文档库 最新最全的文档下载
当前位置:文档库 › 多尺度核方法的自适应序列学习及应用

多尺度核方法的自适应序列学习及应用

多尺度核方法的自适应序列学习及应用
多尺度核方法的自适应序列学习及应用

自适应学习

自适应学习 一:什么是自适应学习 自适应学习,源自Adapdve Learning。Adapdve,译为”自适应”。在学习过程中,个体具有各种各样的差异性,不仅表现在个人的能力、背景、学习风格、学习目标等具有差异性,而且即使是个体本身,在学习过程中的知识状态也在不断地变化。自适应学习就是学习者在考察实例和解决具体问题的过程中,通过积极的思考和操作主动获得知识和技能的学习,是人类获取知识和技能的重要形式。。在自适应学习中,学习者面对的不是用语言或其它符号表示的抽象知识和规则,而是具体的实例或待解决的问题,学习者需要通过考察实例或解决问题来获取这些知识和规则。 二:自适应学习的分类 一般地说,自适应学习包括以下几种类型: 第一,归纳学习。教学提供的学习材料是一些未经分类的事例或未经整理的经验数据,学习者的任务就是从这些事例或数据中归纳出新的概念及规律。 第二,解释学习。教学提供的学习材料是一个概念、该概念的一个例子和有关规则。学习者的任务是首先构造一个解释,说明给出的例子为什么能满足概念,然后将解释推广为概念。 第三,例中学。即通过考察实例进行学习,根据学习的任务不同,这种学习有两种情况:一种情况是提供某个概念的一系列的正例和反例,学习者的任务是通过归纳推理产生覆盖所有正例和排除所有反例的概念的一般描述;另一种情况是提供一个或几个有详细解题步骤的例题,学习者的任务是考察并理解这些例题,并通过类比学会解决其他类似的问题。 第四,做中学。即通过解决具体的问题进行学习,在这种学习方式中,提供的学习材料是一系列的问题,学习者的任务是利用已经学会的知识解决这些问题,从而学会解决其他类似的问题。 三:自适应学习的理论基础——条件建构一一优化理论 “条件建构——优化理论”从知识表示、知识获取过程、以及如何促进认知技能获取这三个角度,系统地阐述了人类自适应学习的心理机制,包括以下三个核心观点。 其一,人的知识可以统一地表示为产生式。从内部表示的角度看,知识在人

企业定量安全管理方法-预测方法

编号:SY-AQ-00931 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 企业定量安全管理方法-预测 方法 Enterprise quantitative safety management method prediction method

企业定量安全管理方法-预测方法 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 预测方法有定性预测和定量预测两种。定性预测主要是指各种 调查方法,如重点调查、典型调查、抽样调查、专家意见调查等。 定量预测则主要有以下几种。 一、时间序列预测法 所谓时间序列就是按时间顺序排列的、反映某种安全现象发展 变化情况的统计数据。在企业安全管理中,我们经常要与时间序列 打交道。如按年度连续排列起来的事故起数,按季度排列起来的某 类事故起数等。时间序列预测法,就是根据时间序列变动的方向和 程度向前延伸来推断下一期或以后若干时期可能的变化情况的一类 预测方法。所以,时间序列预测法也称趋势外推法或历史延伸法。 这是目前安全预测中常用的一类定量预测方法。目前常用的时间序 列预测有以下几种。 1.算术移动平均法

这种方法是假设预测值与近几期的实际值有关,而与前几期或较远期无关。因此可以用最近几个时期的移动平均值作为下一期的预测值、预测公式是: 式中Xt ——t期的预测值; X—t期之前各期的实际值; n——所用资料的期数。 这种方法的预测误差与所用资料的期数即n值有关。一般说,n 值愈大,预测误差愈大;反之,n值愈小,预测误差愈小。 在实际安全预测中,”值的选择,主要取决于预测的目的和实际数据的特点。如果要求预测值比较精确,n应取的小一点,可在3~5之间,反之,如果想得到事物变化的大致趋势,”可取得大一些,可在10—30之间。如果实际数据上下波动不大,n值也可以取得大一些。 这种方法由于侧重考虑了近期实际情况对预测期的影响,因此预测比简单平均法要准确些,但一般也只宜用于短期预测。

