位对这些新变化可能引发的事故认识不足,从实验室到产业化的规范要求缺失,很多新技术、新产品投入工业化生产之前未进行反应风险评估。 反应风险评估是精细化工技术理论的重要组成部分,建立精细化工反应风险评估实验室除了能够发现工艺的隐患,还能为工艺开发和生产者提供物料相容性、工艺条件对放热的影响、反应机理等信息,对工艺优化、降耗减排起到较大帮助。 仪器: 1、自动反应量热仪 自动反应量热仪是以立升规模模拟化学反应的具体过程、测量和控制重要工艺变量的测试仪器,广泛应用于精细化工、制药及第三方安危评估等领域的反应工艺设计、工艺优化与放大、过程安危评估等。 2、绝热加速量热仪 是在实验室条件下模拟潜在热失控反应的测试仪器,主要用于精细化工、制药、含能材料、化学、聚合物与塑料等领域的化工工艺研发、工艺优化与放大、化学品热危险性评估、燃爆事故调查与分析以及热动力学研究等 3、差示扫描量热仪 4、快速筛选量热仪 是面向反应热危险性快速评估的测试仪器,适用于化工、医药、科研等领域,用于化学品稳定性快速扫描与反应危险性筛选。 5、微量连续闭口闪点仪 6、是基于连续闭口杯法研制而成的燃烧危险特性测试仪器,适用于石油、石化、化工等领域,用于测定石油产品、变压器油、汽轮机油、涂料、香料、木材防腐油、芳香油、动植物油、高粘稠材料、增塑剂等物质的闭口闪点。符合SH/T 0768,SN/T 3077.1,DL/T 1354,ASTM D6450,SN/T 3077.2,ASTM D7094 ,GB/T 261,GB/T 21615,ASTM D93,GB/T 5208,GB/T 21790,ASTM D3828 7、试验仪 适用于在测试温度和常压下,化学物质的蒸气与空气形成可燃混合物的燃烧上限及下限浓度的测定,测试中可以使用惰性气体作为稀释剂,但不能使用氧化性比空气强的物质。符合GB/T 21844 -2008《化合物(蒸气和气体)易燃性浓度限值的标准试验方法》ASTM E681-2009《化学品(蒸汽和气体)标准测试方法》 8、粉尘云点火能测试仪 用于测定引起粉尘云点火能(MIE)的测试仪器,符合ASTM E2019, IEC 61241-2-3, ISO/IEC 80079-20-2, GB/T 16428

公路施工安全风险评估报告

第一章、评估说明一、评估目的 本风险评估报告评估目的是为了贯彻落实“安全第一、预防为主、综合治理”的方针,找出公路桥梁施工危险源,完善工程安全事故预案预控预警体系,强化施工安全监控手段,有效控制施工安全风险,减少重、特大生产安全事故发生,降低人员伤亡和经济损失,保障公路桥梁建设的安全。 为加强桥梁工程的安全管理,尽早辨识潜在风险,优化工程建设方案,完 座进 目进行评价,同时遵循下列原则: (1)、严格执行国家、地方和行业现行有关劳动安全卫生方面的法律、法规和标准,保证评价的科学性与公正性。 (2)、采用可靠、先进适用的评价技术,确保评价质量,突出重点。 第二章、工程概况 一、工程规模

本工程为351国道宣恩县椿木营至长潭河段改建工程02标段,施工桩号K48+000-K53+000,设计速度40公里/小时,公路等级为二级公路,路基宽度8.5米,桥梁宽度9米,主要工程项目:路基土石方,挡土墙,涵洞工程、大桥371米/3座。 全段采用设计速度为40km/h,路基宽度8.5m,桥梁宽度9m,双向两车道建设。 , 八大公山,经一天门、鸡公岭、万岭山、东门关、自西向东凸起,将境内分成南北两部。全县最高点火烧堡海拔2014米,最低点(贡水与清江汇合处)海拔356米。境内海拔1200米以上的高山占全县总面积的25.69%,海拔800-1200米的二高山占47.12%,800米以下低山占27.19%。 项目区地处鄂西中低山区,地形南北狭长,贯通线途径地段地势变化很大。路线走廊带山峦叠嶂,绵延起伏,沟壑纵横。总体看,该段路线段内地形标高1723M

