文档库 最新最全的文档下载
当前位置:文档库 › D8.4-8.5空间曲线及其方程 平面及其方程

D8.4-8.5空间曲线及其方程 平面及其方程

D8.4-8.5空间曲线及其方程 平面及其方程
D8.4-8.5空间曲线及其方程 平面及其方程

第四节 空间曲线及其方程

一、填空题

1.母线平行于轴且经过曲线的柱面方程为y 222222210

x y z x z y ?++=?+?=?6622321x z +=. 2

.球面z =

z =的交线在xoy 面上的投影方程为 2210

x y z ?+=?=?. 3.旋转抛物面()2204z x y z =+≤≤在xoy 面上的投影为2240x y z ?+≤?=?

,在面上的投 yoz 影为240

y z x ?≤≤?=?.

4

.圆锥面z =x 与柱面2

2z =所围立体在xoy 面上的投影为2220x y x z ?+≤?=?,在 xoz

面上的投影为0

x z y ?≤≤??=??. 二、单项选择题

1.曲线222

1:1645230x y z x z Γ?+?=????+=?

关于xoy 面的投影柱面的方程是 A . A . B .2220241160x y x +??=22

44127y z z 0+??= C . D .22202411600x y x z ?+??=?=?22441270y z z x 0?+??=?=?

2.曲线在面22203y z x z ?+?=?=?

xoy 上的投影曲线的方程是 B . A . B .220y x z ?=?=?2290y x z ?=??=? C .2293y x z ?=??=? D .223

y x z ?=?=? 27

三、将曲线方程化成母线分别平行于2222243812y z x z y z x ?++=?+?=?

4z x 轴及轴的柱面的交线方程. z 解:将分别消去2222243812y z x z y z x ?++=?+?=?4z

,x z ,得 224y z +=z 0 ① 24y x += ②

再将①②联立得交线方程:222440y z y x ?+=?z +=?

. 第五节 平面及其方程

一、填空题

1.设一平面经过点()000,,x y z ,且垂直于向量(),,A B C ,则该平面方程为000()()()A x x B y y C z z ?+?+?=0.

2.平面与平面的夹角为26x y z ?+?=0025x y z ++?=π

3.

3.平行于xoz 面且经过点()2,5,3?的平面方程为50y +=.

4.经过x 轴和点(的平面方程为)3,1,2??20y z +=.

提示:过x 轴的平面方程设为0By CZ +=.

5.点到平面(1,2,1)02210x y z ++?=的距离为 1 .

提示:d =.

二、求平行于x 轴且经过两点()4,0,2?和()5,1,7的平面方程.

解:设所求平面方程为0By Cz D ++=, 又平面过()4,0,2?()5,1,7两点 2070C D B C D ?+=?∴?++=?, 29D C B C =?∴?=??

, ∴所求平面方程为:92y z 0??=.

28

三、一平面过点()1,0,1?且平行于向量()2,1,1a = 和()1,1,0b =? ,试求该平面方程.

解:设平面的法向量为,则n n a b =× ,2113110i j k

n i j k ∴==+?? ,从而

. 又∵平面过点,(1,1,3)n =? (1,0,1)?∴所求平面方程为(1)3(1)0x y z ?+?+=,即.

340x y z +??=00四、求平面与各坐标面夹角的余弦.

225x y z ?++=解:平面22的法向量,设平面与5x y z ?++=(2,2,1)n =?

,,yoz xoz xoy 面的夹角分别为,,αβγ, 又面的法向量 yoz (1,0,0)i = 2cos .3

n i n i α?∴== 同理,21cos ,cos .33

βγ== 29

曲线的参数方程(教案)

曲线的参数方程 教材 上海教育出版社高中二年级(理科)第十七章第一节 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中, 形成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 2002年5月1日,中国第一座身高108米的摩天轮,在上海锦江乐园正式对外运营。并以此高度跻身世界三大摩天轮之列,居亚洲第一。 已知该摩天轮半径为51.5米,逆时针匀速旋转一周需时20分钟。如图所示,某游客现在点(其中点和转轴的连线与水平面平行)。问:经过秒,该游客的位置在何处? 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 1、圆的参数方程的推导 (1)一般的,设⊙的圆心为原点,半径为,0OP 所在直线 为轴,如图,以0OP 为始边绕着点按逆时针方向绕原点以匀角 速度作圆周运动,则质点的坐标与时刻的关系该如何建立呢? (其中与为常数,为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈???==t t r y t r x ωω 为参数 ① (2)点的角速度为,运动所用的时间为,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈???==θθ θr y r x 为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力)