层次分析法与模糊综合评价的区别

层次分析法与模糊综合判别的区别与联系 1、层次分析法 [ 参考文献:吋义成, 柯丽华, 黄德育. 系统综合评价技术及其应用[M]. 北京: 冶金工业出版社,2006] 人们在日常生活中经常要从一堆同样大小的物品中挑选出最重要的物品,如重量最大的物品,即至少要确定各物品的相对重量。这时,经验和常识告诉我们,可以利用两两比较的方法来达到目的。 若在没有称量仪器的条件下对一组物体的重量进行估计,则可以通过爱对比较这组物体相对重量的方法,得出每对物体相对重量比的判断,从而形成比较判断矩阵,再通过求解判断矩阵的最大特征根和它所对应的特征向量问题,就能计算出这组物体的相对重量。 将此方法应用到复杂的社会、经济和科学管理等领域中,就能确定各种方案、措施、政策等 相对于总目标的重要性排序情况,以供领导者决策。 一般的层次分析法模型由图5-1 所示,分为目标层、准则层、指标层、方案层组成。需要注意几点: (1)层次分析法的评价结构并非是上述部分一成不变的,其中的当指标层因素较少时准则层可以省去(图5-2 ),当某一准则对应的指标层元素过多时可以将其指标层细分为“子准则层和指标层”(图5-4 )。由于层次分析法是利用两两比较完成的,为了便于人的比较与判别,每层的元素个数在3~7 之间为佳,超过7 以后增加了比较判断的难度,因此当元素过多时,可以将其分类后分成两层或多层来判别。 (2)准则层与指标层之间的关系可以对比一下图5-1 和图5-4 ,即每个准则可能有独 用的指标体系,也可能是各准则之间共用某几个指标。 (3)层次分析法的特点是基于某个目标,对多个待评价方案进行评价,从而得到方案的重要性排序。具体到某个问题,其并无相应的数据。而模糊综合判别有相应的基础数据。两者可以结合一起用,比如常用的是模糊综合评判过程中,权重可以由层次分析法计算。 层次分析法的骤如下: 1)在作者建立评价模型后,根据经验对每层里的各个元素建立重要性判别矩阵,从判 别矩阵中可以得到某一层中各个指标的归一化权重(表5-1中的W B,W C1,W C2,W C3,W C4)。(表5-1和5-2 的数据为图5-1 模型的) 2)由层与层之间权重的传递可以得到最低层(具体指标层)的综合权重。如图5-1 所示的图中有得到各个C ij的综合权重W ij(表5-2第2列)。 3)最后,在指标层与方案层之间建立判别矩阵,针对每一个指标C ij 都需要建立一个各 方案A i的比较矩阵,判别A针对C j的重要性w A i (表5-2的每一行)。最后将指标C ij的综合权重W ij与W Ai进行乘法求和,从而得到方案A的最终综合权重刀(W ij心Ai),即为续表5-2的最后一行。

自适应学习

自适应学习系统是针对个体学习过程中的差异而提供适合个体特征的学习支持的学习系统,通过对学习者学习风格、认知水平等基于学习者自身背景因素的综合分析,能为学习者提供个性化服务学习。 自适应学习系统是收集学生学习中与系统交互的数据,创建学习者模型,克服以往教育中体现的“无显著差异”问题可以根据学习者在课程过程中反馈回来的信息,动态地改变内容以及内容呈现方式、学习策略等 自适应学习系统自适应的实现是通过实时交互数据的收集,并根据这些数据分析后提供个性化的服务,自适应是基于数据收集和分析的自适应学习则是一种实现学习者个性化学习的具体方法,更多的是数据导向型的,根据实时收集到的数据分析学习者的能力水平,并以此来推荐此时此刻最适合的学习材料(包括材料类型,如视频、文字等)和策略 自适应学习有三个步骤:第一、要构建完善系统的知识图谱,将知识点体系标签化、结构化;第二、对用户的每个学习行为实现映射;第三、通过算法计算出最佳学习路径。 自适应系统一般都包括以下三大基本构件:首先是内容模型,以此为依据来建立详细的学习内容和知识点结构图;其次是学生模型,它能够实时测评每一个学生在每一个知识点的掌握水平,并且通过大数据分析方法推算和量化学生在当前知识点以及相关知识点的能力水平;最后则是教学模型,根据每个学生的最新能力水平,提供相应的反馈,并匹配出最为合适的学习内容。 一个初创的自适应学习系统,它最重要的三块基石: 第一块就是教育目标刻画和课程进度刻画。这是教育的目标和内容(包括教学内容和训练内容等);在中国纲本并重的情况下,认真的去研究主流的教材版本,研究有丰富经验教师的课堂案例,并从其中认真的建设教育目标数据和课程进度数据,题库的题目要认真研究它的质量,对教育目标和课程数据的吻合程度; 第二块就是学生的学习刻画,包括个体的教育目标,以及从数据和系统角度对教育测评的拆解;在学生发展不平衡的情况下,认真的去研究学生刻画和测评,并进一步筛选出自己合适服务的对象;如果自己教育测评的能力薄弱,一定要找到合适的教育测评合作伙伴。面向这些对象,进一步明确问题和数据刻画维度,

