文档库 最新最全的文档下载
当前位置:文档库 › 《常见的酸和碱》习题精选

《常见的酸和碱》习题精选

《常见的酸和碱》习题精选
《常见的酸和碱》习题精选

常见的酸和碱 习题精选(一)

1.自来水生产中常通适量氯气进行杀菌消毒,氯气与水反应的产物之一是盐酸。市场上有些不法商贩为牟取暴利,用自来水冒充纯净水(蒸馏水)出售。为辨别真伪,可用下列一种化学试剂来鉴别,该试剂是( )

A .酚酞试液

B .氧化钡溶液

C .氢氧化钠溶液

D .硝酸银溶液 2.一般情况下,难溶性的碱受热分解后生成对应的化合物和水。现有下列转化:( )

++A B C A ???→????→??→盐酸氢氧化钠△

固体物质固体物质

则A 可能是( )

A .CuO

B .CO 2

C .MgO

D .Na 2O

3.山西云岗石窟有很多佛像雕刻,原本栩栩如生的雕像已经变得模糊不清,有的表面还出现了斑点,造成这种现象的原因之一是酸雨。下列气体中能形成酸雨的是( )

A .O 2

B .CO

C .SO 2

D .N 2

4.实验室里常用稀盐酸与锌反应而不宜用浓盐酸与锌反应制取氢气,其原因是______;实验室里不用块状石灰石与稀硫酸反应制取二氧化碳的原因是________;某校实验室里只有块状石灰石和稀硫酸,想要制取二氧化碳,必须将块状石灰石________,才能使反应顺利进行。

5.验证某一无色溶液是稀硫酸。填写下表中的空白:

实验步骤

现象

结论、解释或化学方程式

①取少量溶液于试管中,投入两小

粒锌

说明此溶液是一种酸

②取少量原溶液于另一支试管中,

滴加______溶液和稀硝酸,振荡。

有不溶于稀硝

酸的白色沉淀

生成。

说明该溶液是稀硫酸。反应

的化学方程式为______。

6.按下图所示的装置打开分液漏斗的活塞,让水滴入锥形瓶中,可以看到锥形

瓶中出现______、______的现象,同时在U 型管中______。这个事实告诉我们:为了防止发生事故。在稀释浓硫酸时,一定要将浓硫酸沿着器壁慢慢注入水中,并不断搅动。

7.氢氧化钾是我国古代纺织业常用作漂洗的洗涤剂。古人将贝壳(主要成分是CaCO 3)高温煅烧后的固体与草木灰(主要成分是K 2CO 3)在水中相互作用就可制得氢氧化钾。写出制氢氧化钾有关的三个化学反应方程式,并注明反应类型。

8.已知:①在化工生产中,原料往往不能全部转化成产品;②工业上常用电解纯净的饱和食盐水的方法来得到烧碱溶液,再经过浓缩,蒸发等步骤制造固体烧碱。现要分析一种仓库里的固体烧碱样品。(1)猜测一下,该烧碱样品中可能含有哪些杂质?(2)设计一个实验方案,来证实你的猜测是正确的。

实验步骤

实现现象

实验结论

一、选择题

1.下列物质属于碱类的是()

A.纯碱B.熟石灰C.生石灰D.石灰石

2.将紫色石蕊试液滴入下列溶液中,能使试液变蓝的是()

A.氢氧化钾B.石灰水C.食盐水D.溶有CO2的水

3.下列各组物质溶于水所得溶液的pH由小到大排列的是()

A. NaCl、HCl、NaOH B.NaOH、NaCl、HCl

C. HCl、NaOH、NaCl D.HCl、NaCl、NaOH

4.下列物质中,能够吸收空气中的CO2的是()

A.浓硫酸B.浓盐酸C.氢氧化钠D.石灰水

5.下列物质中,能够用来干燥氢气和氧气的是()

A.固体食盐B.固体火碱C.浓硫酸D.浓盐酸

6.下列物质中,可以敞口放置的是()

A.大理石B.消石灰C.浓硫酸D.苛性钠

7.盛放下列物质的试剂瓶敞口放置,质量增加但没有变质的是()

A.浓盐酸B.食盐水C.浓硫酸D.烧碱溶液

8.下列化学方程式中,错误的是()

