文档库 最新最全的文档下载
当前位置:文档库 › SEO最好使用静态页面

SEO最好使用静态页面

SEO最好使用静态页面
SEO最好使用静态页面

SEO最好使用静态页面

动态页面

基本我们对一个网站进行系统的SEO操作,都会去分析一个网站的URL,如果URL里面带有比较复杂的符号参数的动态形式,一般我们都会进行伪静态的处理。这样去做,就是为了提高网站的收录,因为之前一直有着这样一种说法,搜索引擎对于网址的分析识别能力有限,如果是参数过于复杂是比较难抓取的。那么对URL的处理,也就是SEO操作非常有必要的一步。推荐阅读:如何从SEO的角度去设计网站URL?

SEO:而优点是把动态页面,比如说或者,转换为,但是这样的一种表面的转换,对于搜索引擎有没好处,这是谁也不敢讲的。但是我们不能确定的东西,不能认为他不存在。伪静态对SEO的作用和真静态相同,被访问时会导致服务器负载增大,但它可以实时动态更新的确非常方便。只要将负载问题控制合理,使用伪静态的利大于真静态,所以在很多论坛程序、CMS内容管理程序上都使用了伪静态技术。

缺点:用户访问速度较慢,为什么会访问动态页面较慢呢。这个问题我们就必须从动态页面的访问机制说起了,其实我们的服务器有一个解释引擎,当用户访问的时候,这个解释引擎就会把动态页面翻译为静态页面,这样大家就能够在浏览器里面查看源码了。园林机械网https://www.wendangku.net/doc/2114578050.html,而这个源码就是解释引擎翻译以后的源码。除访问速度较慢以外,动态页面的数据是从数据库里面调用过来的,如果访问人数非常多,数据库的压力就会非常大的,不过现在动态程序都是使用了缓存技术。但是总体来讲,动态页面对于服务器的压力比较大一点。同时动态页面的网站一般对服务器高求要比较高一些,同时访问的人越多也会造成服务器压力越大。

优点:相比其他两种页面,速度最快。不仅仅是加载速度最快,而且不需要从数据库里面提取数据,速度快的同时,也不会对服务器产生压力。

优点:大家都知道静态页面对SEO有很大益处,而且静态页面对服务器的负载很小,但静态页面的缺点是不能随时更新。对于伪静态的优点,这个并不好讲,伪相比动态网页而言,并没有提到速度的提升,相比较而言,因为是假静态页面,其实还是一个动态页面,也是同样需要翻译为静态页面的。最大的好处就是让搜索引擎把自己的网页当做静态页面来处理。SEO:静态页面对于搜索引擎常友好的,至于说为什么友好,可能有很多个人并不清楚,我们直接在优点里面,就能够找到搜索引擎喜欢的东西,搜索引擎最喜欢的就是速度快,网站速度快,表明你的网站服务器非常的好,虽然说这个速度的提升常的微弱的,可能只有几豪秒,或者更少的速度提升,但是可能就是这一点点的时间,让搜索引擎更喜欢你呢。这样的理论和现象都是值得各位站长深思的,所以希望大家多做研究,争取总结出更多更好的经验。

利用导数解决生活中的优化问题

利用导数解决生活中的优化问题 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。 一.解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 二.利用导数解决优化问题的基本思路: 三、应用举例 例1(体积最大问题)用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 解:设长方体的宽为(m)x ,则长为2(m)x ,高为 181234.53(m)042x h x x -??==-<< ?? ?.故长方体的体积为 22323()2(4.53)96(m )02V x x x x x x ??=-=-<< ??? . 从而2()181818(1)V x x x x x '=-=-. 令()0V x '=,解得0x =(舍去)或1x =,因此1x =. 当01x <<时,()0V x '>;当312 x <<时,()0V x '<. 故在1x =处()V x 取得极大值,并且这个极大值就是()V x 的最大值. 从而最大体积233 (1)91613(m )V V ==?-?=,此时长方体的长为2m ,高为1.5m . 答:当长方体的长为2m ,宽为1m ,高为1.5m 时,体积最大,最大体积为33m . 点评:用导数来解决实际问题时,一般首确定自变量,选定了自变量,要搞清自变量的围,再列出关系式,对关系式进行求导,最后求出最值来。 例2(帐篷设计问题)请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥。试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题 如:化简后我们分析得到,对[],x a b ?∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ?∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题 如:化简后我们分析得到,对[]12,,x x a b ?∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ?∈,[]2,x c d ?∈使12()()f x g x ≥,那么只需 min min ()()f x g x ≥ 如:化简后我们分析得到,[]1,x a b ?∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(201 4.03苏锡常镇一模那题特别典型) 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是 ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是1 1,,e e 之类) ,所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一.二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知()f x =R ,求a 的取值范围 思考:① 引入定义域(非R ) ②参数在二次项,就需考虑是否为0 ③引入高次(3次,4次,1 x ,ln x ,x e 等等) ④引入2a ,3a 等项(导致不能分离变量)