一种基于小波变换的自适应图像增强算法

崔 冲 丁建华 (大连海事大学信号与图像处理研究所 大连 116026) E-mail cui_chong@https://www.wendangku.net/doc/2114164517.html, ; huazai0135020@https://www.wendangku.net/doc/2114164517.html, 摘 要:针对含有微弱纹状物或点状物的图像,提出一种基于小波变换的自适应图像增强算法,首先根据小波变换提取出图像中不同变化频率的微弱纹状物,再对这些微弱纹状物进行自适应放大,加大其对比度,从而达到增强的目的,实验结果表明,该算法有着良好的增强效果。 关键词: 图像增强;自适应;小波变换; 1 引言 由于受光照、设备等因素的制约,实际摄取的图像会含有较大的噪声,灰度对比度低,某些局部细节没有明显的灰度差别,使人眼或者机器难以识别,因此有必要进行图像增强,为后续处理做准备。 常用的图像增强算法,比如直方图变换、直方图均衡等都有很好的增强效果,但这些都是全局性算法,对某些灰度集中且对比度低的图像,如含有微弱纹状物或点状物的图像,应用这些算法反而会降低清晰度[1],本文根据此类图像的特点,在已有算法的基础上[2],利用小波变换,根据图像信号的变化频率自适应调整求均值的邻域窗口大小,从而使得慢变和快变的信号同时得到增强。 2 基本原理 先介绍一种简单的增强算法[2],为讨论方便,取出一副数字图像中某一行的像素数据形成一维数据信号,它表示数字图像中某一行的灰度变化信息。如图1所示。增强微弱 )(x f 变化就是增强波形中缓变部分,从而使得波形中微弱的波峰和波谷尽可能得到增强。为此,需要求出的慢变均值,再求出其差值)(x f )(x g )()(x g x f a ?=Δ,即可提取出波峰和波谷。下一步就是对这个差值信号进行自适应放大:a Δa A x p Δ?=)(,A 为放大系数,A 应能按照自适应变化,当大时,A 值小,当a Δa Δa Δ小时,A 值大。经自适应放大后的波形如图2所示,显然,中微弱的波峰和波谷都得到充分的放大。 )(x p )(x f 图1 原始信号f(x)波形 图2 增强后的信号p(x)波形 https://www.wendangku.net/doc/2114164517.html,

多尺度方法综述

跨原子/连续介质(第一类)多尺度分析的各种方法按照其控制方程的类型可分成两类,基于能量的方法和基于力平衡的方法 一、基于能量的方法 假定系统的总能量由原子区,握手区(可无),连续介质区构成 tot A H C ∏=∏+∏+∏ 其中,握手区和连续介质区的能量是由有限元法近似求得的。 基于能量的方法一个最大的缺陷是很难消除耦合能量的非物理效应“鬼力”。鬼力产生的原因: 假设全区域采用原子进行计算,则其能量为: ,,atom atom A atom C ∏=∏+∏ 对位移进行求导,可得 ,,atom A atom C f u u α αα?∏?∏=--?? 在平衡时:,,atom A atom C u u αα ?∏?∏=-?? 同理,对于无握手区的多尺度能量法,在平衡时,满足方程: A C u u αα?∏?∏=-?? 同时因为在两种方法中,,A atom A ∏=∏ 即对于多尺度能量法需满足方程:,C Atom C u u αα ?∏?∏=?? 因为在多尺度能量法的计算中,连续介质区的能量是由有限元法近似求得的,与原子计算的能量不一致,所以会产生“鬼力”。 1. QC 法(1998, Tadmor E B, OrtizMand Phillips R 1996 Quasicontinuum analysis of defects in solids Phil. Mag. A 73 1529–63) 在之前的报告中阐述过,本周的阅读中暂无改进内容 2. CLS 法(1999,Broughton JQ, Abraham F F, BernsteinNand KaxirasE1999 Concurrent coupling of length scales: methodology and application Phys. Rev. B 60 2391–403) 提出该方法的作者是基于自身对于MEMS (Micro-Electro-Mechanical