A.Ca(OH)2 + CO2 = CaCO3↓ + H2O

B.KOH + H2SO4 = K2SO4 + H2O

C.2NaOH + CuSO4 = Na2SO4 + Cu(OH)2↓

D.Ca(OH)2 + 2HCl = CaCl2 + H2O

9.下列各组混合物中,分别加入蒸馏水,充分搅拌后有红褐色沉淀生成的是()

A.硫酸钠和氢氧化钠B.氯化铜和氢氧化钠

C.氯化铁和氢氧化钾D.碳酸钠和氢氧化钙

10.下列各组物质混合后,溶液呈蓝色的是()

A.铜和稀盐酸B.氧化铜和稀盐酸

C.氧化铜和D.氢氧化铜和稀硫酸

11.只用一种试剂就可以把盐酸、氢氧化钠溶液、澄清的石灰水区分开来,该试剂是()A.二氧化碳B.石蕊试液C.碳酸钠溶液D.氯化钡溶液

12.为了证明CuO属于碱性氧化物,应选用的反应是()

A.与木炭混合后加热B.与稀硫酸混合后加热

C.通入氢气后加热D.通入一氧化碳后加热

13.下列各组溶液中,在混合时酸都是过量的,反应完全后,无沉淀生成的是()

A.Ca(OH)2、Na2CO3、HCl B.AgNO3、FeCl3、HNO3

C.BaCl2、K2CO3、H2SO4 D.BaCl2、KOH、HNO3

14.X、Y、Z分别是NaOH、NaCl、H2SO4中的各一种稀溶液,将酚酞试液滴入X中,溶液变红,将此红色溶液取少量分别滴加到Y、Z中,Y仍显红色,Z中红色消失,则X、Y、Z 依次是()

A.NaOH、NaCl、H2SO4 B.NaCl、NaOH、H2SO4

C.NaOH、H2SO4、NaCl D.H2SO4、NaOH、NaCl

15.将17.1克10%的Ba(OH)2溶液跟10克10%的H2SO4溶液均匀混合后过滤,得到的滤液是()

A.水B.含少量H2SO4的水溶液

C.含少量Ba(OH)2的水溶液D.BaSO4的不饱和溶液

二、填空题

1.久置的苛性钠溶液易发生变质,这是由于它与______发生了反应,反应的化学方程式为__________。如果要检验苛性钠是否变质,可取出少量溶液,向其中滴加______,若有______产生,则证明已经变质。此反应的化学方程式为_____________。为防止固体苛性钠变质,一定要_____保存。

2.盛放石灰水的试剂瓶内壁常有一层白膜,清洗白膜的方法是先加__________,其反应的化学方程式为____________________,再用水冲净。

3.石灰膏抹的墙过一段时间后变得坚硬,这是因为(用化学方程式表示)__________。

4.为了防止空气受到硫的氧化物(SO2)的污染,可用烧碱液吸收二氧化硫,其反应的化学方程式为____________________。

5.填表

名称氢氧化钠

俗称盐酸生石灰

化学式Ca(OH)2NaCl

写出化学方程式

1.写出下列转化的化学方程式:

2.写出由石灰石、碳酸钠和水做原料制备氢氧化钠的各步反应的化学方程式。

四、计算题

73克10%的盐酸与80克氢氧化钠溶液恰好完全反应。求NaOH溶液中溶质的质量分数和所得溶液中溶质的质量分数。

参考答案

1.D 点拨:AgNO 3+HCl==AgCl ↓+HNO 3

2.AC 点拨:如CuO+2HCl==CuCl 2+H 2O ,CuCl 2+2NaOH==Cu (OH )2↓+2NaOH ,22Cu(OH)CuO+H O ? 3.C 点拨:酸雨主要是SO 2与水作用生成H 2SO 3或H 2SO 4,H 2SO 3、H 2SO 4对大理石有腐蚀作用