最优化方法,汇总

最优化方法结课作业 年级数学121班 学号201200144209 姓名李强

1、几种方法比较 无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。(直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。间接法:又称解析法,是应用数学极值理论的解析方法。首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。)在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。 一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。 一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。 在多变量函数的最优化中,迭代格式Xk+1=Xk+akdk其关键就是构造搜索方向dk和步长因子ak 设Φ(a)=f(xk+adk) 这样从凡出发,沿搜索方向dk,确定步长因子ak,使Φ(a)<Φ(0)的问题就是关于步长因子a 的一维搜索问题。其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。 一维搜索通常分为精确的和不精确的两类。如果求得ak使目标函数沿方向dk达到极小,即使得f (xk+akdk)=min f (xk+ adk) ( a>0)则称这样的一维搜索为最优一维搜索,或精确一维搜索,ak叫最优步长因子;如果选取ak使目标函数f得到可接受的下降量,即使得下降量f (xk)一f (xk+akdk)>0是用户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维搜索。由于在实际计算中,一般做不到精确的一维搜索,实际上也没有必要做到这一点,因为精确的一维搜索需要付出较高的代价,而对加速收敛作用不大,因此花费计算量

导数与函数的极值最值问题解析版

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步判断'()f x 在方程的根的左、右两侧值的符号; 第四步利用结论写出极值. 例1已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于() A .11或18B .11C .18D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2 ,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或? ??=-=33b a .?

当???=-=33b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值.?当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 () A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为函数x m x m x x f )1(2)1(2 1 31)(23-++-= 在)4,0(上无极值, 而()20,4∈,所以只有12m -=,3m =

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

最新导数的应用之优化问题

导数的应用之优化问 题

导数的综合应用--优化问题 广东省和平县福和高级中学高三数学组颜贞 1.知识与能力 通过用料最省,利润最高等优化问题,使学生体会导数在解决实际问题中的作用,并且会利用导数解决简单的实际生活优化问题。 2.过程与方法 让学生参与问题的分析,探究解决过程,体会数学建模,从而掌握用导数法解决优化问题的方法。 3.情感、态度与价值观 形成数学建模思想,培养学生应用数学意识,进一步体会导数作为解决函数问题的工具性。激发学生学习热情,培养学生解决问题的能力和创新能力. 4.教学重点和难点 优化问题的数学建模与求解方法的掌握. 上课内容详细分解: 一、复习导数作为工具的具体体现: 1.解决函数的单调性 2.解决函数在某一区间内的极值或最值 3.知识点的综合运用 二、提出本节课听课要求 1.深化理解导数作为工具的卓越表现力 2.掌握用导数法解决生活中优化问题的一般步骤 3.解决生活中优化问题时应注意的问题 三、回顾解决优化问题的一般常用方法 1.基本函数型(如二次函数型,指数对数型)

2.基本不等式型 3.线性规划型…. 最后提出本节课的目的:用导数法解决实际生活中的优化问题. 【设计理念:通过复习知识点,构建学生的知识网络,对开展进一步的教学有一定的好处,也适合学生的学习习惯。】 四、探究实例一(用料最省问题) 老师:设圆柱形金属罐的容积一定,请问怎么来设计它的高与底面的关系,才能使所用材料最身? 学生:积极探索,寻求关系并初步分析问题。部分学生可以解决问题. 老师:(详细分析) 解:设圆柱的高为h ,底面半径为r ,容积为V 。则用料最省问题即可转化为求圆柱体的表面积最小问题。可找函数关系:222r rh S ππ+=, 由V=22r V h h r ππ= ?,有2222222)(r r V r r V r r S ππππ+=+?=.令0)(='r S ,可求得时用料最省。达到最大,即此时r V r V h S V r 24,2323====πππ 【设计理念:探究性学习是我们在新课程改革中一个很重要的成果,通过这道实际例题,既可以培养学生的学习热情,又可以充分调动学生的积极探索的欲望,真正将学生从“要去学”转变到“我要学”.】 五、探究实例一的变式 (问题转化为利润型问题) 老师:某制造商制造并销售瓶装球形饮料,瓶子的制造成本是0.82r π 分/个,已知每出售1mL 饮料,获利0.2分,且制造商能制作的瓶子的最大半径是6cm 。请分析瓶子的半径与利润的关系. 学生:同桌之间开始讨论,有的在独立思考. 老师:(详细分析) 解:由于瓶子的半径为r ,所以每瓶饮料的利润是