PID自适应控制学习与Matlab仿真

PID自适应控制学习与Matlab仿真 0 引言 在P ID控制中,一个关键的问题便是P I D参数整定。传统的方法是在获取对象数学模型的基础上,根据某一整定原则来确定PID参数。然而实际的工业过程往往难以用简单的一阶或二阶系统来描述,且由于噪声、负载扰动等因素的干扰,还可以引起对象模型参数的变化甚至模型结构的政变。这就要求在P I D 控制中。不仅PID参数的整定不依赖于对象数学模型,而PID参数能在线阐整,以满足实时控制的要求。 1 自适应控制的概念及分类 控制系统在设计和实现中普通存在着不确定性,主要表现在:①系统数学模型与实际系统间总是存在着差别,即所谓系统具有末建模的动态特性;②系统本身结构和参数是未知的或时变的;③作用在系统上的扰动往往是随机的,且不可量测;④系统运行中,控制对象的特性随时间或工作环境改变而变化,且变化规律往往难以事先知晓。 为了解决控制对象参数在大范围变化时,一般反馈控制、一般优控制和采用经典校正方法不能解决的控制问题。参照在日常生活中生物能够遏过自觉调整本身参数改变自己的习性,以适应新的环境特性。为此,提出自适应控制思想。 自适应控制的概念 所谓自适应控制是指对于控制对象的动态信息了解得不够充分对周围环境变化尚掌握不够明确的情况下控制系统对控制器的参数进行积极的自动调节。 自适应控制方法应该做到:在系统远行中,依靠不断采集控制过程信息,确定被控对象的当前实际工作状态,优化性能准则,产生自适应控制规律,从而实时地调整控制器结构或参数,使系统始终自动地工作在最优或次最优的运行状态下。 作为较完善的自适应控制应该具有以下三方面功能: (1)系统本身可以不断地检测和处理理信息,了解系统当前状态。 (2)进行性能准则优化,产生自适应校制规律。 (3)调整可调环节(控制器),使整个系统始终自动运行在最优或次最优工作状态。 自适应控制是现代控制的重要组成部分,它同一般反馈控制相比较有如下突出特点: (1) 一般反馈控制主要适用于确定性对象或事先确知的对象,而自适应控制主要研究不确定对象或事先难以确知的对象。 (2) 一般反馈控制具有强烈抗干扰能力,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象和在线修改参数的能力,因而能消除状态扰动引起的系统误差,而且还能消除系统结构扰动引起的系统误差。 (3) 一般反馈控制系统的设计必须事先掌握描述系统特性的数学模型及其环境变化状况,而自适应控制系统设计则很少依赖数学模型全部,仅需要较少的验前知识,但必须设计一套自适应算法,因而将更多地依靠计算机技术实现。 (4) 自适应控制是更复杂的反馈控制,它在一般反调控制的基础上增加了自适应控制机构或辨识器,还附加一个可调系统。 自适应控制系统的基本结构与分类 通常,自适应控制系统的基本结构有两种形式,即前馈自适应控制和反馈自适应控制。 1.2.1 前馈自适应控制结构 前馈自适应控制亦称开环自适应控制,它借助对作用于过程信号的测量。并通过自适应机构按照这些测量信号改变控制器的状态,从而达到改变系统特性的目的。没有“内”闭

多尺度方法在复合材料力学研究中的进展

多尺度方法在复合材料力学分析中的研究进展 摘要简要介绍了多尺度方法的分量及其适用范围,详细论述了多尺度分析方法在纤维增强复合材料弹性、塑性等力学性能中的研究进展,最后对多尺度分析方法的前景进行了展望。 关键词多尺度分析方法,复合材料,力学性能,细观力学,均匀化理论 1 引言 多尺度科学是一门研究不同长度尺度或时间尺度相互耦合现象的跨学科科学,是复杂系统的重要分支之一,具有丰富的科学内涵和研究价值。多尺度现象并存于生活的很多方面,它涵盖了许多领域。如介观、微观个宏观等多个物理、力学及其耦合领域[1]。空间和时间上的多尺度现象是材料科学中材料变形和失效的固有现象。 多尺度分析方法是考虑空间和时间的跨尺度与跨层次特征,并将相关尺度耦合的新方法,是求解各种复杂的计算材料科学和工程问题的重要方法和技术。对于求解与尺度相关的各种不连续问题。复合材料和异构材料的性能模拟问题,以及需要考虑材料微观或纳观物理特性,品格位错等问题,多尺度方法相当有效。 复合材料是由两种或者两种以上具有不同物理、化学性质的材料,以微观、介观或宏观等不同的结构尺度与层次,经过复杂的空间组合而形成的一个多相材料系统[2]。复合材料作为一种新型材料,由于具有较高的比强度和比刚度、低密度、强耐腐蚀性、低蠕变、高温下强度保持率高以及生物相容性好等一系列优点,越来越受到土木工程和航空航天工业等领域的重视。 复合材料是一种多相材料,其力学性能和失效机制不仅与宏观性能(如边界条件、载荷和约束等)有关,也与组分相的性能、增强相的形状、分布以及增强相与基体之间的界面特性等细观特征密切相关,为了优化复合材料和更好地开发利用复合材料,必须掌握其细观结构对材料宏观性能的影响,即应研究多尺度效应的影响。 如何建立起复合材料的有效性能和组分性能以及微观结构组织参数之间的