极坐标和参数方程知识点总结大全

极坐标与参数方程 一、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的 函数,即 ?? ?==) () (t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系 x 、y 之间关系的变数叫做参变数,简称参数. 相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. 练习 1.若直线的参数方程为12()23x t t y t =+?? =-?为参数,则直线的斜率为( ) A . 23 B .23- C .32 D .32 - 2.下列在曲线sin 2()cos sin x y θ θθθ =?? =+?为参数上的点是( ) A .1(,2 B .31(,)42 - C . D . 3.将参数方程2 2 2sin ()sin x y θ θθ ?=+??=??为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。

3.圆的参数方程 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在 圆上作匀速圆周运动,设,则。 这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是 转过的角度(称为旋转角)。 圆心为,半径为的圆的普通方程是, 它的参数方程为:。 4.椭圆的参数方程 以坐标原点为中心,焦点在轴上的椭圆的标准方程为 其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为 其中参数仍为离心角,通常规定参数的范围为∈[0,2)。 注:椭圆的参数方程中,参数的几何意义为椭圆上任一点的离心角,要把它和这一点的旋转角区分开来,除了在四个顶点处,离心角和旋转角数值可相等外(即在到的范围内),在其他任何一点,两个角的数值都不相等。但 当时,相应地也有,在其他象限内类似。 5.双曲线的参数方程

求曲线方程的几种常用方法

求曲线方程的几种常用方法 求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有: 1.直接法:就是课本中主要介绍的方法。若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。 解法一:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的有中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则A (,0)a -,B (,0)a 。 设动点C 为(,)x y , ∵222||||||AC BC AB +=, ∴2 224a +=, 即222x y a +=. 由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。 解法二:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,C (,)x y ∵1AC BC k k =-, (1) ∴1y y x a x a =-+- , (2) 化简得:222 x y a += , (3) 由于在x a ≠±时方程(2)与(3)不等价,故所求轨迹方程为222x y a +=(x a ≠±)。 解法三:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,且设动点C (,)x y 。 ∵1||||2 CO AB =, a =,即222x y a +=。 轨迹中应除去A 、B 两点(理由同解法一),故所求轨迹方程为222x y a +=(x a ≠±)。 说明:利用这种方法求曲线方程的一般方法步骤:

曲线在点处的法平面方程为

B020005 一、1、曲线x y R y z R 222222+=+=???在点R R R 222,,?? ???处的法平面方程为 (A )-+-=x y z R 2 (B )x y z R -+=32 (C )x y z R -+=2 (D )x y z R ++=32 答:( ) 三、1、 若u =f (t )是(-∞,+∞)上严格单调的奇函数,Ω是球体(x -x 0)2+(y -y 0)2+(z -z 0)2≤R 2 (R >0),若,试问a ,b ,c ,d 应满足什么条件。 2、设f x ()是以3为周期的周期函数,又设f x ()在任意有限闭区间[,]a b 内可积。试写出f x ()的傅立叶系数的计算公式。 四、1、z xy =ln()2,求z z x y ,。 2、设z ax bxy cy dx ey f =+++++22222,求 ????z x z y ,。 3、设f x y (,)有连续偏导数,u f e e x y =(,),求d u 。 4、设曲线C 的方程为x 6+y 6=1.求曲线积分 5、求微分方程''-=y a y x 2sin 的一个特解,其中a 为非零实常数。 6、求微分方程tx x ''-'=0的通解。 7、求极限lim x y x xye xy →→-+00 416 。 8、 设Ω是由及z =1所围的有界闭区域,试计算. 五、1、设L 为在右半平面内的任意一条闭的光滑曲线,试证明曲线积分 2、如果幂级数∑∞=0n n n x a 在2-=x 处条件收敛,那么该级数的收敛半径是多少? 试证之. 3、验证:y x y x 12==cos ,sin ωω都是微分方程''+=y y ω20的解,并写出该方程的通解。 4、求证函数系{}sin ,sin ,,sin ,x x nx 2??????是[]0,π上的正交函数系。 5、 试证对于空间任意一条简单闭曲线C ,恒有∮c (2x +y )d x +(4y +x +2z )d y +(2y -6z )d z =0. 六、1、 利用二重积分计算由直线y =x ,y =5x 及x =1所围成区域的面积。 2、在空间找一点P x y z (,,),使它到三个平面x y z x y z y z ++=-+=-=111,,的距离平方和为最小。 3、求微分方程''+'-=y y y 230的一条积分曲线,使其在原点处与直线y x =4相切。 4、求曲线族y Cx =3的正交轨线族(即与曲线y Cx =3 互相正交的曲线族)所满足的微分方程。