导数在生活中的优化问题举例

1.4第一课时 生活中的优化问题举例 一、课前准备 1.课时目标 (1)了解函数极值和最值的基本应用. (2)会用导数解决某些实际问题. 2.基础预探 利用导数解决生活中的优化问题的一般步骤: (1) 分析实际问题中各量之间的关系,建立实际问题的 ,写出实际问题中变量之间的 ,根据实际意义确定定义域. (2) 求函数()y f x =的导数f '(x ),解方程f '(x )=0,求定义域内的根,确定 . (3) 比较函数在 和极值点处的函数值,获得所求的最大(小)值. (4) 还原到原 中作答. 三、学习引领 1. 常见的优化问题 主要有几何方面的应用,物理方面的应用,经济方面的问题等.例如,使经营利润最大、生产效率最高,或使用力最省、用料最少、消耗最省等等,需要寻求相应的最佳方案或最佳策略,这些都是最优化问题.导数是解决这类问题的基本方法之一. 2.解决优化问题的方法 首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系.再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 解决优化问题的基本程序是: 读题 建模 求解 反馈 (文字语言) (数学语言) (导数应用) (检验作答) 3. 需要注意的几个问题 (1) 目标函数的定义域往往受实际问题的具体意义约束,所以在建立目标函数时,需要注意定义域的确定,并注意定义域对函数最值的影响. (2) 如果实际问题中的目标函数在定义域上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较,但要注意说明极值点的唯一性. 四、典例导析 题型一 几何图形中的优化问题 例1请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE =FB =x cm (1)某广告商要求包装盒侧面积S (cm 2 )最大,试问x 应取何值? (2)某广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.

用导数新解一类最值问题

龙源期刊网 https://www.wendangku.net/doc/2114578050.html, 用导数新解一类最值问题 作者:成宝娟李钊 来源:《宁波职业技术学院学报》2015年第03期 摘要:目前,高等数学教材中都没有介绍开区间或者半开半闭区间、无穷区间上连续函数的最值或者有有限个间断点的函数的最值问题。文章给出了开区间(a,b)或半开半闭区间(a,b]或[a,b)上连续函数的最值,同时给出了无限区间((-∞,+∞),(-∞,a),(-∞,a],[b,+∞),(b,+∞))上连续函数的最值以及有有限个间断点的函数最值的求法。 关键词:导数;自主学习;最值;区间;连续 中图分类号: G 421,O 13 文献标志码: A 文章编号: 1671-2153(2015)03-0078-04 0 引言 求函数的最值一直是数学教学中的热点问题,并且最值在日常生活以及学生专业学习中有着非常重要的应用[1]。求函数的最值常用的方法有:配方法、判别式法、换元法、不等式 法、利用函数单调性求最值、平方法、数形结合法、导数法、线性规划法等[2]。在高职高专 的数学教学中,一般重点介绍了最大值和最小值定理:闭区间上连续函数一定存在最大值和最小值[3]。各种高等数学教材中都介绍了利用导数求闭区间上的连续函数的最大值和最小值的 方法,而对开区间或者半开半闭区间、无穷区间上连续函数的最值或者有有限个间断点的函数的最值却都没有介绍。在自主学习[4]过程中,为了激发学生的发散思维、创新[5]精神,应适时向学生提问:课本为什么对这类问题不作介绍呢?难道是课本遗漏了吗?可不可以借鉴闭区间上连续函数的最值的求法?本文对有限开区间或者半开半闭区间以及无穷区间上连续函数的最值、有有限个间断点的函数的最值进行探讨。首先规定-∞ 1 有限开区间、半开半闭区间上连续函数的最值 2 无限区间上连续函数的最值 3 有有限个间断点的函数最值 对于有有限个间断点的函数最值则可以转化为有限个连续区间上函数的最值问题。 设f(x)在某个区间上有有限个间断点,则求f(x)在此区间上的最值的求解步骤如 下: (1)求出函数f(x)在此区间上间断点,f'(x)=0的点和f'(x)不存在的点,计算以上各点对应的函数值,以及相应端点处函数相应的极限值、间断点处函数相应的左右极限值,比较以上各值,设其中最大的为M,最小的为m。

用导数法求函数的最值的练习题解析

用导数法求函数的最值的练习题解析 一、选择题 1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若 M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0 D .以上都有可能 [答案] A [解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A. 2.设f (x )=14x 4+13x 3+1 2x 2在[-1,1]上的最小值为( ) A .0 B .-2 C .-1 D.13 12 [答案] A [解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0. ∴f (-1)=5 12,f (0)=0,f (1)=13 12 ∴f (x )在[-1,1]上最小值为0.故应选A.