模糊层次分析法的程序实现

、模糊层次分析法的程序实现 给出模糊层次分析法的Matlab程序。 clear; clc; E=input('输入计算精度e:') Max=input('输入最大迭代次数Max:') F=input('输入优先关系矩阵F:'); %计算模糊一致矩阵 N=size(F); r=sum(F'); for i=1:N(1) for j=1:N(2) R(i,j)=(r(i)-r(j))/(2*N(1))+0.5; end end E=R./R'; % 计算初始向量---------- % W=sum(R')./sum(sum(R)); % 和行归一法 %--------------------------------------------------------- for i=1:N(1) S(i)=R(i,1); for j=2:N(2) S(i)=S(i)*R(i,j); end end S=S^(1/N(1)); W = S./sum(S);%方根法%-------------------------------------------------------- % a=input('参数a=?'); %W=sum(R')/(N(1)*a)-1/(2*a)+1/N(1); %排序法 % 利用幂法计算排序向量----V(:,1)=W'/max(abs(W)); %归一化 for i=1:Max V(:,i+1)=E*V(:,i); V(:,i+1)=V(:,i+1)/max(abs(V(:,i+1))); if max(abs(V(:,i+1)-V(:,i)))k=i; A=V(:,i+1)./sum(V(:,i+1)); break Else End End 四、计算实例 由优先关系矩阵得到模糊一致矩阵 利用三种方法计算排序向量分别为:

基于自适应网格变形的图像编辑算法

软件学报 ISSN 1000-9825, CODEN RUXUEW Journal of Software,2012,23(5):1325?1334 [doi: 10.3724/SP.J.1001.2012.03998] ?中国科学院软件研究所版权所有 .
E-mail: jos@https://www.wendangku.net/doc/2114164517.html, https://www.wendangku.net/doc/2114164517.html, Tel/Fax: +86-10-62562563
基于自适应网格变形的图像编辑算法
金 勇, 吴庆标+, 刘利刚
(浙江大学 数学系 ,浙江 杭州 310027)
?
Image Editing Algorithms Based on Adaptive Mesh Deformation
JIN Yong, WU Qing-Biao+, LIU Li-Gang
(Department of Mathematics, Zhejiang University, Hangzhou 310027, China)
+ Corresponding author: E-mail: qbwu@https://www.wendangku.net/doc/2114164517.html,
Jin Y, Wu QB, Liu LG. Image editing algorithms based on adaptive mesh deformation. Journal of Software, 2012,23(5):1325?1334. https://www.wendangku.net/doc/2114164517.html,/1000-9825/3998.htm Abstract: This paper presents a generic framework for manipulating the images based on adaptive mesh
deformation, which allows users to move, scale, rotate, and deform the salient objects in the image and retarget the image into other regions with arbitrary boundary shapes. The image is embedded into a triangular mesh and the manipulation is formulized into a quadratic energy minimization problem. The triangles corresponding to the salient objects are constrained by specific transformations with respect to the deformation types of the objects such as translation, scaling, or rotation etc. The solution to the energy optimization can be obtained by solving one or several sparse linear systems. Experimental results show that the algorithm is effective, robust, and efficient and can be integrated into other image processing tools. Key words: 摘 要: adaptive mesh; image editing; image retargeting; rigid transformation; energy optimization
提出一套基于自适应网格变形的图像编辑算法框架,包括图像中特征物的平移、旋转和变形,以及保持特
征物的任意几何边界图像适应.该算法将图像表示为基于图像特征的自适应三角网格,由此将图像编辑问题转换为 带约束的网格变形问题.网格变形由一个二次型能量函数所控制,特征物的平移、旋转和变形可以表述为该能量优 化问题的约束;代表特征物的三角网格在网格变形过程中只允许发生刚性变换.该能量优化问题的全局最优解可以 通过求解 1 个或多个稀疏方程组得到.实验结果表明,该算法效果理想、鲁棒性好、运行效率高,可以有效地应用于 图像处理软件中. 关键词: 自适应网格;图像编辑;图像适应;刚性变换;能量优化 文献标识码: A 中图法分类号: TP391
图像编辑一直是图像处理中的基本问题,包括图像特征物的平移、 旋转和变形以及保持特征物的任意几何 边界图像适应 . 图像特征物的平移、旋转和变形在平面动画以及图像渐变中有着一系列的应用 ;图像适应是指 将图像映射到任意几何边界而同时保护图像特征物体的问题 . 图像适应广泛应用于艺术设计系统中 , 同时是三
?
基金项目 : 国家自然科学基金 (10871178, 61070071); 国家重点基础研究发展计划 (973)(2011CB302400, 2011JB105000); 国家 收稿时间 : 2010-08-18; 定稿时间 : 2011-01-31
科技重大专项 (2009ZX07424-001); 中央高校基本科研业务费专项资金 (2010QNA3039)

