文档库 最新最全的文档下载
当前位置:文档库 › 液力传动概述

液力传动概述

液力传动概述
液力传动概述

9.1 液力传动概述

9.1.1液力传动概念

工程机械的动力装置大多为内燃机(柴油机或汽油机)。内燃机工作时,最大稳定工作转速与最小稳定工作转速之比约为 1.5~2.8;内燃机曲轴上的最大转矩与最小转矩之比约为1.06~1.25。工程机械的行驶或工作速度的变化,以及行驶阻力或工作负载的变化远远超过内燃机的工作要求。因此,如果在传动系统中加入液力传动,将会大大改善工作机构的工作性能。所以,在很多机械尤其是建设机械中广泛地采用液力传动。

液力传动——(动液传动)基于工程流体力学的动量矩原理,利用液体动能而做功的传动(如离心泵、液力变矩器)。液力传动是以液体为工作介质的叶片式传动机械。它装置在动力机械(如蒸汽机、内燃机、电动机等)和工作机械(如水泵、风机、螺旋桨、机车和汽车的转轴等)之间,是动力机和工作机的联接传动装置,起着联接和改变扭矩的作用。

液力传动是液体传动的另一分支,它是由几个叶轮而组成的一种非刚性连接的传动装置。这种装置起着把机械能转换为液体的动能,再将液体的动能转换成机械能的能量传递作用。液力传动实际上就是一组离心泵—涡轮机系统,离心泵作为主动部件带动液体旋转,从泵流出的高速液体拖动涡轮机旋转,讲液体动能转换为机械能,实现能量传递。首台液力传动装置是十九世纪初由德国费丁格尔(Fottinger)教授研制出来并应用于大吨位船舶上。图9-1是液力传动原理图。

图9-1 液力传动装置

1—发动机2—离心泵叶轮3—导管4—水槽5—泵的螺壳6—吸水管7—涡轮螺壳8—导轮9—涡轮叶轮10—排水管11—螺旋桨12—液力变矩器模型

液力传动的输入轴与输出轴之间只靠液体为工作介质联系,构件间不直接接触,是一种非刚性传动。液力传动的优点是:能吸收冲击和振动,过载保护性好,甚至在输出轴卡住时动力机仍能运转而不受损伤,带载荷起动容易,能实现自动变速和无级调速等。因此它能提高整个传动装置的动力性能。

液力传动开始应用于船舶内燃机与螺旋桨间的传动。20世纪30年代后很快在车辆(各种汽车、履带车辆和机车)、工程机械、起重运输机械、钻探设备、大型鼓风机、泵和其他冲击大、惯性大的传动装置上广泛应用。

离心泵叶轮2在发动机1的驱动下,使工作液体的速度和压力增加,并借助于导管3经导轮8冲击涡轮9,此时液体释放能量给涡轮,涡轮带动螺旋桨转动,实现能量传递,这就是液力变矩器。它可使输入力矩和输出力矩不等;如果无导轮,就成为液力偶合器。图示方式的液力传动,由于导管较长等原因,能量损失大,一般效率只有70%。实际上所使用的液力变矩器是将各元件综合在一起而创制的完全新的结构形式(取消进出水管、集水槽,以具有新的几何形状的泵轮和涡轮代替离心机和水轮机,并使泵轮和涡轮尽可能接近,构成一个共同的工作液体的循环圆),如图中12。

叶轮将动力机(内燃机、电动机、涡轮机等)输入的转速、力矩加以转换,经输出轴带动机器的工作部分。液体与装在输入轴、输出轴、壳体上的各叶轮相互作用,产生动量矩的变化,从而达到传递能量的目的。液力传动与靠液体压力能来传递能量的液压传动在原理、结构和性能上都有很大差别。液力传动的输入轴与输出轴之间只靠液体为工作介质联系,构件间不直接接触,是一种非刚性传动。

目前,液力传动元件主要有液力元件和液力机械两大类。液力元件有液力偶合器和液力变矩器;液力机械元件是液力元件与机械传动元件组合而成的。

根据使用场合的要求,液力传动可以是单独使用的液力变矩器或液力耦合器;也可以与齿轮变速器联合使用,或与具有功率分流的行星齿轮差速器(见行星齿轮传动)联合使用。与行星齿轮差速器联合组成的常称为液力-机械传动。传动效率在额定工况附近较高:耦合器约为96~98.5%,变矩器约为85~92%。偏离额定工况时效率有较大的下降。

1、液力偶合器由图9-2 a可知,它是由泵轮B(离心泵)和涡轮T(液动机)组成的。泵轮与主动轴相连,涡轮与从动轴相接。如果不计机械损失,则液力偶合器的输入力矩与

输出力矩相等,而输入与输出轴转速不相等。因工作介质是液体,所以B、T之间属非刚性连接。

2、液力变矩器图9-2 b是液力变矩器结构简图。它是由泵轮B、涡轮T及导轮D主要件构成。B与主动轴连接,T与从动轴相连接,导轮(可装在泵轮的出口或入口处)则与壳体固定在一起不能转动。当液力变矩器工作时,因导轮D对液体的作用,而使液力变矩器输入力矩与输出力矩不相等。当传动比小时,输出力矩大,输出转速低;反之,输出力矩小而转速高。它可以随着负载的变化自动增大或减小输出力矩与转速。因此说,液力变矩器是一个无极力矩变换器。液力变矩器主要用于工程机械、石油机械和内燃机车,主要与内燃机匹配应用。

泵轮、涡轮、导轮常用B、T、D分别表示,而且有关参数角标也用这些符号标注。

9.1.2液力传动术语

1、轴面液力元件过旋转轴线的剖切面,也叫轴截面或子午面,如图9-3。

2、循环圆液力元件中液体循环流动工作腔的轴面叫做循环圆,如图9-3所示。它有一定的几何形状,能表示出各工作轮排列顺序、位置及液体循环流动的方向。

3、有效直径循环圆(工作腔)的最大直径称为液力元件的有效直径,用D表示。

4、平均流线指在工作论中的一条假想流线,该流线上液流的动力学效果与整个叶轮中的所有液流产生的动力学效果一样,该假想流线就是平均流线。

5、工作轮进、出口半径工作轮叶片进出口边与平均流线的交点到轴线的长

度。

6、外环和内环。限定循环圆流道的工作轮外侧壁面及内侧壁面分别为外环及内环。

9.1.3液力传动的工作液体

液力传动用的工作液体应满足如下要求:

1、适宜的粘度:为减少摩擦损失,希望液体的粘度小,但润滑性能、密封性能会降低。所以粘度要适当,一般用油在100时,绝对粘度5~8m2/s为宜。

2、粘温性好:即要求液体粘度受温度的影响要小。

3、不易产生泡沫、老化和沉淀。

4、酸值要低、抗氧化性高。

5、具有较高的闪点和较低的凝固点。液力元件工作时,油温常在80~100℃,甚至可达160℃,因此要求闪点不低于180℃;凝固点要低于-20℃,以利于在低温环境时液力元件的起动。

6、要有较大的重度重度大,液力元件传动的力矩也大。

7、润滑性能好。

国内外液力传动所用液体品种繁多,国内多采用6号、8号液力传动油,也常用22号油代替。液力传动油是以22号油为基础油,再加入抗磨、抗氧化、增粘、防锈、抗泡沫、

降凝等添加剂而成的。目前,国内外液力传动应用的工作液体种类较多,除各种石油基产品外,也有采用清水或其它难燃液体的(煤矿井下为防引燃爆炸而应用)。

几种常用油的性能参数指标见表9-1。

表9-1 液力传动用油的性能参数指标

①-50℃适用于长城以北地区,-25℃适用于长城以南地区.