左右,属构造剥蚀溶蚀中山地貌区,区内植被发育,覆盖率较高。 三、气象特征 宣恩属中亚热带季风湿润型山地气候。随海拔高程的变化,呈明显的垂直差异海拔 800 米以下的低山带,四季分明,冬暖夏热,雨热同步,光温互补,年均气温 15.7℃,历年平均气温15.7℃,最冷月(1 月)平均气温 4.6℃,最热月(7 月)平均气温 26.2℃;极端最高气温 40.8℃,极端最低气温 小时, 8 月为 次;低 主要灾害性气候有春季低温阴雨、夏季干旱与洪灾、冰雹及大风、秋季连阴雨、冬季低温冻害等。恩施地区为湖北省地质灾害多发、灾害损失严重的地区之一,塌、泥石流及洪灾多发的重要诱因。 四、水文地质 测区地处鄂西山区,地表沟谷发育,含水介质类型多,水文地质条件复杂,各地层赋水性差大,水量时空分布不均。本路段根据地下水赋存条件和

公路桥梁工程安全风险评估制度

公路桥梁工程安全风险评估制度 为加强我项目部公路桥梁工程施工安全管理,优化施工组织方案,提高施工现场安全预控有用性,定制定公路桥梁工程安全风险评估制度如下: 一、目的与适用范围 1、为了贯彻落实“安全第一、预防为主、综合治理”的方针,加强安全管理,尽早辩识潜在风险,找出我标段桥梁工程施工致险因素和孕险因子,完善工程安全事故预案预控预警体系,强化施工安全监控手段,有用控制施工安全风险,杜决重特大事故的发生,降低人员伤亡和经济损失。 保障我合同段工程建设的安全,确保嫩丹高速建设平安工地顺利推进。 2、本合段内在建的所有桥梁工程。 二、评估方法 (一)公路桥梁工程施工安全风险评估分为总体风险评估和专项风险评估。 1、总体风险评估。桥梁工程开工前,根据桥梁工程的地质环境条件、建设规模、结构特点等孕险环境与致险因子,估测桥梁工程施工期间的整体安全风险大小,确定其静态条件下的安全风险等级。 2、专项风险评估。当桥梁工程总体风险评估等级达到Ⅲ级(高度风险)及以上时,将其中高风险的施工作业活动(或施工区段)作为评估对象,根据其作业风险特点以及类似工程事故情况,进行风险源普查,并针对其中的巨大风险源进行量化估测,提出相应的风险控制措施。 (二)、评估方法应根据被评估项目的工程特点,选择相应的定性或定量的风险评估方法。详尽评估方法的选择,可参照《公路桥梁和隧道工程施工安全风险评估指南(试行)》(见附件)。 三、评估步骤