多尺度法初识和应用

多尺度法初识和应用 摘要:简要介绍多重尺度发的中心思想,另外,举例说明多重尺度法在求解方程中的应用。 非线性问题的研究 非线性问题的“个性”很强,处理起来十分棘手。历史上曾有过一些解非 线性方程的“精品”,但与大量存在的非线性方程相比,只能算是“凤毛麟角”。 因此,长期以来,对非线性问题的研究一直分散在自然科学和技术科学的各个 领域。本世纪六十年代以来,情况发生了变化。人们几乎同时从非线性系统的 两个极端方向取得了突破:一方面从可积系统的一端,即从研究多自由度的非 线性偏微分方程的一端获得重大进展。如在浅水波方程中发现了“孤子”,发 展起一套系统的数学方法,如反散射法,贝克隆变换等,对一些类型的非线性 方程给出了解法;另一方面,从不可积系统的极端,如在天文学、生态学等领 域对一些看起来相当简单的不可积系统的研究,都发现了确定性系统中存在着 对初值极为敏感的复杂运动。促成这种变化的一个重要原因十计算机的出现和 广泛应用。科学家们以计算机为手段,勇敢地探索那些过去不能用解析方法处 理的非线性问题,从中发掘出规律性的认识,并打破了原有的学科界限,从共性、普适性方面来探讨非线性系统的行为。 线性与非线性的意义 “线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在 的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系 统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。 “非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲线。 最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函 数关系,如一切高于一次方的多项式函数关系,都是非线性的。由非线性函数关系 描述的系统称为非线性系统。 多尺度法的基本思想 多尺度法首先是由Sturrock(1957) 、Cole(1963) 、 Nayfeh(1965)等提 出的,此后得到进一步的发展。 上面介绍该法的基本思想与方法。我们考虑形式为 的方程所控制的系统,设方程的解为 将原点移至中心位置 是合适的。于是有 ()0=+q f q +++=+=22100x x q x q q εε0q q =

模糊层次分析法的Matlab实现

一、引言 层析分析法是将定量与定性相结合的多目标决策法,是一种使用频率很高的方法,在经济管理、城市规划等许多领域得到了广泛应用。由于其结果受主观思维的影响较大,许多科研工作者对其进行了深入的研究,将模糊理论与层次分析法相结合,提出了模糊层次分析法。为克服层次分析法中判断矩阵的一致性与人类思维的一致性存在的显著差异,文献[1-2]引入了模糊一致矩阵。为解决解的精度及收敛问题,文献[3-4]引入幂法来求排序向量。运用模糊层次分析法研究实际问题时,常采用迭代法来得到精度更高的排序向量,这就要求选择合适的初始值并通过大量的计算,为此,文中利用三种方法计算了初始排序向量,并给出了算法的Matlab程序,最后通过实例说明。 二、模糊层次分析法 为解决AHP种所存在的问题,模糊层次分析法引入模糊一致矩阵,无需再进行一致性检验,同时使用幂法来计算排序向量,可以减少迭代齿数,提高收敛速度,满足计算精度的要求.具体步骤: 1.构造优先关系矩阵 采用0.1~0.9标度[2],建立优先判断矩阵 2.将优先关系矩阵转化为模糊一致矩阵 3.计算排序向量 (1)和行归一法: (2)方根法: (3)利用排序法: (4)利用幂法[5-6]求精度更高的排序向量: 否则,继续迭代。 三、模糊层次分析法的程序实现 给出模糊层次分析法的Matlab程序。 clear; clc; E=input('输入计算精度e:') Max=input('输入最大迭代次数Max:')

F=input('输入优先关系矩阵F:'); %计算模糊一致矩阵 N=size(F); r=sum(F'); for i=1:N(1) for j=1:N(2) R(i,j)=(r(i)-r(j))/(2*N(1))+0.5; end end E=R./R'; % 计算初始向量---------- % W=sum(R')./sum(sum(R)); % 和行归一法 %--------------------------------------------------------- for i=1:N(1) S(i)=R(i,1); for j=2:N(2) S(i)=S(i)*R(i,j); end end S=S^(1/N(1)); W = S./sum(S);%方根法%-------------------------------------------------------- % a=input('参数a=?'); %W=sum(R')/(N(1)*a)-1/(2*a)+1/N(1); %排序法 % 利用幂法计算排序向量----V(:,1)=W'/max(abs(W)); %归一化 for i=1:Max V(:,i+1)=E*V(:,i); V(:,i+1)=V(:,i+1)/max(abs(V(:,i+1))); if max(abs(V(:,i+1)-V(:,i)))k=i; A=V(:,i+1)./sum(V(:,i+1)); break Else End End 四、计算实例