4.浓盐酸有挥发性,使制取的氢气不纯;石灰石与H 2SO 4反应生成微溶的CaSO 4覆盖在块状石灰石的表面,

阻止了反应继续进行;粉碎。

5.①有气泡产生。②BaCl 2(或Ba (NO 3)2);BaCl 2+H 2SO 4=BaSO 4↓+2HCl 。

6.水浮在硫酸上面,水立即沸腾,硫酸液滴飞溅;甲处水面下降,乙处水面上升。

7.(1)分解反应(2)CaO+H 2O=Ca (OH )2化合反应(3)Ca (OH )2+K 2CO 3=CaCO 3↓+2KOH 复分解反应 8.(1)可能含有NaCl 和Na 2CO 3(2)见下表

实验步骤

实验现象

实验结

把固体烧碱溶于水 取少量溶液,滴入稀酸

有气体逸出

有Na 2CO 3

取少量溶液,先滴入过量稀硝酸,再滴入硝酸银溶液(或取少量溶液,先滴入足量硝酸银溶液,再滴入过量稀硝酸)

先有气体逸出,滴入硝酸银溶液后有白色沉淀(相应有:先有沉淀生成,滴入过量稀硫酸后,部分沉淀溶解,并有气体逸出)

有NaCl

参考答案:

一、1 B 2 AB 3 D 4 CD 5 BC 6 A 7 C 8 BD 9 C 10 BD 11 C 12 B 13 AD 14 A 15 B

二、1.CO 2 2NaOH + CO 2 = Na 2CO 3 + H 2O 盐酸 气泡 Na 2CO 3 + 2HCl = 2NaCl + H 2O + CO 2↑ 密封 2.盐酸 CaCO 3 + 2HCl = CaCl 2 + H 2O +CO 2↑ 3. Ca (OH )2 + CO 2 = CaCO 3↓+ H 2O 4. 2NaOH + SO 2 = Na 2SO 3 + H 2O 5. 名称

氢氯酸

氢氧化钙

氧化钙

氯化钠

俗称

熟石灰、消石灰 火碱、烧碱、苛性钠

食盐

化学式

HCl

CaO

NaOH

三、1.①

③ CuO + H 2SO 4 = CuSO 4 + H 2O

④ CuSO 4 + 2NaOH = Cu (OH )2↓+ Na 2SO 4

⑤ Cu (OH )2 + 2HCl = CuCl 2 + 2H 2O

2.①

② CaO + H 2O = Ca (OH )2

③ Ca (OH )2 + Na 2CO 3 = CaCO 3↓+ 2NaOH 四、

解:设NaOH 质量为x ,生成NaCl 的质量为 y

2NaOH + HCl = NaCl + H O 40 36.5 58.5

x 73g 10% y 4036.5

x=8g

x 73g 10%58.536.5 y=11.7g y 73g 10%

8g

NaOH%=100%10%

80g 11.7g

NaCl%=100%7.6%

73g+80g

?=?=??=?=

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

排列组合练习题及答案精选

排列组合习题精选 一、纯排列与组合问题: 1. 从9人中选派2人参加某一活动,有多少种不同选法? 2. 从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90种不同的方案,那么男、女同学的人数是( ) A.男同学2人,女同学6人 B. 男同学3人,女同学5人 C.男同学5人,女同学3人 D. 男同学6人,女同学2人 4. 一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有() A.12个 B.13 个 C.14 个 D.15 个 答案:1、 2 2 72 3 、选 B. 设男生n 2 1 3 2 2 9 9 n 8 n3 。、mn m C 362、A 人,则有C C A 904 A A58 选 C. 二、相邻问题: 1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法? 2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为() A.720 B.1440 C.2880 D.3600 答案:1. 2 4 3 2 5 2 4 3 2 5 AA 48(2)选BAAA1440 三、不相邻问题: 1. 要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法? 1

盈亏问题(经典例题)

盈亏问题(经典例题) 1、某校安排新生宿舍,如果每间住12人,就会有34人没有宿舍住;如果每间住14人,就会空出4间宿舍。这个学校有多少间宿舍?要安排多少个新生?练习 1、学校组织同学去划船,如果每只船坐4人,则少3只船;如果每只船坐6人,还有2人站在岸边,共有多少条船?有多少人去划船? 2、小朋友分糖果,每人分10粒,正好分完;若每人多分6粒,则有3个小朋友分不到糖果。问:有多少个小朋友?有多少粒糖果? 3、某校组织学生活动,分成若干组,每组8人,后来改为每组12人,这样就减少每个组,有多少组?参加活动的有多少人? 4、校规定上午8时到校。王强上学去,如果每分钟走60米,可以提前10分钟到校;如果每分走50米,可以提前8分钟到校。问:王强什么时候离开家?他家离学校多远? 5、一个学生从家到学校,如果用每分50米的速度走,他会迟到4分;后来他改用每分60米的速度前进;结果早到学校5分。这个学生家到学校的路程是多少米?练一练 1、学校发铅笔给三好学生,每人8支少15支,每人6支少7支,三好学生有多少个?铅笔有多少支?