公路桥梁工程施工安全风险评估工作包括制定评估计划、选择评估方法、开展风险分析、进行风险估测、确定风险等级、提出措施建议、编制评估报告等方面。评估步骤大凡为: 1、开展总体风险评估。根据设计阶段风险评估结果(若有),以及类似结构工程安全事故情况,用定性与定量相结合的方法初步分析本项目孕险环境与致险因子,估测施工中发生巨大事故的可能性,确定项目总体风险等级。 2、确定专项风险评估范围。总体风险评估等级达到Ⅲ级(高度风险)及以上桥梁或隧道工程,应进行专项风险评估。其他风险等级的桥梁或隧道工程可视情况开展专项风险评估。 3、开展专项风险评估。通过对施工作业活动(施工区段)中的风险源普查,在分析物的不安全状态、人的不安全行为的基础上,确定巨大风险源和大凡风险源。宜采用指标体系法等定量评估方法,对巨大风险源发生事故的概率及损失进行分析,评估其发生巨大事故的可能性与危机程度,对照相关风险等级标准,确定专项风险等级。 4、确定风险控制措施。根据风险接受准则的相关规定,对专项风险等级在Ⅲ级(高度风险)及以上的施工作业活动(施工区段),应明确巨大风险源的监测、控制、预警措施以及应急预案。其他风险等级的桥梁、隧道工程可根据工程实际情况,按照成本效益原则确定相应的风险控制措施。五、评估组织与评估报告 1、公路桥梁工程施工安全风险评估工作由项目部评估小组详尽负责。 2、评估工作负责人应当具有5年以上的工程管理经验,并有参与类似工程施工的经历。 3、风险评估工作应形成评估报告。评估报告应反映风险评估过程的主要工作。报告内容应包括评估依据、工程概况、评估方法、评估步骤、评估内容、评估结论及对策建议等。评估结论应当明确风险等级、可能发生事故的关键部位、区域或节点、事故可能性等级、规避或者降低风险的建议措施等内容。 六、实施要求

精细化工反应安全风险评估导则 safehoo

附件 精细化工反应安全风险评估导则 1 范围 本导则给出了精细化工反应安全风险的评估方法、评估流程、评估标准指南,并给出了反应安全风险评估示例。 本导则适用于精细化工反应安全风险的评估。 2 术语和定义 规范性引用文件界定的术语和定语,以及下列术语和定语适用于本标准。 2.1 失控反应最大反应速率到达时间TMR ad失控反应体系的最坏情形可以视为绝热条件。在绝热条件下,失控反应到达最大反应速率所需要的时间,称为最大反应速率到达时间,可以通俗的理解为致爆时间。失控反应最大反应速率到达时间是温度的函数,是一个时间衡量尺度,用于评估失控反应最坏情形发生的可能性,是人为控制最坏情形发生所拥有的时间长短。 2.2 绝热温升ΔT ad在冷却失效等失控条件下,反应体系近似处于绝热状态,体系不能进行能量交换,放热反应放出的热量,全部用来升高反应体系的温度,是反应失控可能达

到的最坏情1 况。 对于失控体系,反应物完全转化时所放出的热量导致物料温度的升高,称为绝热温升。绝热温升与反应的放热量成正比,对于放热反应来说,反应的放热量越大,绝热温升越高,导致的后果越严重。绝热温升是反应风险评估的重要参数,是评估体系失控的极限情况,可以评估失控体系可能导致的严重程度。 2.3 工艺温度T p目标工艺操作温度,也是反应过程中冷却失效时的初始温度。 冷却失效时,如果反应体系同时存在物料最大量累积和物料具有最差稳定性的情况,在考虑控制措施和解决方案时,必须充分考虑反应过程中冷却失效时的初始温度,安全的确定工艺操作温度。 2.4 技术最高温度MTT 技术最高温度可以按着常压体系和密闭体系两种方式考虑。对于常压反应体系来说,技术最高温度为反应体系溶剂或混合物料的沸点;对于密封体系而言,技术最高温度为反应容器最大允许压力时所对应的温度。 2.5 失控体系能达到的最高温度MTSR 当放热化学反应处于冷却失效、热交换失控的情况下,2

公路桥梁风险评估方案

1编制依据 1、《公路桥梁和隧道工程施工安全风险评估实行》交质检发【2011】217号。 2、《高速公路施工合同段合同文件》、施工图纸及技术规范。 3、交通部颁发的《公路工程国内招标文件范本(2009年版)》、《标准施工招标文件(2007年版)》、现行《公路工程技术标准》、现行《公路工程施工安全技术规程》等相关规范。 4、现行《公路施工手册》、现行《工程建设标准强制性条文-公路工程部分》。 5、现场踏勘调查、搜集的实地资料。 6、我单位在类似工程中的施工经验和相关工程的技术总结、工法成果等。 7、依据以上文件、规范、标准集工程实地勘察情况,结合我公司装备、施工能力、管理水平,以及多年从事复杂地形地质条件桥梁施工的丰富经验,并针对本工程施工特点,以“保质量、保工期、保安全、创精品”为目标,编制本实施性施工组织设计。