②(V 50) / (V 100)为50℃时运动粘度与100℃时运动粘度之比.

9.1.4液力传动的特点

液力传动主要有以下特点:

1、自动适应性。液力变矩器的输出力矩能够随着外负载的增大或减小而自动地增大或减小,转速能自动地相应降低或增高,在较大范围内能实现无级调速,这就是它的自动适应性。自动适应性可使车辆的变速器减少档位数,简化操作,防止内燃机熄火,改善车辆的通用性能。

液力偶合器具有自动变速的特点,但不能自动变矩。

2、防振、隔振性能。因为各叶轮间的工作介质是液体,它们之间的连接是非刚性的,所以可吸收来自发动机和外界负载的冲击和振动,过载保护性好,甚至在输出轴卡住时动力机仍能运转而不受损伤,使机器启动平稳,加速均匀,延长零件寿命。试验表明:采用液力传动后,发动机使用寿命可提高85%,变速器使用寿命可提高1~2倍,传动轴,驱动半轴寿命可提高85%.

3、透穿性能。透穿性能是指泵轮转速不变的情况下,当负载变化时引起输入轴(即泵轮或发动机轴)力矩变化的程度。由于液力元件类型的不同而具有不同的透穿性,可根据工作机械的不同要求与发动机合理匹配,借以提高机械的动力和经济性能。

4、工作状况变化时,液力变矩器最高效率约85~92%,液力偶合器效率约为96~98%。

另外,还具有过载保护、自动协调、分配负载的功能。

但是,液力传动也有一些缺点。

1、与齿轮传动型式相比,效率偏低。液力传动系统的传动效率一般只有82-87%左右,而机械传动的效率可达95-97%.;

2、机械布置上,基本是:动力机—传动装置—工作机在一轴线方向上,不如液压传动、电力传动的布置位置和方向上的方便;

3、另外尚需配置辅助装置——润滑油装置、冷却装置等,使设备复杂。

4、液力传动装置的整体性能跟它与动力机的匹配情况有关。若匹配不当便不能获得良好的传动性能。因此,应对总体动力性能和经济性能进行分析计算,在此基础上设计整个液力传动装置。

9.1.5液力传动的应用

由于液力传动具有传动的很多优点(如大功率、自适应等),在工业和技术的各部门得到广泛应用。由最早应用在轮船上(1907年,法国人应用)开始,现在广泛应用于各部门。

1、在汽车(重型卡车、高级轿车)、拖拉机、工程机械、建筑机械、铁路运输等各种车辆上作为主传动装置。如内燃机在大功率起动,高级轿车传动的无级变速等,工程机械的传动。

2、在军事工业中的坦克、自动火炮等作传动应用。

3、在一般的工业生产中(化工厂的泵、炼钢厂的风机等等)用液力偶合器作调节速度用,节省能源。

4、在船舶、重载设备(大型皮带机等)等启动时应用,可减少起动的电力冲击和并车的协调。

9.1.6内燃机车的液力传动

能用作驱动机车车轮的机械,电动机不是唯一无二的。水力机械中的涡轮机也有和电动机相类似的驱动特性。只要用柴油机带动一个泵,向涡轮提供具有某些压力的液流,而且能够把在涡轮中工作完毕后的液流引回到泵的进口处,使液流循环工作,这套系统就可用作内燃机车的动力驱动系统。根据这一原理,德国工程师费廷格创造了液力变扭器和液力偶合器,把涡轮和泵轮组合在一起,二者之间没有机械连结而只是通过液流循环来相互作用。内燃机车采用这种“软”连结方式而设计的传动系统称作液力传动。

与电力传动相比,液力传动不过是后起之秀。但它在与电传动的竞争中,异军突起,很快赢得了重要位置。液力传动装置的优点是不用电机,可以节省大量昂贵的铜,同时它的重量也轻些。这使得机车降低了造价也减轻了重量,即在同样的机车重量下,它的机车功率一般都比电传动机车大。另外,液力传动装置的可靠性高,维护工作简单,修理费也少。还有一个优点是,它的部件是密闭式的,无论风砂雨雪对它的工作都不产生什么坏的影响。

液力传动装置的主要组成部分是液力传动箱、车轴齿轮箱、换向机构和相互联结的万向轴等。它的核心元件是液力传动箱中的液力变扭器,主要由泵轮、涡轮和导向轮组成。泵轮通过轴和齿轮与柴油机的曲轴相连,涡轮通过轴和齿轮与机车的动轮相连,导向轮固定在变扭器的外壳上,并不转动。当柴油机启动时,泵轮被带动高速旋转,泵轮叶片则带动工作油以很高的压力和流速冲击涡轮叶片,使涡轮与泵轮以相同的方向转动,再通过齿轮把柴油机的输出功率传递到机车的动轮上,从而使机车运行。

变扭器关键在“变”。当机车起动和低速运行时,变扭器中的涡轮转速很低,工作油对涡轮叶片的压力就很大,从而满足机车起动时牵引力大的需求;当涡轮的转速随着机车运行速度的提高而加快时,工作油对涡轮叶片的压力也逐渐减小,正好满足机车高速运行时对牵引力要小的需求。由此可见,柴油机发出的大小不变的扭矩,经过变扭器就能变成满足列车牵引要求的机车牵引力。当机车需要惰力运行或进行制动时,只要将变扭器中的工作油排出到油箱,使泵轮和涡轮之间失去联系,柴油机的功率就不会传给机车的动轮了。

液压传动在汽车上的应用通用版

安全管理编号:YTO-FS-PD965 液压传动在汽车上的应用通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