参数方程题型大全

参数方程 1.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0+r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为? ???? x =a cos φ,y =b sin φ (φ为参数). (4)双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的参数方程为????? x =a 1cos θ,y =b tan θ (θ为参数). (5)抛物线px y 22 =的参数方程可表示为)(. 2, 22为参数t pt y pt x ?? ?==. 基础练习 1.在平面直角坐标系中,若曲线C 的参数方程为?? ? x =2+22t , y =1+2 2 t (t 为参数),则其普通方程为 ____________. 2.椭圆C 的参数方程为? ???? x =5cos φ, y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点, 则|AB |min =________.

3.曲线C 的参数方程为? ??? ? x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________. 4.在平面直角坐标系xOy 中,已知直线l 的参数方程为??? x =1+12 t , y =3 2t (t 为参数),椭圆C 的方程 为x 2+ y 2 4 =1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________ 考点一 参数方程与普通方程的互化 (基础送分型考点——自主练透) [考什么·怎么考] (1)??? x =1 t , y =1 t t 2 -1 (t 为参数);(2)????? x =2+sin 2θ, y =-1+cos 2θ(θ为参数).(3)?? ??? x =1 cos θ ,y =tan θ 2.求直线????? x =2+t ,y =-1-t (t 为参数)与曲线? ???? x =3cos α, y =3sin α(α为参数)的交点个数. 考点二 参数方程的应用 (重点保分型考点——师生共研) 角度一:t 的几何意义

1、求下列各平面的坐标式参数方程和一般方程(精)