2、三(1)班同学去公园划船,如果每条船坐4人,则少1条船;如果每条船坐6人,则多出4条船,公园里有多少条船?三(1)班有多少学生? 3、某校给学生分宿舍,如果每间住6人,则有70人没有床位;如果每间住8人,则少一件宿舍,问宿舍有多少间?学生有多少人? 4、李师傅通过查询得知手机还剩下一些话费。他算了算,如果每天花费20元,到月底就欠24元;如果每天花费16元,到月底就欠8元。到月底还有几天?还有多少元话费? 5、王老师从家去学校开会。如果每分钟走60米,就要迟到2分钟;如果每分钟走80米,就可提前1分钟到学校。离开会还有几分钟?王老师家到学校有多少米? 6、少先队员去植树,如果每人挖5个树坑,还有3个坑没人挖;如果其中2人各挖4个,其余的人各挖6个树坑,就恰好挖完所有树坑。少先队员一共挖多少树坑? 7、体育老师和一个朋友一起上街买足球,他发现自己身边的钱,如果买10个“冠军”牌足球,还差42元;后来他向朋友借了1000元;买了31个“冠军”牌足球,结果多了13元。每个足球多少元?体育老师原来身边有多少元? 8、某小学学生乘汽车去春游,如果每辆车坐65人,就会有15人不能乘车;如果每辆车多坐5人,恰好多余了一辆车。一共有多少辆车?有多少个学生?

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合的21种例题

高考数学复习 解排列组合应用题的21种策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有 A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、4441284 3 3 C C C A 种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 7.名额分配问题隔板法: 例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?

学而思第4讲盈亏问题教师版

第4 讲盈亏问题 教学目标本讲主要学习三种类型的盈亏问题: 1. 理解掌握条件转型盈亏问题: 2. 理解掌握关系互换性盈亏问题; 3. 理解掌握其他类型的盈亏问题,本节课要求老师首先上学生理解盈亏问题其本公式的含义,在通过例题让学生掌握解答应困问题的其本技巧,培养学生的思维分析能力。经典精讲盈亏问题,故名思意有剩下就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产程这种盈亏现象。盈亏问题的关键是专注两次分配时盈亏总量的变化。我们把盈亏问题分为三类:“一盈一亏”、“两盈” “两亏”。 1. “盈亏”型例如:学而思学校四年级基础班的同学分糖果,如果每人分4 粒就多9 粒,如果每人分5 粒则少6 粒,问:有多少位同学分多少粒糖果?【分析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种没人分4 粒就多9 粒,,第二种每人分5 粒则少6 粒,两种不同方案一多一少差9+6=15(粒),相差原理在于两种方案分配数不同,两次分配数之差为15 1 15 (位),糖果的粒数为: 4 15 9 69 (粒)。 2. “盈盈”型 例如:老猴子给小猴子分桃,每只小猴10 个桃,就多出9 个桃,每只小猴分11个桃则多出2 个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?

分析:老猴子的第一种方案盈9 个桃子,第二种方案盈2个,所以盈亏综合是9-2=7(个),两次分配之差是11-10-1(个)有盈亏问题公式得,有小猴子:7 1 7 (只),老猴子有7 10 9 79 (个)桃子。 3. “亏亏”型例如:学而思学校新近一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差9本,第二次就只差2本了呢?因为两次分配数量不一样,第一次分配时每人少发一本,也就是共有7 1 7 (人)书有7 10 9 61(本)。根据以上具体题目的分析,可以得出盈亏问题的基本关系式: (盈+亏)两次分得之差=人数或单位 数 (盈-盈)两次分得之差=人数或单位数 (亏-亏)两次分得之差=人数或单位数条件转化型的盈亏问题这种类型的题目不能直接计算,要将其中的一个条件转化,使之成为普通盈亏问题。 【例1】军队分配宿舍,如果每间住3 人,则多出20 人;如果每间住6 人,余下2 人可以每人住一个房间,现在每间住10 人,可以空 出多少个房间? 【分析】每间住6 人,余下2人可以每人各住一个房间,说明多出两个房间,同时多出两个人,也就是第二次分配少6 2 2 10 (人),那么两次分配方案人数相差20+10=30(人),即可以空出10-50 10 5 (间)房间。 【铺垫】学校给一批新入学分配宿舍。如果每个房间住12人,则34 人没有位置;如果每个房间住14人,则空出4 个房间。求学生宿舍有多少间,住