液压传动在汽车上的应用通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 近年来随着液压、气压与液力传动技术的发展和在汽车上的应用,汽车的各项性能都有了很大地提高,尤其是现代汽车上使用了电脑、机电液一体化的高新技术,使汽车工业的发展更上了一个新的台级。汽车工业成为衡量一个国家科学技术水平先进与否的重要标志,目前技术先进的汽车已广泛采用了液压气压和液力传动新技术,就连汽车的燃料供给和机械润滑系统也借鉴了这些技术,因此加强针对汽车的液压气压与液力传动技术的学习与研究,对于从事汽车理论学习和设计制造维修的人员具有很重要的意义。 现在汽车都在向着驾驶方便、运行平稳、乘坐舒适、安全可靠、节能环保的方向发展。在这些发展中液压气压与液力传动技术起了主导作用。液压气压与液力传动在汽车上的应用具有一定的特点,由于汽车整体结构和轻量化的要求,系统结构紧凑、元件组合性强与电气结合,能够根据汽车的运行状况进行控制。 气压传动与液压传动一样,主要用于实现动力远程传

最新《液压与液力传动》复习题

《液压与液力传动》复习题 一、填空题 1.液压传动是的一种传动方式。 2.液压传动装置主要由以下的四部分组成:1);2);3);4)。 3.液力变矩器中,接收发动机传来的机械能,并将其转换为液体的动能;将液体的动能转换为机械能而输出;是一个固定的导流部件。液力变矩器的循环圆指的是。4.液体动力粘度的物理意义是:。运动粘度定义为。 5.通常采用来减小齿轮泵的径向不平衡力。6.单作用液压缸具有的特点;双作用液压缸则是。 7.压力控制阀按其功能和用途分为、、和等。 8.液压阀按机能可以分为、和三大类。 9.电液伺服阀基本都是由、和反馈平衡机构三部分组成。 10.液压阀按机能可以分为、和三大类。 11.汽车起重机的支腿锁紧机构是采用来实现支撑整个起重机,在系统停止供油时,支腿仍能保持缩紧。 12.汽车起重机支腿收放回路中垂直缸上安装有液压锁,其作用是防止和。 13.汽车主动空气动力悬架系统主要由传感器、、、等组成。14.液压自动换挡系统中的速度阀将的车速信号转换成。节气门阀将转换成油压信号。 15.电控液力机械自动变速器(AT)主要由、和 三大部分组成。 16.汽车自动变速器液压控制系统中的油泵通常采用、和等定量泵。 17.自动变速器最重要、最基本的压力是由调节的管路压力,该管路压力用来控制所有离合器和制动器的正常动作,其大小应满足 的功能要求。 18.汽车主动空气动力悬架系统主要由传感器、、、等组成。 19.液压传动主要是利用来实现液压能与机械能的变换,其中将机械能转换为液压能,将液压能转换为机械能。

20.典型的液力变矩器是由、和三种叶轮组成。液力偶合器与液力变矩器最根本的区别是。 21.限矩型液力偶合器也称为,它的特点是随着,力矩趋于稳定,能够有效地防止原动机和负载的过载。 22.液压自动换挡系统中的速度阀将车速信号转换成油压信号,节气门阀将转换成油压信号。 23.应用相似原理分析模型与实物液体流道必须遵守以下的三个相似条件: (1);2);(3)。 24.限矩型液力偶合器也称为,它的特点是随着,力矩趋于稳定,能够有效地防止原动机和负载的过载。 25.典型的液力变矩器是由、和三种叶轮组成。液力偶合器与液力变矩器最根本的区别是。 二、选择题 1.当工作部件运动速度较高时,宜选用粘度等级()的压力油。 (a)较低;(b)较高;(c))普通。 2.当环境温度较高时,宜选用粘度等级()的压力油。 (a)较低;(b)较高;(c))普通。 3、油液的密度是随哪些因素而变化的?() (a)温度;(b)压力;(c)压力和温度。 4.节流调速回路中较易实现压力控制的是()。 (a)进油节流调速回路;(b)回油节流调速回路;(c)旁路节流调速回路。 5.调速阀中与节流阀串联的是()。 (a)定值减压阀;(b)定比减压阀;(c)定差减压阀。 6.变量泵和液压马达组成的容积式调速回路正常工作时,液压马达的输出转矩取决于()。 (a)变量泵的排量;(b)溢流阀的调定压力;(c)负载转矩。 7.变量泵和变量马达组成的容积式调速回路,变量马达输出转速由低向高调节时,首先调节的是()。(a)变量泵的排量;(b)变量泵的转速;(c)变量马达的排量。 8.双联叶片泵是由两个单级叶片泵组成,它的输出流量适合于() (a)合并使用;(b)单独使用;(c)单独使用和合并使用。 9.常用的电磁换向阀是控制油液() (a)流量;(b)方向;(c)流量和方向。 10.液压驱动系统中液压泵最大流量的确定是根据执行元件的() (a)压力;(b)速度;(c)压力与速度。 11.对于液力偶合器的输入特性曲线,下列说法不正确的是() (a) 它表示了泵轮力矩与泵轮转速之间的关系;(b)为通过坐标原点的抛物线;(c) 也称为无因次特性曲线。 12.进口节流调速回路的液压缸速度() (a)不受负载影响;(b)受负载影响;(c)对液压泵出口流量有影响。 13.对于汽车起重机支腿机构液压回路,为了防止起重作业时垂直液压缸上腔液体承受重力负载,为了 避免车架下沉,即防止俗称的()现象,需用连通上腔的液控单向阀起锁紧作用。 (a)掉腿(b)软腿(c) 卸腿

第一章液压传动概述教案

第一章液压传动概述 本章难点:压力取决于负载 它所介绍的内容,是机械工程技术人员必须掌握,不可缺少的基础技术知识。研究以有压流体(压力油和压缩空气)为传动介质来实现各种机械传动和自动控制的学科。 一部完整的机器由原动机部分、传动机构及控制部分、工作机部分(含辅助装置)组成。原动机包括电动机、内燃机等。工作机即完成该机器之工作任务的直接工作部分,如剪床的剪刀、车床的刀架等。由于原动机的功率和转速变化范围有限,为了适应工作机的工作力和工作速度变化范围变化较宽,以及性能的要求,在原动机和工作机之间设置了传动机构,其作用是把原动机输出功率经过变换后传递给工作机。一切机械都有其相应的传动机构借助于它达到对动力的传递和控制的目的。 传动机构通常分为机械传动、电气传动和流体传动机构。 流体传动是以流体为工作介质进行能量转换、传递和控制的传动。它包括液压传动、液力传动和气压传动。 液压传动和液力传动均是以液体作为工作介质进行能量传递的传动方式。液压传动主要是利用液体的压力能来传递能量;而液力传动则主要是利用液体的动能来传递能量。 气压传动,其做工的介质是空气体;液压传动,其做工的介质是机油(或其它的液体)。气压传动的结构简单,该介质(空气)不需要成本;液压传动结构复杂点,且需要其它的材料作为介质,成本会高点。但液压传动的密封性能好,所以传动的力矩会大点,做工性能会好些。 1.1 液压技术的发展 本章是学习液压与气压传动的启蒙章节,主要阐述了本课的一些重要概念、并通过液压千斤顶简化模型的分析深入理解液压传动的工作原理和液压系统的基本组成,最后介绍液压传动的优缺点和应用领域。 首先介绍什么是传动?传动的类型有哪些? 引导学生举生活中常见的实例说明以下五种传动,使学生对传动及其类型有所认识和掌握。 机械传动———自行车,缝纫机; 电传动————电动门,声控灯,音乐喷泉; 气压传动———公交车的车门; 液压传动———千斤顶,液压挖掘机; 液压传动是以液体作为工作介质来进行能量传递的一种传动形式,它通过能量转换装置(如液压泵),将原动机(如电动机)的机械能转变为液体的压力能,然后通过封闭的管道、控制元件等,由另一能量转换装置(如液压缸或马达)将液体的压力能转变为机械能,以驱动负载和实现执行机构所需的直线或旋转运动。 因此,以液体作为工作介质,并以其压力能进行能量传递的方式,即为液压传动。 注意几点: ①工作条件:密封系统 ②工作介质:受压的流体 ③传动方式:传递运动和动力 1.1.1 液压技术发展的历史