2 工程概况 2.1桥梁工程概况 本标段内主线桥主要有中桥2座,大桥1座。 鸽子湾中桥全长66米,0#桥台采用桩接盖梁桥台,3#桥台采用肋板式桥台,柱基础;桥墩采用桩柱式墩,桩基础。上部采用3×20m预应力小箱梁。 E匝道中桥全长88米,0#桥台为重力式桥台,扩大基础,4#桥台为肋板式桥台,,桩基础。桥墩采用桩柱式墩,桩基础。上部采用4×20m预应力砼简支小箱梁。 樟木湾大桥全长148米,0#桥台为重力式桥台,扩大基础,7#桥台为肋板式桥台,桩基础。桥梁下部采用钢筋砼圆柱墩,上部为7×20m预应力砼简支小箱梁。 2.2工程地质情况 (1)地质岩性 全线经过区域内覆盖层主要为第四系全新统人工填筑层(Q4ml)、冲击层(Q4al)、坡残积层(Q4el+dl)、崩坡堆积层(Q4col+dl)等。出露基岩为白垩系上统夹关组(K2j);侏罗系上统蓬莱镇组(J3p)、遂宁组(J3s),侏罗系中统的上沙溪庙组(J2s)、下沙溪庙组(J2xs)、新田沟组(J2x)、侏罗系下统自流井组(J1z);三叠系上统须家河组(T3xj)等。(2)地质构造及地震动参数 全线区内主要构造形迹有:长山背斜、永安背斜等;荣县-

2014精细化工生产安全事故典型案例盘点

2014精细化工生产安全事故典型案例盘点 生产安全是精细化工行业永不落幕的话题,精细化工企业在生产过程中不能有丝毫的失误,否则后果不堪设想。受牵连的不仅企业自身,还有周边的环境污染、人员身体和精神上的伤害。 一提到环保,不得不提到px事件,px事件在精细化工行业无人不知,从厦门,到大连,又到宁波,再到四川彭州和云南昆明……今年3月,事件发生在了广东茂名。 2014年3月30日上午,茂名市区一些群众为了表达对拟建芳烃PX项目的关切,在茂名市委门前大草坪聚集,并在个别路段“慢行”;当天下午,有小部分人上路堵塞交通,后逐步散去;晚上10点半之后,部分闹事者开始骑乘摩托车扔石头、矿泉水瓶等破坏公共设施。当地公安机关接警后迅速行动,果断处置,最终有效控制了局面。随后,茂名市政府发表告全体市民书,希望广大市民一定要相信科学,相信政府,不要让不法分子乘机制造混乱,破坏难得的和谐稳定发展环境。 PX项目再一次激怒当地市民,PX,这个化学物质在近几年被公众、舆论推到了风口浪尖。那么,为什么茂名还要上PX这个芳烃项目呢?据了解,剧毒、致癌、污染、高危等传言在人群中弥散是导致广大市民谈PX色变的重要原因。事实上,PX的化学性质比较稳定,根据《全球化学品统一分类和标签制度》、《危险化学品名录》所述,PX属于易燃低毒类化学品,可燃性与煤油相当,毒性与汽油、柴油大体在同一级别,目前尚没有科学证据表明PX对人体有致癌、致畸性,美国国家环保局也没有将其列为致癌物质。 由此可见,PX并不像人们想象的那么可怕,为何PX事件被群众排斥呢?很多人指出,PX事件屡次发生,其最重要的原因是政府、企业和群众缺少有效的沟通对话,未尊重公众权利。然而此次又有所不同。据茂名市政府一名工作人员介绍,茂名市其实已在汲取其他地方前车之鉴的基础上,制定了宣传方案并予以实行。茂名的实际情况,宣传工作也做了,老百姓却还是不相信政府,又该怎么办呢?据中国工程院院士、清华大学教授金涌院士介绍:“茂名PX项目只是一个普通石化项目,之所以群众不接受,是’因为不了解’。金涌表示,在’与群众交朋友’方面,国外的企业做得很好。他们邀请群众参观生产车间,有公众参观日和群众代表监督会。他建议学习国外的企业邀请群众参观生产车间,’与群众交朋友’。”的确,如果国内企业能够’与群众交朋友’,邀请群众参观生产车间或厂区,居民对精细化工企业的生产增加了一番了解之后,相信会减少对精细化工企业的排斥。 除了PX事件,今年精细化工企业发生的安全事件也不少,请通过下述表进行深入了解哪些企业在2014年发生安全生产事故(笔者摘出了重要的事故)。