RLS自适应均衡算法及其应用

现代信号处理 学号: 小组组长: 小组成员及分工: 任课教师:聂文滨教师所在学院:信息工程学院 2015年 11 月

RLS自适应均衡算法及其应用 摘要 在移动通信领域中,码间干扰始终是影响通信质量的主要因素之一。产生码间干扰的要原因是信道的非理想特性,多径传输是导致信道非理想特的重要因素。为了提高通信质量,减少码间千扰,在接收端通常都要采用均衡技术抵消信道的影响。而在使用均衡器的大多数通信系统中,信道的特性是未知的。并且在许多情况下,信道响应是随时间变化的。此时,简单的线性均衡器难以满足系统的基本要求,必须使用具有较强的时变适应能力的均衡器,即自适应均衡器。在传统的均衡器中,自适应算法必须是以已知的训练序列为前提才能开始进行,然而实际信道中训练序列的传输往往是比较困难的,同时也会降低通信系统的效率。盲自适应均衡器可以有效地解决这一问题。 本文首先介绍了课题背景及课题研究的意义,阐述了RLS均衡算法的基本概念和基础,并用MATLAB进行仿真。 关键词:码间干扰均衡滤波均衡器

Abstract In the field of mobile communications, the intersymbol interference has always been one of the main factors affecting the quality of communication. Causes to intersymbol interference is a non-ideal properties of channel, multipath transmission channel is not ideal, the important factors. In order to improve the quality of communication, reduce intersymbol interference, often on the receiving end to adopt balanced technology to offset the effect of channel. In using equalizer for most of the communication system, the characteristics of the channel is unknown. And in many cases, the channel response is change over time. At this point, the simple linear equalizer is difficult to meet the basic requirements of the system, you must use strong time-varying adaptive equalizer, namely adaptive equalizer. In traditional equalizer, adaptive algorithms must be based on a known training sequence is the premise to begin, but the actual training sequence in the channel of transmission is often more difficult, at the same time, it will reduce the efficiency of communication system.Blind adaptive equalizer can effectively solve the problem. This paper first introduces the topic background and significance of research, this paper expounds the basic concepts of RLS equalization algorithm and the foundation, and MATLAB simulation. Keywords: balanced filter equalizer intersymbol interference