1、求下列各平面的坐标式参数方程和一般方程 (1)通过点)1,1,3(1M 和)0,1,1(2-M 且平行于矢量}2,0,1{-的平面; (3)已知四点A (5,1,3),B (1,6,2),C (5,0,4),D (4,0,6),求通过直线AB 且平行直线CD 的平面,并求通过直线AB 且与△ABC 所在平面垂直的平面 2、求下列平面的一般方程 (1)过点M (3,2,-4)且在X 轴和Y 轴上截距分另为-2和-3的平面 (2)已知两点M 1(3,-1,2),M 2(4,-2,-1),通过M 1且垂直于M 1M 2的平面 (3)过点M 1(3,-5,1)和M 2(4,1,2)且垂直于平面x-8y+3z-1=0的平面 3、将下列平面的一般方程化为法式方程 (1)x-2y+5z-3=0 (2) x+2=0 4、求自坐标原点向平面2x+3y+6z-35=0所引垂线的长和批向平面的单位法矢量的方向余弦 5、已知三角形顶点为A(0,-7,0),B(2,-1,1),C(2,2,2),求平面于△ABC 所在的平面且与它相距为 2个单位的平面方程 6、求在X 轴上且到平面12x-16y+15z+1=0和2x+2y-z-1=0距离相等的点 7、已知四面体的四个顶点为S(0,6,4),A(3,5,3),B(-2,11,-5),C(1,-1,4),计算从顶点S 向底面ABC 所引的高 8、求中心在C3,-5,-2)且与平面2x-y-3z+11=0相切的球面方程。 9、求与9x-y+2z-14=0和9x-y+2z+6=0平面距离相等的点的轨迹 10、判别点M(2,-1,1)和N(1,2,-3)在由下列相交平面所构成的同一个二面角内,还是分别在 相邻二面角内,或是在对顶的二面角内? (1)0323:1=-+-z y x π与042:2=+--z y x π (2)0152:1=-+-z y x π与01623:2=-+-z y x π 11、分别在下列条件下确定l,m,n 的值使lx+y-3z+1=0与7x-2y-z=0表示二平行平面 12、求下列两平行平面19x-4y+8z+21=0和19x-4y+8z+42=0间的距离 13、求两平面2x-3y+6z-12=0和x+2y+2z-7=0所成的角 14、求过Z 轴且与平面0752=--+z y x 成 60角的平面 15、 求下列各直线的方程 (1)通过点),,(0000z y x M 且平行于两相交平面0:1=+++i i i i D z C y B x A π)2,1(=i 的 直线 (2)通过点M (1,0,-2)且与两直线 11111-+==-z y x 和0 1111+=--=z y x 垂直的直线 16、求下列各平面的方程: (1) (1) 通过点P (2,0,1),且又通过直线 3 2121-=-=+z y x 的平面 (2) (2) 通过直线113312-+=-+=-z y x 且与直线???=--+=-+-052032z y x z y x 平行的平面 (3) (3) 通过直线 2 23221-=-+=-z y x 且与平面3x+2y-z-5=0垂直的平面 (4) (4) 通过直线???=-+-=+-+014209385z y x z y x 向三坐标面引的三个射影平面 17、化下列直线的一般方程为射影式方程与标准方程,并求出直线的方向余弦 (1)???=---=+-+0 323012z y x z y x

极坐标与参数方程知识点总结大全

1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面 直角坐标系都是平面坐标系. (2)极坐标 设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作. 一般地,不作特殊说明时,我们认为可取任意实数. 特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的. 3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表: 点直角坐标极坐标 互化公 在一般情况下,由确定角时,可根据点所在的象限最小正角. 4.常见曲线的极坐标方程

注:由于平面上点的极坐标的表示形式不唯一,即都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程点可以表示为等多种形式,其中,只有的极坐标满足方程. 二、参数方程 1.参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的那么,由方程组①所确定的点都在这条曲线上,并且对于的每一个允许值,函数①. 方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. (2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致. 注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。 3.圆的参数 如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周

(完整版)第四节空间曲线及其方程教案

重庆科创职业学院授课教案 课名:高等数学(上)教研窒:高等数学教研室班级:编写时间:

课题: 第四节 空间曲线及其方程 教学目的及要求: 介绍空间曲线的各种表示形式。为重积分、曲面积分作准备的,学生应知道各种常用立体的解析表达式,并简单描图,对投影等应在学习时特别注意。 教学重点: 1.空间曲线的一般表示形式 2.空间曲线在坐标面上的投影 教学难点: 空间曲线在坐标面上的投影 教学步骤及内容 : 一、空间曲线的一般方程 空间曲线可以看作两个曲面的交线,故可以将两个曲面联立方程组形 式来表示曲线。 ? ? ?==0),,(0 ),,(z y x G z y x F 特点:曲线上的点都满足方程,满足方程的点都在曲线上,不在曲线上的 点不能同时满足两个方程。 二、空间曲线的参数方程 将曲线C 上的动点的坐标表示为参数t 的函数: ?? ? ??===)()()(t z z t y y t x x 当给定1t t =时,就得到曲线上的一个点),,(111z y x ,随着参数的变化可得到曲线上的全部点。 旁批栏:

三、空间曲线在坐标面上的投影 设空间曲线C 的一般方程为 ? ? ?==0),,(0 ),,(z y x G z y x F (1) 消去其中一个变量(例如z )得到方程 0),(=y x H (2) 曲线的所有点都在方程(2)所表示的曲面(柱面)上。 此柱面(垂直于xoy 平面)称为投影柱面,投影柱面与xoy 平面的交线叫做空间曲线C 在xoy 面上的投影曲线,简称投影,用方程表示为 ?? ?==0 ),(z y x H 同理可以求出空间曲线C 在其它坐标面上的投影曲线。 在重积分和曲面积分中,还需要确定立体或曲面在坐标面上的投影,这 时要利用投影柱面和投影曲线。 例1:设一个立体由上半球面224y x z --=和锥面)(322y x z -=所围 成,见下图,求它在xoy 面上 的投影。 解:半球面与锥面交线为 ?????+=--=) (34:2 222y x z y x z C 消去z 并将等式两边平方整理得投影曲线为: ?? ?==+0 1 22z y x 即xoy 平面上的以原点为圆心、1为半径的圆。立体在xoy 平面上的投影为圆所围成的部分: 122≤+y x 旁批栏:

求曲线方程的几种常用方法

求曲线方程的几种常用方法 宜君县高级中学 马卫娟 已知动点所满足的条件,求动点的轨迹方程是平面解析几何的一个重要题型。下面就通过实例介绍几种求曲线方程的常用方法。 一.直接法:即课本中主要介绍的方法。若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点的坐标为(x,y),再根据命题中的已知条件,研究动点形成的几何特征,运用几何或代数的基本公式、定理等列出含有x,y 的关系式,从而得到轨迹方程。 例1.在直角△ABC 中,斜边是定长2a(a>0),求直角顶点C 的轨迹方程。 解法一:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系(如图所示)则有:A(-a,0)、B(a,0),设动点C 的坐标为(x,y) 则满足条件的点C 的集合为}/{2 2 2 AB BC AC C P =+= 所以( )( ) ()2 2 2 2 2 2 22)()(a y a x y a x =+-+++ 即222a y x =+ 因为当点C 与A 、B 重合时,直角△ABC 不存在,所以轨迹中应除去A 、B 两点,既a x ±≠。 故所求点C 的轨迹方程为2 2 2 a y x =+()a x ±≠。 解法二:如解法一建立直角坐标系,设A(-a,0)、B(a,0)、C(x,y) ∵A C ⊥BC ∴1-=?BC AC K K ∴ 1-=-? +a x y a x y (1)

化简得:2 22a y x =+(2) 由于a x ±≠时,方程(1)与(2)不等价, 所以所求点C 的轨迹方程为2 2 2 a y x =+()a x ±≠。 解法三:如解法一建立直角坐标系,则:A(-a,0)、B(a,0),设C(x,y) 连接CO ,则有:AB CO 2 1= 所以 a a y x =?= +22 12 2 即2 2 2 a y x =+ 轨迹中应除去A ,B 两点(理由同解法一) 故所求点C 的轨迹方程为2 2 2 a y x =+()a x ±≠。 说明:利用直接法求曲线方程的一般步骤 (1) 建立适当的直角坐标系,用(x,y)表示曲线上任意点M 的坐标; (2) 写出适合条件P 的点M 的集合P={M\p(m)}; (3) 用坐标表示条件P(M),列出方程f(x,y)=0; (4) 化方程f(x,y)为最简形式; (5) 证明以化简后的方程的解为坐标的点都是曲线上的点。(此步骤常省略不写,但一定要注意所求方程中所表示的点是否都在曲线上,注意特殊点)。 直接法是求曲线方程的基本方法。本例虽给出了三种解法,但实质上都是利用等量关系,直接求出轨迹方程。 二 .中间变量法(相关点法) 如果所求轨迹上的动点P(x,y)与已知曲线上的动点M(x,y)相互制约,

求平面曲线方程的基本步骤

●教学目标 (一)教学知识点 根据已知条件求平面曲线方程的基本步骤. (二)能力训练要求 1.会根据已知条件求一些简单的平面曲线方程. 2.会判断曲线和方程的关系. (三)德育渗透目标 1.提高学生的分析问题能力. 2.提高学生的解决问题能力. 3.培养学生的数学修养. 4.增强学生的数学素质. ●教学重点 求曲线方程的步骤: (1)依据题目特点,恰当选择坐标系; (2)用M(x,y)表示所求曲线上任意一点的坐标; (3)用坐标表示条件,列出方程F(x,y)=0; (4)化方程F(x,y)=0为最简形式; (5)证明化简后的方程的解为坐标的点都是曲线上的点. ●教学难点 依据题目特点,恰当选择坐标系及考查曲线方程的点的纯粹性、完备性. ●教学方法 启发引导法 启发引导学生利用曲线的方程、方程的曲线两个基本概念,借助坐标系,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x,y)所满足的方程f(x,y)=0.表示曲线,通过研究方程的性质间接地来研究曲线的性质. ●教具准备 投影片两张 第一张:记作§7.6.2 A 第二张:记作§7.6.2 B ●教学过程 Ⅰ.课题导入 [师]上节课,咱们一起探讨了曲线的方程和方程的曲线的关系,下面请一位同学叙述一下,大家一起来回顾.