公路桥梁和隧道工程设计安全风险评估指南

公路桥梁和隧道工程设计安全风险评估指南 (试行) 交公路发[2010] 175 号

关于在初步设计阶段实行公路桥梁和隧道工程安全风险评估制度的通知 各省、自治区、直辖市交通运输厅(委): 为加强公路桥梁和隧道工程安全管理,增强安全风险意识,优化工程建设方案,提高工程建设和运营安全性,经研究,决定在初步设计阶段对公路桥梁和隧道工程方案实行安全风险评估制度。现将《公路桥梁和隧道工程设计安全风险评估指南(试行)》(以下简称《指南》)印发给你们,请参照执行,有关要求通知如下: 一、重要意义与适用范围 (一)公路桥梁和隧道工程安全,与地质、水文等自然条件,工程设计、施工组织方案,建设管理经验及交通、通航等使用环境有关,安全风险在设计、建设、运营等各阶段、各环节都不同程度存在。初步设计阶段是确定工程建设方案的阶段,是工程安全管控的重要环节。在初步设计阶段对公路桥梁和隧道工程方案实行安全风险评估制度,增加安全风险评估工作环节,是强化安全风险意识,保证工程建设方案安全,降低事故概率,减少经济损失的新措施。 (二)部审批初步设计的国家重点公路工程项目,尤其是建设条件复杂、技术难度大的桥梁和隧道工程,在初步设计阶段,应按本通知要求,对工程方案进行安全风险评估;其他公路工程项目,可参照执行。 二、评估范围 公路桥梁和隧道工程安全风险评估的范围,各地可根据项目工程建设条件、技术复杂程度、施工管理要求、运行使用环境等因素,结合当地工程建设经验确定。建设条件相似、技术方案相同的桥梁或隧道工程,可一并进行安全风险评估。其主要范围如下: (一)桥梁工程。 1.多跨或跨径大于等于 40 米的石拱桥,跨径大于等于 250 米的钢筋混凝土拱桥,跨径大于等于 350 米的钢箱拱桥,钢柑架、钢管混凝土拱桥; 2. 跨径大于等于 200 米的梁式桥,跨径大于 400 米的斜拉桥,跨径大于1000米的悬索桥; 3. 墩高或桥高大于 100 米的桥梁; 4. 桥址处地震烈度大于 7 度且跨径大于 150 米的桥梁;

公路桥梁和隧道工程施工安全风险评估方案报告

吉河ZB1合同段LJ13分部安全风险评估报告 1、编制依据 (1)《公路桥梁和隧道工程施工安全风险评估指南》(中华人民共和国交通部【2011.5】文)。 (2)《公路桥梁风险评估与管理暂行规定》 (3)《吉河高速公路工程地质勘测报告》 (4)《公路工程技术标准》(JTJ B01-2003 ) (5)《公路桥涵施工技术规范》(JTG/T F50-2011 ) (6)《企业职工伤亡事故分类》(GB 6441-86 ) (7)项目公司和总承包安全管理要求 (8 )项目公司提供的设计图纸文件 (9)吉河ZB1合同段项目部LJ13分部实施性施工组织设计 1.1评估对象目标及范围 1.1.1评估对象 评估的对象是吉河高速公路ZB1合同段LJ13分部内的各单位工程。----隧道、大桥、高墩、上系梁相对困难外,余均属较容易施工,安全风险较小的工艺,易于控制管理。预应力砼现浇箱梁桥不同类型结构物。本合同段详细工程量见下表; LJ13合同段主要工程量一览表