最新液压传动技术发展现状与前景展望

液压传动技术发展现状与前景展望 摘要:对液压传动技术及其优缺点进行描述;将其发展现状、工业应用情况作了一个简要的总结归纳;并根据其自身的特点对其发展趋势在液压现场总线技术、自动化控制软件技术、纯水液压传动、电液集成块等四方面做了合理的展望。关键词:液压传动;工业应用;发展趋势 1 液压传动的定义及其地位 液压传动是以流体(液压油液)为工作介质进行能量传递和控制的一种传动形式。它们通过各种元件组成不同功能的基本回路,再由若干基本回路有机地组合成具有一定控制功能的传动系统[1]。液压传动,是机械设备中发展速度最快的技术之一,特别是近年来,随着机电一体化技术的发展,与微电子、计算机技术相结合,液压传动进入了一个新的发展阶段[2]。 2 液压传动的发展简史 液压传动是根据17 世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795 年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905 年将工作介质水改为油,又进一步得到改善。第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920 年以后,发展更为迅速。1925 液压元件大约在19 世纪末20 世纪初的20 年间,才开始进入正规的工业生产阶段[2]。年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910 年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展[3]。第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20 多年。在1955 年前后, 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。液压技术主要是由武器装备对高质量控制装置的需要而发展起来的。随着控制理论的出现和控制系统的发展,液压技术与电子技术的结合日臻完善,电液控制系统具有高响应、高精度、高功率-质量比和大功率的特点,从而广泛运用于武器和各工业部门及技术领域[4]。 3 液压传动的优缺点 3.1 与机械传动、电气传动相比,液压传动具有以下优点 1.液压传动的各种元件,可以根据需要方便、灵活地来布置。 2.重量轻、体积小、运动惯性小、反应速度快。 3.操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。 4.可自动实现过载保护。

工程机械液压与液力传动

第一章概述 一、液压传动:利用密闭工作容积内液体压力能的传动。 二、液压系统的组成:1、动力元件,即液压泵(将机械能转换为液体的压力能);2、执行元件(将液体的压力能转换为机械能);3、控制元件,即各种阀(压力阀、流量阀、方向阀); 4、辅助元件(油箱、滤油器、储能器等); 5、传动介质(液压油)。 三、液压系统图图形符号只表示元件的职能和连接通路,不表示元件的具体结构和参数,也不表示从一个工作状态转到另一个工作状态的过度过程,系统图只表示各元件的连接关系,而不表示系统布管的具体位置或元件在机器中的实际安装位置。 第二章液压流体力学基础 一、粘性:液体在外力作用下流动(或有流动趋势)时,分子间的内聚力要阻止分子间的相对运动,而产生的内摩擦力的性质叫做液体粘性。液体流动(或有流动趋势)时才会呈现粘性。我国生产的全损耗系统用液压油采用40°C的远动粘度值为其粘度等级标号,即油的牌号。温度升高,粘度下降; 二、可压缩性:液体的可压缩性可以用体积压缩系数k,即单位压力变化下体积的相对变化量来表示。 三、理想液体:无粘度,不可压缩。 四、L 表示石油产品;H 表示液压系统的工作介质。 五、液压油的选择:环境温度高时,应选用粘度较高的油;工作压力高时,宜选择高粘度的油;工作装置运动速度很高时,宜选择粘度较低的油。 六、液压系统压力损失:1、沿程压力损失:油液沿等直径直管流动时所产生的压力损失。 2、局部压力损失:油液流经局部障碍时,由于液体的方向和速度的突然变化,在局部形成漩涡引起的流速在某一局部受到扰动而变化所产生的损失。 第三章液压动力元件 一、齿轮泵:低压泵、定量泵,结构简单、制造容易、成本低,对油液污染不敏感,磨损严重,泄漏大。泄漏、困油、径向不平衡力。 二、齿轮泵泄漏:1、轴向间隙(泄漏最严重),2、径向间隙,3、两个齿轮的齿面齿合处。高压齿轮泵中,使用轴向间隙补偿装置,以减小端面泄漏,提高容积效率。 三、消除齿轮泵困油:在齿轮泵的两侧端盖上铣两条卸荷槽。 四、减小径向不平衡力:缩小压油口,同时适当增大径向间隙。 五、叶片泵:单作用叶片泵(变量泵)、双作用叶片泵(定量泵) 六、柱塞泵:变量泵,泄漏小,抗污染能力低。分类:斜盘式、斜轴式。 第五章液压控制阀 一、单向阀:普通单向阀、液控单向阀(可以双向流动) 二、换向阀:“O”型:双向锁死;“H”型:双向浮动,中位卸荷; 三、溢流阀作用:限制最高压力,防止系统过载;维持系统压力恒定。(进口调压,常闭) 四、减压阀:使出口压力(二次压力)低于进口压力(一次压力)的一种压力控制阀。(出口调压,常开) 五、顺序阀:控制液压系统中各执行元件动作先后顺序的。(常闭) 六、压力继电器:一种将油液的压力信号转换成电信号的电液控制元件。 七、调速阀为什么比节流阀稳定:因为多了一个定差减压阀。 八、比例电磁阀工作原理: 九、执行机构三种连接方式: 十、液压系统性能指标:

液压传动与气压传动技术

第一章液压传动基础知识 教学目的与要求: 1.掌握液压传动的概念。 2.掌握液压传动的优点、缺点。 3.了解液压传动在现代工业生产中的应用。 4.了解液压传动的发展概况。 5.掌握液压传动工作原理。 6.掌握液压传动系统各组成部分及在系统中的作用。 7.了解液压系统图的表达方式。 8.了解液压油的性能指标与选用原则。 课题重点: 1.掌握液压传动的概念及其优点、缺点。 2.掌握液压传动工作原理及液压传动系统各组成部分及在系统中的作用。 课题难点: 液压传动工作原理及液压传动系统各组成部分及在系统中的作用。 学时安排:

§1—1液压传动概述 教学目的知识目标使同学们掌握液压传动的概念及其优点、缺点。能力目标能够准确熟练阐述什么是液压传动 德育目标通过学习培养同学们做事要态度认真 教学重点掌握液压传动的概念及其优点、缺点。教学难点同上 教学过程与方法通过讲授、演示、任务驱动等强化知识重点;通过小组讨论、交流、合作,完成练习任务; 教学器材多媒体 教学时数2学时;备课时间8月18 日授课时间教学过程 教学环节 及 学时分配教学内容 教学 活动 组织教学师生问好、清点人数、填写日志1' 知识回顾为什么液压千斤顶体积小巧,却可以将人力放大到足够抬起沉重的汽车?学生思考 并回答,教师辅助3' 导入新课揭示课题 液压千斤顶体积小巧,却可以将人力放大到足够抬起沉重的汽车。究其 根源主要是液压千斤顶所采用的放大力的工作原理与杠杆不同。它是怎么样 将力传递放大的呢? 观察、 思考。 明确教学课题。 1' 教学内容一、液压传动的概念 利用液体作为工作介质来进行能量传递和进行控制的一种传动方式。 20' 利用多媒体和黑 板

液压传动在汽车上的应用

液压传动在汽车上的应用 近年来随着液压、气压与液力传动技术的发展和在汽车上的应用,汽车的各项性能都有了很大地提高,尤其是 现代汽车上使用了电脑、机电液一体化的高新技术,使汽车工业的发展更上了一个新的台级。汽车工业成为衡 量一个国家科学技术水平先进与否的重要标志,目前技术先进的汽车已广泛采用了液压气压和液力传动新技术,就连汽车的燃料供给和机械润滑系统也借鉴了这些技术,因此加强针对汽车的液压气压与液力传动技术的学习 与研究,对于从事汽车理论学习和设计制造维修的人员具有很重要的意义。 现在汽车都在向着驾驶方便、运行平稳、乘坐舒适、安全可靠、节能环保的方向发展。在这些发展中液压 气压与液力传动技术起了主导作用。液压气压与液力传动在汽车上的应用具有一定的特点,由于汽车整体结构 和轻量化的要求,系统结构紧凑、元件组合性强与电气结合,能够根据汽车的运行状况进行控制。 气压传动与液压传动一样,主要用于实现动力远程传递、电气控制信号转换等。由于其工作介质是气体, 因此工作安全、系统泄漏对环境污染也小,但受气体可压缩性大的影响,系统的灵敏性不如液压传动。如液压 汽车制动装置的制动滞后时间为0.2S,而气压汽车装置的制动滞后时间是0.5S,而且气压系统的噪音也大, 自动润滑性能也差。 下面举几个例子介绍液压气压与液力传动在汽车传动系统中的具体应用。 1.液压动力转向系统液压动力转向系统是在液压动力转向系统的基础上增设了电子控制装置。该系统能够 根据汽车行驶条件的变化对助力的大小实行控制,使汽车在停车状态时得到足够大的助力,以便提高转向系统 操作的灵活性。当车速增加时助力逐渐减小,高速行驶时无助力,使操纵有一定的行路感,而且还能提高操纵 的稳定性。另外,液压系统一般工作压力不高,流量也不大。 2.液力自动变速器液力自动变速器在现代汽车上用得也越来越多。使用液力变速器可以简化驾驶操作,使 发动机的转速控制在一定的范圉内,避免车速急剧变化,有利于减少发动机振动和噪音,而且能消除和吸收传 动装置的动载荷,减少换档冲击,提高发动机和变速器的使用寿命。 3.汽车防抱死液压系统ABS即汽车防抱死系统,其主要功能是在汽车制动时,防止车轮抱死。无论是气压 制动系统还是液压制动系统,ABS均是在普通制动系统的基础上增加了传感器、ABS执行机构和ABS电脑三部分。液压制动系统ABS广泛应用于轿车和轻型载货汽车上。气压制动系统ABS丰要用于中、重型载货汽车上,所装用的ABS按其结构原理主要分为两种类型:用于四轮后驱动气压制动汽车上的ABS和用于汽车列车上的ABS。气顶液压制动系统ABS兼有气压和液压两种制动系统的特点,应用于部分中重型汽车上。

液压与液力传动

《液压与液力传动》液力部分教案(2006-2007学年第一学期) 授课教师:刘辉 机械与车辆工程学院

第一章绪论 (一)教学内容 液力传动的定义、发展与应用、液力传动特点和液力元件设计方法 (二)教学目标 1.了解液力传动和液力元件的定义 2.了解液力传动的发展和应用 3.分析液力传动的特点 4.了解液力元件的设计方法 (三)教学重点 1.液力传动的特点 2.液力元件的设计方法 (四)教学难点 1.液力传动在车辆上应用的优缺点 2.液力元件的一元束流理论设计方法 (五)教学方法 以课堂讲授为主,穿插提问和启发等互动教学方式; (六)教学媒体 1.课件 2.板书 (七)教学安排 一、液力传动的定义 所有的动力机械一般都是由原动机、传动机构和工作机三部分组成。原动机一般为电动机、内燃机(汽油机、柴油机)、蒸汽机等。传动机构有电力传动、机械传动、及流体传动等。 流体传动又可分为气压、液压、液力、液粘传动。

液压传动:液体的压能传递动力(静液传动) 气压传动:气体的压能传递动力 液力传动:液体的动能传递动力(动液传动) 液粘传动:液体的油膜剪切力传递动力 液力传动—主要依靠工作液体的动能的变化来传递或变换能量的液体元件称为液力元件,在传动系统中若有一个以上环节是采用液力元件来传递动力,则这种传动称为液力传动。 二、液力传动的发展与应用 德国菲丁格尔研制出第一台液力变矩器,并于1908年应用于船舶工业。 19世纪三十年代应用到汽车上,二战用于军车。 20世纪50年代,应用于工程机械和机车上 应用领域:军车、坦克、装甲车 工程机械:装载机、起重机。 民车:公共汽车、高级轿车(舒适性) 航空:B-1战略轰炸机。 三、液力传动特点 1.优点: 1)使传动系统获得自动、无级变速和变矩能力,使车辆具有自动适应能力。车辆起步平稳。 2)具有减振、降低动负荷作用,可提高发动机、传动系统的寿命。提高了乘员的舒适性。 3)具有良好的稳定的低速性能,提高了车辆通过性。 2.缺点: 1)与机械传动相比,效率较低,经济性要差些。

(完整版)液压传动系统的概论.