[生](1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点, 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线(图形). Ⅱ.讲授新课 不难发现,利用这两个重要概念,就可以借助于坐标系,用坐标表示点,把满足某种条件的点的集合或轨迹看成曲线,即用曲线上点的坐标(x ,y )所满足的方程f (x ,y )=0表示曲线.那么我们就可以通过研究方程的性质间接地研究曲线的性质. 而且,我们把这种借助坐标系研究几何图形的方法叫做坐标法. 当今,在数学中,用坐标法研究几何图形的知识已形成了一门学科,它就是解析几何.所以说,解析几何是用代数方法研究几何问题的一门数学学科. 它主要研究的是: (1)根据已知条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质. [师]下面我们首先讨论求曲线的方程. [例2]设A 、B 两点的坐标是(-1,-1),(3,7),求线段AB 的垂直平分线的方程. 分析:线段AB 的垂直平分线上的任一点M 应满足条件:|MA |=|MB | (打出投影片§7.6.2 A) 解:(1)设M (x ,y )是线段AB 的垂直平分线上任意一点,则|MA |=|MB | 即2222)7()3()1()1(-+-=+++y x y x 整理得,x +2y -7=0 ① 由此可知,垂直平分线上每一点的坐标都是方程①的解; (2)设点M 1的坐标(x 1,y )是方程①的解, 即x 1+2y 1-7=0, x 1=7-2y 1 点M 1到A 、B 的距离分别是 |M 1A |=2121)1()1(+++y x . )136(5)7()24()7()3(; )136(5)1()28(12121212 12111212121+-=-+-=-+-=+-=++-=y y y y y x B M y y y y ∴|M 1A |=|M 1B | 即点M 1在线段AB 的垂直平分线上. 由(1)、(2)可知,方程①是线段AB 的垂直平分线的方程. [例3]点M 与互相垂直的直线的距离的积是常数k (k >0),求点M 的轨迹. 分析:应建立适当的坐标系,不妨就取互相垂直的直线为坐标轴. 解:取已知两条互相垂直的直线为坐标轴,建立直角坐标系. (打出投影片§7.6.2 B) 设点M 的坐标为(x ,y ),点M 的轨迹就是与坐标轴的距离的积等于常数k 的点的集合: P ={M ||MR |·|MQ |=k }, (其中Q 、R 分别是点M 到x 轴、y 轴的垂线的垂足) 因为点M 到x 轴、y 轴的距离分别是它的纵坐标和横坐标的绝对值,

求曲线方程的基本方法--坐标法

求曲线方程的基本方法——坐标法 借助坐标系研究几何图形的方法叫做坐标法.用坐标法研究几何图形的知识形成了一门叫做解析几何的学科. 平面解析几何研究的主要问题是: (1)根据已知条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质. 例1 设A 、B 两点的坐标是(10)(10)-,,,,若1MA MB k k =- ,求动点M 的轨迹方程. 解:设M 的坐标为()x y ,,M 属于集合{}|1MA MB P M k k ==- . 由斜率公式,点M 所适合的条件可表示为 1(1)11 y y x x x =-≠±-+ ,整理后得 221(1)x y x +=≠±. 下面证明221(1)x y x +=≠±是点M 的轨迹方程. (1)由求方程的过程可知,M 的坐标都是方程221(1)x y x +=≠±的解; (2)设点1M 的坐标11()x y ,是方程221(1)x y x +=≠±的解, 即221111(1)x y x +=≠±,221111(1)y x x =-≠±,11 11111 y y x x =--+ , ∴111M A M B k k =- . 由上述证明可知,方程221(1)x y x +=≠±是点M 的轨迹方程. 点评:所求的方程221x y +=后面应加上条件1x ≠±. 例2 点M 到两条互相垂直的直线的距离相等,求点M 的轨迹方程. 解:取已知两条互相垂直的直线为坐标轴,建立直角坐标系,如图1所示. 设点M 的坐标为()x y ,,点M 的轨迹就是到坐标轴的距离相等的点的集合{}|P M MR MQ ==,其中Q R ,分别是x 轴、y 轴上的过点M 的垂线的垂足. 因为点M 到x 轴、y 轴的距离分别是它的纵坐标和横坐标的绝对值,所以条件MR MQ =可写成x y =, 即0x y ±=.①