1.1.2评估范围 评估范围为---合同段内的各单位工程的可行性、充分性、有效性进行评价,通过对本合同段内的-座桥梁、-条隧道、路基及其所属——道涵洞工程施工阶段的风险评估,包括对安全、工期、环境以及第三方风险进行评估。风险评估与管理必须本着安全第一的原则,环境、质量、投资、工期等都应服从于安全。尤其要重视可能导致突发性、灾害性的风险事件。 1.1.3评估目的 对----合同段内的各单位工程的可行性、充分性、有效性进行评价,通过对本合同段内的桥梁、隧道、涵洞、路基施工中风险的识别、估计和评价,确定风险等级。合理使用多种管理方法和技术手段对项目风险实行有效控制,将各类风险降到可接受水平,达到保安全、保护环境、保证建设工期、控制投资、提高效益、实现建设项目的总目标。 1.1.4评估办法 以设计图地质资料和两阶段施工图设计中的风险评价结果为主线,综 合运用定性与定量分析的进行评估。具体采用了专家评议法定性分析和风险评价矩阵法及指标体系法定量分析的办法来对本项目进行风险评估。 1.1.5成立风险评估专家组 评估专家组均具有工作经验的且对工程风险有足够认识的高级工程师和工程师组成

安全风险评估诊断分级应急(2018)19号

应急管理部关于印发危险化学品 生产储存企业安全风险评估诊断分级 指南(试行)的通知 应急〔2018〕19号 各省、自治区、直辖市及新疆生产建设兵团安全生产监督管理局,有关中央企业:为认真贯彻党的十九大精神,落实党中央、国务院决策部署,加快完善安全风险分级管控和隐患排查治理工作机制,提高监管针对性,提升监管效能,有效防范遏制重特大生产安全事故,根据《国务院安全生产委员会关于印发2018年工作要点的通知》(安委〔2018〕1号)部署,结合危险化学品生产储存企业(以下简称危险化学品企业)安全生产特点和近年来一系列危险化学品安全生产工作要求,重点考虑危险化学品企业的固有危险性,兼顾危险化学品企业对安全风险管控的现实情况,我

部组织制定了《危险化学品生产储存企业安全风险评估诊断分级指南(试行)》(以下简称《指南》,见附件),现予以印发,请认真贯彻执行,并就有关事项通知如下: 一、各地安全监管部门要高度重视危险化学品企业安全风险评估诊断工作,认真学习宣传《指南》,结合本地实际,进一步细化《指南》,并组织对辖区内危险化学品企业进行安全风险评估诊断分级,评估诊断采用百分制,根据评估诊断结果按照风险从高到低依次将辖区内危险化学品企业分为红色(60分以下)、橙色(60至75分以下)、黄色(75至90分以下)、蓝色(90分及以上)四个等级,对存在在役化工装置未经正规设计且未进行安全设计诊断等四种情形的企业可直接判定为红色;涉及环氧化合物、过氧化物、偶氮化合物、硝基化合物等自身具有爆炸性的化学品生产装置的企业必须由省级安全监管部门组织开展评估诊断;要按照分级结果,进一步完善危险化学品安全风险分布“一张图一张表”,落实安全风险分级管控和隐患排查治理工作机制。危险化学品企业安全风险评估诊断分级实施动态管理,原则上每三年开展一次。

相关文档
相关文档 最新文档