液压传动技术的历史进展与趋势 从公元前200多年前到17世纪初,包括希腊人发明的螺旋提水工具和中国出现的水轮等,可以说是液压技术最古老的应用。 自17世纪至19世纪,欧洲人对液体力学、液体传动、机构学及控制理论与机械制造做出了主要贡献,其中包括:1648年法国的B.帕斯卡(B.Pascal)提出的液体中压力传递的基本定律;1681年D.帕潘(D.Papain)发明的带安全阀的压力釜;1850年英国工程师威廉姆.乔治.阿姆斯特朗(William George Armstrong)关于液压蓄能器的发明;19世纪中叶英国工程师佛莱明?詹金(F.Jinken)所发明的世界上第一台蒸气喷射器差压补偿流量控制阀;1795年英国人约瑟夫?布瑞玛(Joseph Bramah)登记的第一台液压机的英国专利;这些贡献与成就为20世纪液压传动与控制技术的发展奠定了科学与工艺基础。 19世纪工业上所使用的液压传动装置是以水作为工作介质,因其密封问题一直未能很好解决以及电气传动技术的发展和竞争,曾一度导致液压技术停滞不前,卷板机。此种情况直至1905年美国人詹涅(Janney)首先将矿物油代替水作液压介质后才开始改观,折弯机。20世纪30年代后,由于车辆、航空、舰船等功率传动的推动,相继出现了斜轴式及弯轴式轴向柱塞泵、径向和轴向液压马达;1936年Harry Vickers发明了先导控制压力阀为标志的管式系列液压控制元件。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制系统,从而使液压技术得到了迅猛发展。 20世纪50年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使玻璃冷却器技术很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛发展和应用。同期,德国阿亨工业大学(TH Aachen)在仿形刀架

什么是液压油和液力传动油

1、什么是液压油和液力传动油? 答:液压油是借助于处在密闭容积内的液体压力能来传递能量或动力的工作介质。液力传动油是借助于处在密闭容积内的液体动能来传递能量或动力的工作介质。 2、液压油、液力传动油的作用是什么? 答:液压油、液力传动油的作用一方面是实现能量传递、转换和控制的工作介质,另一方面还同时起着润滑、防锈、冷却、减震等作用。 3、液压油应具备哪些主要性质? 答适宜的粘度和良好的粘温性。优良的润滑性能(抗磨性能)。优良的热、氧化安定性、水解安定性、剪切安定性。良好的抗乳化性。良好的防锈、抗腐蚀性。良好的抗泡性和空气释放性。良好的密封材料适应性。良好的清洁性和过滤性。 4、我国矿物油型和合成烃型液压油的产品标准是什么?包括哪些品种? 答:我国矿物型和合成烃型液压油的产品标准是GB11118.1-94,包括HL、HM、HG、HV、HS五个品种的技术规格。 5、国内的液压油有几种?特点是什么? 国内较常用的液压油有L-HL液压油、L-HM抗磨液压油、L-HV低温抗磨液压油、L-HS低凝抗磨液压油、L-HG液压导轨油、抗燃液压油。这些液压油的粘度牌号均以40℃粘度划分为22#、32#、46#、68#、100#等,但性能各有特点:L-HL液压油具有一定的抗氧防锈性能,适用于系统压力低于7Mp(70Kg)的液压系统和一些轻载荷的齿轮箱润滑. L-HM抗磨液压油,除了具有L-HL液压油的性能外,抗磨性能强是其的特点。例如,在专门抗磨性能测试中,L-HL 油的磨损量是600多mg,而L-HM油的磨损量仅是20多mg,适用于系统压力7Mpa(约70Kg)—21Mpa(约210Kg)的液压系统,某些知名品牌生产的抗磨液压油,能在系统压力为35Mpa(约350Kg)情况下正常工作,例如长城公司生产的高压抗磨液压油。 L-HV低温抗磨液压油、L-HS低凝抗磨液压油均在L-HM抗磨液压油的基础上加强了粘温性能和低温流动性。例如,L-HM油的粘度指数一般在100左右,倾点在零下10℃左右,L-HV油和L-HS油的粘度指数一般可达130以上,倾点分别在零下30℃和零下40℃以下,可在寒区或严寒区代替L-HM油使用,长城公司生产这两种抗磨液压油。 L-HG液压导轨油有特殊的“防爬”性能,适用于润滑机床导轨及其液压系统。 高压抗磨液压油在HM液压油优等品基础上增强了抗磨性,通过了高压泵台架试验。抗燃液压油是非矿油的润滑剂,有水/油基、水-乙二醇型、磷酸酯型等应用在高温易燃的场合,水-乙二醇型、磷酸酯型的价格较高。 6、HM液压油一等品和优等品有何区别? 答:GB11118.1-94将HM油分为一等品和优等品,一等品具有较好的抗磨性、抗氧防锈性和抗乳化性,而优等品是参照美国丹尼森公司HF-0标准制定的,增加了水解安定性、热稳定性、过滤性、剪切安定性等试验,在锈蚀和抗磨性上也提高了苛刻度。 7、高压抗磨液压油与HM液压油有哪些区别?满足什么标准? 答:高压抗磨液压油理化指标与HM液压油优等品完全相同,在此基础上又增加了丹尼森高压叶片泵(T5D 17.5MPa)和高压柱塞泵(P46 35MPa)台架试验,完全满足美国丹尼森(Denison) HF-0规格,在我国,该类油品标准目前为企标,体现了当前液压油最高水平。 8、欧美国家有代表性的抗磨液压油规格有哪些? 答:国外液压油规格主要有:德国DIN51524(Ⅱ)、DIN51524(Ⅲ)规格。美国Denison公司HF-0规格。美国Cincinnati -Milacron公司P-68/P-69/P-70规格。美国Vickers公司M-2950-S/Ⅰ-286-S规格。 9、抗磨液压油主要有哪些类型?其特点是什么? 答:抗磨液压油按抗磨添加剂组成主要分为锌型抗磨液压油(有灰型)和无灰型抗磨液压油两种:锌型抗磨液压油中所含抗磨剂主要是二烷基二硫代磷酸锌,无灰型抗磨液压油主要使用S、P型抗磨剂。