曲线的参数方程知识讲解

曲线的参数方程 编稿:赵雷审稿:李霞 【学习目标】 1. 了解参数方程,了解参数的意义。 2. 能利用参数法求简单曲线的参数方程。 3. 掌握参数方程与普通方程的互化。 4. 能选择适当的参数写出圆和圆锥曲线的参数方程 【要点梳理】 要点一、参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x,都是某个变数t的函数, 即 () ........... () x f t y g t = ? ? = ? ①, 并且对于t的每一个允许值,方程组①所确定的点(,) M x y都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系y x,间的关系的变数t叫做参变数(简称参数). 相对于参数方程来说,直接给出曲线上点的坐标关系的方程(,)0 F x y=,叫做曲线的普通方程。 要点诠释: (1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. (2)一条曲线是用直角坐标方程还是用参数方程来表示,要根据具体情况确定. (3)曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的关系,而参数方程是通过参数反映坐标变量x、y间的间接联系。 要点二、求曲线的参数方程 求曲线参数方程的主要步骤: 第一步,画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以便于发现变量之间的关系. 第二步,选择适当的参数.参数的选择要考虑以下两点: 一是曲线上每一点的坐标(x,y)都能由参数取某一值唯一地确定出来; 例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的有向距离、直线的倾斜角、斜率、截距等也常常被选为参数. 有时为了便于列出方程,也可以选两个以上的参数,再设法消去其中的参数得到普通方程,或剩下一个参数得到参数方程,但这样做往往增加了变形与计算的麻烦,所以参数个数一般应尽量少.二是曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程; 第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略. 要点诠释: 普通方程化为参数方程时,(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与

空间曲线及其方程

§7.6 空间曲线及其方程 一空间曲线的一般方程 空间曲线可看作两曲面的交线,设 F x y z (,,)=0和G x y z (,,)=0 是两曲面的方程,它们的交线为C。曲线上的任何点的坐标x y z ,,应同时满足这两个曲面方程,因此,应满足方程组 F x y z G x y z (,,) (,,) = = ? ? ? (1) 反过来,如果点M不在曲线C上,那么它不可能同时两曲面上。所以,它的坐标不满足方程组(1)。由上述两点可知:曲线C可由方程组(1)表示。 方程组(1)称作空间曲线的一般方程。 二空间曲线的参数方程 对于空间曲线C,若C上的动点的坐标x y z ,,可表示成为参数t的函数x x t y y t z z t = = = ? ? ? ? ? () () () (2) 随着t的变动可得到曲线C上的全部点,方程组(2)叫做空间曲线参数方程。【例1】如果空间一点M在圆柱面x y a 222 +=上以角速度ω绕z轴旋转,同时又以线速度v沿平行于z轴的正方向上升(其中:ω,v均为常数),那未点M 的轨迹叫做螺旋线,试建立其参数方程。 解:取时间t为参数。 设当t=0时,动点与x轴上的点A a(,,) 00重合,经过时间t,动点由A a(,,) 00运动到M x y z (,,)。记M在xoy面上的投影为' M,它的坐标为' M x y (,,)0。