高考排列组合典型例题

高考排列组合典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

排列组合典型例题 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439 =+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千 位数是“0”排列数得:)(283914 A A A -?个 ∴ 没有重复数字的四位偶数有 22961792504)(28391439 =+=-?+A A A A 个.

排列组合专题复习与经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

2021年盈亏问题的经典例题

盈亏问题 欧阳光明(2021.03.07) 课时一 一.理解盈亏问题的三种基本类型 1“盈亏”型 例如:学而思学校四年级基础班的同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果? 【分析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种没人分4粒就多9粒,,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原理在于两种方案分配数不同,两次分配数之差为5-4=1(粒)。有盈亏问题公式得:人数:15115 ?+=(粒)。 ÷=(位),糖果的粒数为:415969 2“盈盈”型 例如:老猴子给小猴子分桃,每只小猴10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子? 分析:老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏综合是9-2=7(个),两次分配之差是11-10-1(个)有盈亏问题公式得,有小猴子:717 ÷=(只),老猴子有710979 ?+=(个)桃子。 3.“亏亏”型

例如:学校新近一批书,将它们分给几位老师,如果每人发9本,还差9本,每人发10本,还差16本,那么一共有好多位老师,好多本书 分析:第一种方案亏9本书,第二种方案亏16本书,所以盈亏综合是16-9=7(个),两次分配之差是10-9-1(个)有盈亏问题公式得,人数:717 ÷=(位),书有7×10-9=54本书。 根据以上具体题目的分析,可以得出盈亏问题的基本关系式: (盈+亏)÷两次分得之差=人数或单位数 (盈-盈)÷两次分得之差=人数或单位数 (亏-亏)÷两次分得之差=人数或单位数 二、练习 1、“盈亏”型 (1)某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人? 2“盈盈”型 (1)明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少? 3.“亏亏”型 (1)学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?课时二 一.复习盈亏问题的三种基本类型

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

盈亏问题计算公式+例题分析(打印版)

数学运算:盈亏问题计算公式 把若干物体平均分给一定数量的对象,并不是每次都能正好分完。 如果物体还有剩余,就叫盈; 如果物体不够分,就叫亏。 凡是研究盈和亏这一类算法的应用题就叫盈亏问题。 盈亏问题的常见题型为给出某物体的两种分配标准和结果,来求物体数量和参与分配的对象数量。由于每次分配都可能出现刚好分完、多余或不足这三种情况,那么就会有多种结果的组合,这里以一道典型的盈亏问题对三种情况的几种组合加以说明。 注意:公司中两次每人分配数的差也就是大分减小分 一、基础盈亏问题 1. 一盈一亏(不够)【一次有余(盈),一次不够(亏)】可用公式:(盈+亏)÷(两次每人分配数的差)=人数。 例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?” 解:(7+9)÷(10-8)=16÷2=8(个)………………人数 10×8-9=80-9=71(个)………………………桃子 或8×8+7=64+7=71(个)(答略) 测试:如果每人分9 个苹果,就剩下10 个苹果;如果每人分12 个苹果,就少20 个苹果。 2. 两次皆盈(余),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。 例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?” 解:(680-200)÷(50-45)=480÷5=96(人) 45×96+680=5000(发)或50×96+200=5000(发)(答略) 测试:如果每人分8 个苹果,就剩下20 个苹果;如果每人分7 个苹果,就剩下30 个苹果。 3. 两次皆亏(不够),可用公式:(大亏-小亏)÷(两次每人分配数的差)=人数。 例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”解:(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略) 测试:如果每人分11 个苹果,就少10 个苹果;如果每人分13 个苹果,就少30 个苹果。