定量分析方法 重点整理

1、公共管理:是一门研究公共组织尤其是政府组织的管理活动及其规律的学科。公共管理研究的内容:①公共组织的结构、功能、环境和运行机制;②行政管理体制改革、中央与地方的关系;③市场经济条件下政府的职能与作用、政府与市场、政府与企业、政府与社会的关系;④公共人力资源的开发与利用;⑤公共管理中的规划、计划与决策、监督与控制,公共项目评估,行政立法、司法和执法;⑥公共信息管理和咨询服务;⑦财政管理、教育管理、科技管理和文化管理。 2、定量分析方法的主要内容 系统模型与系统分析、线性回归预测分析、社会调查程序与方法、统计分析方法、线性回归预测分析、马尔可夫预测方法、投入产出分析方法、最优化方法(线性规划、运输问题、动态规划、资源分配问题)、评价分析方法、层次分析法、对策论、风险型决策与多目标决策、管理系统模拟、排队论、系统动力学方法、网络计划方法 3、为什么在系统分析中广泛使用系统模型而不是真实系统进行分析?人类认识和改造客观世界的研究方法,一般有实验法和模型法。实验法是通过对客观事物本身直接进行科学实验来进行研究的,因此局限性比较大。公共管理问题大多是难以通过实验法直接进行研究,广泛使用系统模型还基于以下五个方面的考虑:①系统开发的需要只能通过建造模型来对系统或体制的性能进行预测;②经济上的考虑对复杂的社会经济系统直接进行实验,成本十分昂贵;③安全性、稳定性上的考虑对有些问题通过直接实验进行分析,往往缺乏安全性和稳定性,甚至根本不允许;④时间上的考虑使用系统模型很快就可得到分析结果;⑤系统模型容易操作,分析结果易于理解 4、系统分析的要点和步骤 要点(1)任务的对象是什么?即要干什么(what);(2)这个任务何以需要?即为什么这样干(why);(3)它在什么时候和什么样的情况下使用?即何时干(when);(4)使用的场所在哪里?即在何处干(where);(5)是以谁为对象的系统?即谁来干(who);(6)怎样才能解决问题?即如何干(how)。步骤(1)明确问题与确定目标。当一个有待研究分析的问题确定以后,首先要对问题进行系统的合乎逻辑的阐述,其目的在于确定目标,说明问题的重点与范围,以便进行分析研究。(2)搜集资料,探索可行方案。在问题明确以后,就要拟定解决问题的大纲和决定分析方法,然后依据已搜集的有关资料找出其中的相互关系,寻求解决问题的各种可行方案。(3)建立模型。为便于对各种可行方案进行分析,应建立各种模型,借助模型预测每一方案可能产生的结果,并根据其结果定性或定量分析各方案的优劣与价值。(4)综合评价。利用模型和其他资料所获得的结果,对各种方案进行定性与定量相结合的综合分析,显示出每一种方案的利弊得失和效益成本,同时考虑到各种有关因素,如政治、经济、军事、科技、环境等,以获得对所有可行方案的综合评价和结论。(5)检验与核实。 5、简述霍尔三维结构与切克兰德“调查学习”模式之间的区别。 1)霍尔三维结构将系统的整个管理过程分为前后紧密相连的六个阶段和七个步骤,并同时考虑到为完成这些阶段和步骤的工作所需的各种专业管理知识。三维结构由时间维、逻辑维、知识维组成。霍尔三维结构适用于良结构系统,即偏重工程、机理明显的物理型的硬系统。2)切克兰德“调查学习”模式的核心不是寻求“最优化”,而是“调查、比较”或者说是“学习”,从模型和现状比较中,学习改善现存系统的途径,其目的是求得可行的满意解。适用于不良结构系统,偏重社会、机理尚不清楚的生物型的软系统。3)处理对象不同:前者为技术系统、人造系统,后者为有人参与的系统;4)处理的问题不同:前者为明确、良结构,后者为不明确,不良结构;5)处理的方法不同:前者为定量模型,定量方法,后者采用概念模型,定性方法;6)价值观不同:前者为一元的,要求优化,有明确的好结果(系统)出现,后者为多元的,满意解,系统有好的变化或者从中学到了某些东西。 6、定性分析的方法:目标--手段分析法、因果分析法、KJ 分析法 7、社会调查的含义:是人们有意识、有目的地通过对社会现象的考察、了解和分析,来认识社会生活的本质机器发展规律的实践活动和认识活动。 基本原则①客观性原则,核心是实事求是,这是社会调查的立足点和出发点;②实证性原则,要求社会调查的结论以及与此相关的各种观点,都必须有真实、可靠的疏忽和资料做支持;③系统性原则,要求对社会现象要进行系统、综合的分析和研究。 8、预测分析的一般步骤①明确预测目标;②收集、整理资料和数据;③建立预测模型;④模型参数估计;⑤模型

基于.层次分析法的模糊综合评价

校园环境质量的模糊综合评价方法 信息与计算科学2003级马文彬 指导教师杜世平副教授 摘要:本文应用模糊数学理论,把模糊综合评价方法具体应用到校园环境质量综合评价研究中,结合校园的实际情况将环境评价系统根据需要分成若干个指标,建立了因子集、评价集、隶属函数和权重集,实现对校园环境的质量等级综合评判。采用层次分析法计算评价的权重集,并对取大取小算法和评价结果的最大隶属度原则进行了改进,取得较好的效果。实例表明:模糊综合评价方法可操作性强、效果较好,可在一般环境的质量评价中广泛应用。 关键词:校园环境质量,模糊综合评价,层次分析法,权重 Fuzzy Comprehensive Evaluation Method for the Environment Quality of university Campus MA Wen-bin Information and Computational Science , Grade 2003 Directed by Du Shi-ping (Associate Prof ) Abstract: In this paper,based on fuzzy mathematics theory, the fuzzy comprehensive evaluation is applied in the environment quality evaluation of university campus,combining the actual situation list to evaluate the general level of university campus by fuzzy comprehensive evaluation. By setting up the factor sets, the evaluation sets, subjection functions and the weighting sets. Implementation of the Campus Environment Quality Level comprehensive evaluation. The evaluation of the weighting sets are made by AHP. The choosing big or small algorithm and the maximal subjection degree of the evaluation result is improved, and the effect is very good.The applying example indicates: the researched method is feasible and effective, it can be used widely in the environment quality assessment. Keywords:Environment quality of university campus,Fuzzy Comprehensive Evaluation,Analytical Hierarchy Process,Weighting

相关文档