由于动点在圆柱面上以角速度ω绕z 轴旋转,经过时间t ,∠'=?AoM t ω 从而 x a t y a t ==???cos sin ωω 又由于动点同时以线速度v 沿平行于z 轴正方向上升,所以 z vt = 因此,螺旋线的参数方程为 x a t y a t z vt ===???? ?cos sin ωω 或令θω=?t ,则方程形式可化为 x a y a z b b v ===???? ?=cos sin (,)θθθωθ为参数 螺旋线有一个重要性质: 当θ从θ0变到θα0+时,z 由b θ0变到b b θα0+;这表明当oM '转过角α时,M 点沿螺旋线上升了高度h b =α; 特别地,当oM '转过一周,即απ=2时,M 点就上升固定的高度为 h b =2π,这个高度在工程技术上叫螺距。 空间曲线的一般方程也可以化为参数方程,下面通过例子来介绍其处理方法。 【例2】将空间曲线C x y z x z 222921 ++=+=????? 表示成参数方程。 解:由方程组消去z 得

2.1.2 求曲线的方程 教案(人教A版选修2-1)

2.1.2 求曲线的方程 ●教学目标 1.了解解析几何的基本思想; 2.了解用坐标法研究几何问题的初步知识和观点; 3.初步掌握求曲线的方程的方法. ●教学重点 求曲线的方程 ●教学难点 求曲线方程一般步骤的掌握. ●教学过程 Ⅰ.复习回顾: 师:上一节,我们已经建立了曲线的方程.方程的曲线的概念.利用这两个重要概念,就可以借助于坐标系,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x ,y )所满足的方程f (x ,y )=0表示曲线,通过研究方程的性质间接地来研究曲线的性质.这一节,我们就来学习这一方法. Ⅱ.讲授新课 1.解析几何与坐标法: 我们把借助于坐标系研究几何图形的方法叫做坐标法. 在数学中,用坐标法研究几何图形的知识形成了一门叫解析几何的学科.因此,解析几何是用代数方法研究几何问题的一门数学学科. 2.平面解析几何研究的主要问题: (1)根据已知条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质. 说明:本节主要讨论求解曲线方程的一般步骤. 例2 设A 、B 两点的坐标是(-1,-1),(3,7),求线 段AB 的垂直平分线的方程. 解:设M (x,y )是线段AB 7—29),也就是点M 属于集合 {}|||| MB MA M P ==.

由两点间的距离公式,点M 所适合条件可表示为: 2 22 2 )7()3() 1()1(-+-= +++y x y x 将上式两边平方,整理得: x +2y -7=0 ① 我们证明方程①是线段AB 的垂直平分线的方程. (1)由求方程的过程可知,垂直平分线上每一点的坐标都是方程①解; (2)设点M 1的坐标(x 1,y 1)是方程①的解,即 x +2y 1-7=0 x 1=7-2y 1 点M 1到A 、B 的距离分别是 ;)136(5 )1() 28() 1() 1(12 12 12 12 12 11+-= ++-= +++= y y y y y x A M , ) 136(5 )7()24() 7() 3(1112 12 12 12 12 11B M A M y y y y y x B M =∴+-= -+-= -+-= 即点M 1在线段AB 的垂直平分线上. 由(1)、(2)可知方程①是线段AB 的垂直平分线的方程. 师:由上面的例子可以看出,求曲线(图形)的方程,一般有下面几个步骤: (1)建立适当的坐标系,用有序实数对(x,y )表示曲线上任意一点M 的坐标; (2)写出适合条件P 的点M 的集合P ={M |P (M )}; (3)用坐标表示条件P (M ),列出方程f (x,y )=0; (4)化方程f (x,y )=0为最简形式; (5)证明以化简后的方程的解为坐标的点都是曲线上的点. 说明:一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明.另外,根据情况,也可以省略步骤(2),直接列出曲线方程. 师:下面我们通过例子来进一步熟悉求曲线轨迹的一般步骤. 例3 已知一条曲线在x 轴的上方,它上面的每一点到点A (0,2)的距离减去它到x 轴的距离的差都是2,求这条曲线的方程. 解:如图所示,设点M (x,y )是曲线上任意一点,MB ⊥x 轴,垂足是B (图7—31),那么点M 属于集合}.2|||| {=-=MB MA M P 由距离公式,点M 适合的条件可表示为:

相关文档
相关文档 最新文档