液压传动技术的发展状况及发展趋势

液压传动技术的发展状况及发展趋势 班级:模具2班 姓名:蔡腾飞 学号:130101020071

液压传动技术的发展状况及发展趋势 摘要:液压传动有许多突出的优点,因此它的应用非常广泛.如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等关键词:液压传动工业应用发展方向优点及缺点 一、液压传动的发展概况 液压传动是一门新的学科,虽然从17世纪中叶帕斯卡提出静压传动原理,18世纪末英国制成世界上第一台水压机算起,液压传动技术已有两三百年的历史,但直到20世纪30 年代它才较普遍地用于起重机、机床及工程机械。在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。第二次世界大战结束后,液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。20世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。因此,液压传动真正的发展也只是近三四十年的事。液压传动技术广泛应用了如自动控制技术、计算机技术、微电子技术、及新工艺和新材料等高技术成果,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求 二、液压传动的工业应用 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等国;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 目前, 它们分别在实现高压、高速、大功率、高效率、低噪声、长寿命、高度集成化、小型化与轻量化、一体化和执行件柔性化等方面取得了很大的进展。同时, 由于与微电子技术密切配合, 能在尽可能小的空间内传递尽可能大的功率并加以准确的控制, 从而更使得它们在各行各业中发挥出了巨大作用。 应该特别提及的是, 近年来, 世界科学技术不断迅速发展, 各部门对液压传动提出了更高的要求。液压传动与电子技术配合在一起, 广泛应用于智能机器人、海洋开发、宇宙航行、地震予测及各种电液伺服系统, 使液压传动的应用提高到一个崭新的高度。 三、液压传动的发展方向 1.减少能耗,充分利用能量 液压技术在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:①减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,

纯水液压传动概述

纯水液压传动概述 摘要纯水液压以其绿色环保等特性成为液压界的重要研究方向。本文论述了纯水液压传动的含义,讨论了其研究内容和应用趋势,分析了纯水液压传动的优势和劣势,然后介绍了国内外纯水液压传动的基本状况和发展趋势,并相应展开分析了纯水液压传动的主要研究方向。最后,本文提出了一些新的解决纯水液压传动缺点的思路。 关键词纯水液压油压应用优势关键技术 1 引言 现代液压传动技术在工业生产和其他领域应用十分广泛,而纯水液压传动技术是现代液压研究领域的前沿方向之一。由于纯水具有来源广泛、无污染、阻燃性好等优点,在我国积极开展纯水液压传动的研究与开发,对节约能源,保护环境,可持续发展及开发绿色液压产品,都具有十分重要的意义。因此如何利用纯水作为液压传动工作介质的课题引起了人们的普遍关注,纯水液压传动课题的研究已经成为当今液压界的一大热点。在纯水液压传动发展的20多年中,人们逐步发现了纯水液压传动的很多优点。这也使纯水液压传动受到了极大的重视,成为液压传动的新的热点技术。然而,由于纯水液压传动是一项新兴的技术,所以还存在很多不足和缺点。 2 什么是纯水液压传动 纯水液压传动是指以纯水(不含任何添加剂的天然水,含海水和淡水)为工作介质的液压传动。 a)纯水的含义 纯水液压传动中的纯水是指纯粹的天然水(natural water),即不含任何添加剂的水。不同文献中用不同的词语来表达,如纯水(pure water)、自来水(tap water)、生水(raw water)、普通水(plane water)。纯水的分类如表1所示。 b)纯水液压传动的研究内容 由于水固有的物理特性,纯水液压传动技术的研究主要集中在介质、材料、元件、控制等方面,如图1所示。

车辆液压与液力传动_习题课答案

1 习题4-8 液压缸1负载压力1114L F p M Pa A = = 液压缸2负载压力221 2L F p M Pa A = = 1)当减压阀调定压力为j p =1MPa : 当节流阀2开度最大时,减压阀入口压力(即泵出口压力)p p =1p =4MPa , p p 〉j p ,减压阀先导阀开启,使减压阀出口压力稳定在 1MPa ,由于液压缸2 的负载压力为2MPa ,所以液压缸2不动作。此时,液压缸1运行速度最大,随着节流阀逐渐调小,当溢流阀1开始溢流后,液压缸1的速度逐渐减小。 当减压阀调定压力为j p =2MPa : 当节流阀2开度最大时,减压阀入口压力(即泵出口压力)p p =1p =4MPa , p p 〉j p ,减压阀先导阀开启,使减压阀出口压力稳定在 2MPa ,液压缸2稳定 运行,此时液压缸1也稳定运行。两个液压缸的运行速度可根据阀2和3的通流面积,利用节流口流量公式计算。随着节流阀逐渐调小,当溢流阀1开始溢流后,液压缸1的速度逐渐减小,液压缸2的速度保持不变。 当减压阀调定压力为j p =4MPa : 此时减压阀出口压力为2MPa ,不足以克服减压阀先导阀弹簧力,于是,减压阀主阀芯开口量最大,不起减压作用,即泵出口压力p p =2MPa 。由于液压缸1的负载压力为4MPa ,所以液压缸1不动作。液压缸2以最大速度运行。 2 习题7-9 1) 设溢流阀无溢流,则液压泵输出的流量全部进入液压缸,液压缸活塞运动的速度为:

1 10/3 V p q v cm s A = = 节流阀通过的流量即液压缸输出的流量: 3 22250/3 q vA cm s == 由节流阀的流量公式: 2q T q C A =于是,液压缸出口压力即节流阀入口压力为: 2 2 22q T q p C A ρ?? = ? ??? 由液压缸受力平衡: 1122p A p A F =+ 得: 2211 p A F p A += 若A T =0.05cm 2,则p 2=0.325MPa ,p 1=2.16MPa

p Y ,假设溢流阀不溢流不成立,即溢流阀实际上已经打开,此时泵出口的压力及液压缸入口压力为:

(完整版)液压传动发展概况.

第一章绪论 第一节液压传动发展概况 自18世纪末英国制成世界上第一台水压机算起,液压传动技术已有二三百年的历史。直到20世纪30年代它才较普遍地用于起重机、机床及工程机械。在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。第二次世界大战结束后,战后液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。 本世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。因此,液压传动真正的发展也只是近三四十年的事。当前液压技术正向迅速、高压、大功率、高效、低噪声、经久耐用、高度集成化的方向发展。同时,新型液压元件和液压系统的计算机辅助设计(CAD)、计算机辅助测试(CAT)、计算机直接控制(CDC)、机电一体化技术、可靠性技术等方面也是当前液压传动及控制技术发展和研究的方向。 我国的液压技术最初应用于机床和锻压设备上,后来又用于拖拉机和工程机械。现在,我国的液压元件随着从国外引进一些液压元件、生产技术以及进行自行设计,现已形成了系列,并在各种机械设备上得到了广泛的使用。 机械的传动方式 一切机械都有其相应的传动机构借助于它达到对动力的传递和控制的目的。 机械传动——通过齿轮、齿条、蜗轮、蜗杆等机件直接把动力传送到执行机构 的传递方式。 电气传动——利用电力设备,通过调节电参数来传递或控制动力的传动方式 液压传动——利用液体静压 力传递动力 液体传动 液力传动——利用液体静流 动动能传递动力 流体传动 气压传动 气体传动 气力传动 第二节液压传动的工作原理及其组成 一、液压传动的工作原理 液压传动的工作原理,可以用一个液压千斤顶的工作原理来说明。