典型盈亏问题

内容概述 盈亏问题是一类生活中很常见的问题.按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义. 解盈亏问题的窍门可以用下面的公式来概括: (盈+亏)÷两次分得之差=人数或单位数; (盈-盈)÷两次分得之差=人数或单位数; (亏-亏)÷两次分得之差=人数或单位数. 上面的公式不能盲目套用,在真正掌握其内涵以后再运用公式解题将会使你面临盈亏问题时而游刃有余,不可盲目套用公式. 教学目标 1、理解并掌握一般盈亏问题的解法; 2、能进行简单的条件转换解决相关盈亏问题,初步体会转化的数学思想; 3、通过盈亏问题的数量关系的分析,提高学员分析问题的能力。 盈亏问题

引入 孙悟空偷了好多人参果与牛魔王以及几个好朋友一起分享,但是分的时候他却发愁了,每个人分3个还差2个,每个人分2个又多了4个,你知道孙悟空一共偷了多少个人参果吗? 上节课回顾 一、什么是还原问题: 已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问 题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题. 二、如何解答还原问题: 还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.

例 1 例2 幼儿园老师给一部分小朋友分糖果,如果每人分10块糖,还差9块糖; 每人分9块糖,还多2块糖,请问有多少位小朋友,多少块糖? 【拓展练习】 猫妈妈给小猫分鱼,每只小猫分9条鱼,就多出8条鱼,每只小猫分11条鱼,还少8条鱼,那么一共有多少只小猫?猫妈妈一共有多少条鱼? 老师给一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒就都3粒,问:有多少位同学分多少粒糖果? 【拓展练习】 学校买来一批足球分给各班:如果每班分4个,就多6个;如果每班分2个,就多26个,则正好分完,学校一共有多少个班?买来多少个足球?

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理 有281814 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439 =+=??+A A A A 个. 典型例题二 例2 三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法 (2)如果女生必须全分开,可有多少种不同的排法 (3)如果两端都不能排女生,可有多少种不同的排法 (4)如果两端不能都排女生,可有多少种不同的排法 解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有66A 种不同排法.对于其中的每一种排法,三个女生之间又都有33A 对种不同的排法,因此共有43203366=?A A 种不同的排法. (2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都 有36A 种方法,因此共有144003655 =?A A 种不同的排法. (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都 有66A 种排法,所以共有1440066 25=?A A 种不同的排法. (4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位 就不再受条件限制了,这样可有7715A A ?种不同的排法;如果首位排女生,有13A 种 排法,这时末位就只能排男生,有15A 种排法,首末两端任意排定一种情况后,

(完整版)盈亏问题的经典例题

盈亏问题 课时一 一.理解盈亏问题的三种基本类型 1“盈亏”型 例如:学而思学校四年级基础班的同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【分析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种没人分4粒就多9粒,,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原理在于两种方案分配数不同,两次分配数之差为5-4=1(粒)。有盈亏问题公式得:人数:15115 ?+=(粒)。 ÷=(位),糖果的粒数为:415969 2“盈盈”型 例如:老猴子给小猴子分桃,每只小猴10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子? 分析:老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏综合是9-2=7(个),两次分配之差是11-10-1(个)有盈亏问题公式得,有小猴子:717 ?+=(个)桃子。 ÷=(只),老猴子有710979 3.“亏亏”型

例如:学校新近一批书,将它们分给几位老师,如果每人发9本,还差9本,每人发10本,还差16本,那么一共有好多位老师,好多本书 分析:第一种方案亏9本书,第二种方案亏16本书,所以盈亏综合是16-9=7(个),两次分配之差是10-9-1(个)有盈亏问题公式得,人数:717 ÷=(位),书有7×10-9=54本书。 根据以上具体题目的分析,可以得出盈亏问题的基本关系式: (盈+亏) ÷两次分得之差=人数或单位数 (盈-盈)÷两次分得之差=人数或单位数 (亏-亏)÷两次分得之差=人数或单位数 二、练习 1、“盈亏”型 (1)某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人? 2“盈盈”型

排列&组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

相关文档
相关文档 最新文档