液压传动简介

哈尔滨铁道职业技术学院毕业论文 毕业题目:液压传动论文 学生:傅立金 指导教师:卜昭海 专业:工程机械 班级:08机械一班 年月

目录 摘要 (3) 一.绪论 (3) 二.液压传动技术的应用简单介绍(行走驱动) (5) 三.液压传动的特点和基本原理 (6) 四.液压传动的常见故障及排除方法 (8) 五.液压传动的广阔前景 (10) 六.总结 (11)

液压传动论文 摘要 液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 一.绪论 ----社会需求永远是推动技术发展的动力,降低能耗,提高效率,适应环保需求,机电一体化,高可靠性等是液压气动技术继续努力的永恒目标,也是液压气动产品参与市场竞争是否取胜的关键。 ----由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。综合国内外专家的意见,其主要的发展趋势将集中在以下几个方面: 1.减少能耗,充分利用能量 ----液压技术在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题: ①减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 ②减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。 ③采用静压技术,新型密封材料,减少磨擦损失。 ④发展小型化、轻量化、复合化、广泛发展3通径、4通径电磁阀以及低功率电磁阀。 ⑤改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。 ⑥为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 2.主动维护 ----液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 ----要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有

液压传动概述

单元一液压传动概述 学习要求 1.了解液压传动的发展概况 2.理解液压传动的工作原理 3.重点掌握液压系统的组成及各个部分的功用 4.掌握液压传动的优缺点 重点、难点 本章重点内容: 1.液压传动的工作原理 2.液压传动系统的组成 在重点内容中,液压传动的工作原理是重中之重,其它是该内容的延伸和深化。 本章的难点: 液压传动的工作原理 第一节液压传动的工作原理及组成 流体传动是以流体为工作介质进行能量转换、传递和控制传动。它包括液压传动、液力传动和气压传动。液压传动和液力传动均是以液体作为工作介质来进行能量传递的传动方式。 ·液压传动主要是以液体作为工作介质,利用液体的压力能来传递能量 ·液力传动主要是利用液体的动能来传递能量 液压技术的发展 17世纪中叶帕斯卡提出静压传递原理 18世纪末英国制成第一台水压机 19世纪炮塔转位器、六角车床和磨床 第二次世界大战用于兵器(功率大、反应快)战后转向民用机械、工程、农业、汽车 20世纪60年代后发展为一门完整的自动化技术 现在国外95%工程机械、90%数控加工中心、95%以上的自动线采用液压传动。 采用液压传动的程度成为衡量一个国家工业水平的重要标志 一、液压传动的工作原理 简单机床液压传动系统的工作过程,就是液压传动系统传动工作原理的真实写照。下面以机床液压传动系 统和液压千斤顶为例来说明液压传动的工作原理 ·实例1、液压千斤顶 如图1-1所示,大缸体9和大活塞8组成举升液压缸。杠杆手柄1、小 缸体2、小活塞3、单向阀4和7组成手动液压泵。 ·工作原理: (1)如提起手柄使小活塞向上移动,小活塞下端油腔容积增大,形成 局部真空,这是单向阀4打开,通过吸油管5从油箱12中吸油; (2)用力压下手柄,小活塞下移,小缸体下腔的压力升高,单向阀4 关闭,单向阀7打开,小缸体下腔的油液经管道6输入大缸体9的下 腔,迫使大活塞8向上移动,顶起重物。 (3)再次提起手柄吸油时,举升缸的下腔的压力油将力图倒流入手动泵内,但此时单向阀7自动关闭,使油液不能倒流,从而保证了重物不会自行下落。不断地往复扳动手柄,就能不断地把油液压入举升缸的下腔,使重物逐渐地升起。

汽车液压、液力与气压传动(第三版)

汽车液压、液力与气压传动(第三版) 第1章液压与气压传动和液力技术概述 1.1液压与气压传动和液力系统工作原理及组成 1.1.1液压传动工作原理和系统组成及特点 1.1.2气压传动工作原理和系统组成及特点 1.1.3液力传动原理和结构形式与特点 1.2液压油的主要性能及其选用 1.2.1液压油的物理特性 1.2.2液压油的选用 1.3液压与气压传动和液力技术在汽车上的应用及特点 复习思考题 第2章液压传动的流体力学基础 2.1液体静力学基础 2.1.1液体静压力及其特性 2.1.2液体静压力基本方程 2.1.3液体作用于固体表面上的力 2.2液体动力学基础 2.2.1基本概念 2.2.2连续性方程 2.2.3伯努利方程 2.2.4动量方程 2.3管路中液体压力损失的计算 2.3.1液体的流动状态 2.3.2沿程压力损失 2.3.3局部压力损失 2.3.4管路系统总压力损失 2.4液体流经孔口及缝隙的流量-压力特性 2.4.1液体流经孔口的流量-压力特性 2.4.2液体流经缝隙的流量-压力特性 2.5液压冲击和气穴现象 2.5.1液压冲击 2.5.2气穴现象 复习思考题 第3章液压泵和液压马达 3.1液压泵 3.1.1液压泵的工作原理 3.1.2液压泵的性能参数 3.1.3液压泵的分类 3.2齿轮泵 3.2.1外啮合齿轮泵 3.2.2内啮合齿轮泵 3.3叶片泵 3.3.1单作用叶片泵

3.3.2双作用叶片泵 3.4柱塞泵 3.4.1斜盘式轴向柱塞泵的工作原理3.4.2斜盘式轴向柱塞泵流量计算 3.4.3斜盘式轴向柱塞泵的结构 3.5液压马达 3.5.1液压马达的工作原理 3.5.2液压马达的性能参数 3.5.3液压马达的分类 3.5.4典型液压马达的结构和工作原理3.6液压泵和液压马达的选用 3.6.1液压泵的选型 3.6.2液压马达的选型 3.6.3液压泵和液压马达的使用 复习思考题 第4章液压缸 4.1液压缸的类型及其特点 4.1.1活塞式液压缸 4.1.2柱塞式液压缸 4.1.3其他液压缸 4.2液压缸的结构 4.2.1缸筒与缸盖的连接 4.2.2活塞和活塞杆的连接 4.2.3活塞杆头部结构 4.2.4液压缸的缓冲装置 4.2.5液压缸的排气装置 4.2.6液压缸的密封 4.3液压缸的设计 4.3.1液压缸主要尺寸的确定 4.3.2液压缸强度校核 4.3.3液压缸缓冲计算 复习思考题 第5章辅助装置 5.1密封装置 5.1.1概述 5.1.2常见橡胶密封圈 5.2过滤器 5.2.1过滤器的作用及主要性能指标5.2.2过滤器的类型及结构特点 5.2.3过滤器的选用和安装 5.3油箱及热交换器 5.3.1油箱 5.3.2热交换器 5.4蓄能器

相关文档