3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.22 27 B .2 C .-1 D .-4 [答案] C [解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =1 3 或x =-1 当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =22 27;当x =1时,y =2. 所以函数的最小值为-1,故应选C. 4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为34 B .最大值为1,最小值为4 C .最大值为13,最小值为1 D .最大值为-1,最小值为-7 [答案] A [解析] ∵y =x 2-x +1,∴y ′=2x -1,

导数极值最值问题

导数在研究函数中的应用 知识梳理 一 函数的单调性 1、利用导数的符号判断函数的单调性: 一般地,设函数)(x f y =在某个区间可导,如果'f )(x 0>,则)(x f 为增函数;如果' f 0)(是)(x f 在某个区间上为增函数的充分非必要条件,' f 0)(

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): min f(X) XeΩ h√X)= OJ = U1 L s.t S i(X)≥ OJ = l9‰u,m 式中f(X)称为目标函数(或求它的极小,或求它的极大),Si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X ,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

■1:顿法的直本思想显*在扱小点附近用-阶T吓1小多顶式近似[3标函数['、宀进而求出极小点的估计值, 老億问题 min FWHElRl < 9i 3. 1 } 令 祕Jr) = /(√i,) +/(J iit Xx-J ut) +y∕(j't,K4T-J01 }' . 耳令 √(+f > - ∕t d时)+ j f*

导数在解决实际问题中的应用

导数在解决实际问题中的应用 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面: 1、与几何有关的最值问题; 2、与物理学有关的最值问题; 3、与利润及其成本有关的最值问题; 4、效率最值问题。 解决实际问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 例1在边长为60 cm 的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? 解法一:设箱底边长为x cm ,则箱高602x h -= cm ,得箱子容积 2 60)(32 2x x h x x V -== )600(<

x x x V 2)260()(-=)300(<

用导数处理实际问题中的最优化问题

教学过程 一、复习预习 复习1:函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________ 复习2:函数()sin f x x x =-在[0,]2π 上的最大值为_____;最小值为_______. 二、知识讲解 创设情景 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题. 新课讲授 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。 解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路:

考点/易错点1注意实际问题中的定义域 将实际问题抽象成数学问题之后,往往容易忽略函数的定义域,比如实际问题的人数必须是正整数等等。 三、例题精析 【例题1】 【题干】汽油的使用效率何时最高 我们知道,汽油的消耗量w (单位:L )与汽车的速度v (单位:km/h )之间有一定的关系,汽油的消耗量w 是汽车速度v 的函数.根据你的生活经验,思考下面两个问题: (1) 是不是汽车的速度越快,汽车的消耗量越大? (2) “汽油的使用率最高”的含义是什么? 【答案】因为 w w g t G s s v t === 这样,问题就转化为求g v 的最小值.从图象上看,g v 表示经过原点与曲线上点的直线的斜率.进一步发现,当直线与曲线相切时,其斜率最小.在此切点处速度约为90/km h . 因此,当汽车行驶距离一定时,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此时的车速约为90/km h .从数值上看,每千米的耗油量就是图中切线的斜率,即()90f ',约为 L . 【解析】研究汽油的使用效率(单位:L/m )就是研究秋游消耗量与汽车行驶路程的比值.如果用G 表示每千米平均的汽油消耗量,那么w G s =,其中,w 表示汽油消耗量(单位:L ),s 表示汽油行驶的路程(单位:km ).这样,求“每千米路程的汽油消耗量最少”,就是求G 的最小值的问题. 通过大量的统计数据,并对数据进行分析、研究, 人们发现,汽车在行驶过程中,汽油平均消耗率g (即每小时的汽油消耗量,单位:L/h )与汽车行驶的平均速度v (单位:km/h )之间有如图所示的函数关系()g f v =. 从图中不能直接解决汽油使用效率最高的问题.因此,我们首先需要将问题转化为汽油平均消耗率g (即每小时的汽油消耗量,单位:L/h )与汽车行驶的平均速度v (单位:km/h )之间关系的问题,然后利用图像中的数据信息,解决汽油使用效率最高的问题. 【例题2】

导数求最值(含参)

含参导数求最值问题(1—2) 编制人:闵小梅审核人:王志刚 【使用说明及学法指导】 1.完成预习案中的相关问题; 2.尝试完成探究案中合作探究部分,注意书写规范; 3.找出自己的疑惑和需要讨论的问题准备课堂讨论质疑。 【学习目标】 1.掌握利用导数求函数最值的方法 2.会用导数解决含参函数的综合问题 【预习案】 一、知识梳理 函数的最值与导数 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值. (2)求y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数y=f(x)在(a,b)内的极值. ②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 二、尝试练习 1.设函数f(x)=x3-x2 2 -2x+5,若对任意的x∈[-1,2],都有f(x)>a,则实 数a的取值范围是________ (-∞,7 2) 2.已知函数f(x)=ax3-3x+1对x∈(0,1]总有f(x)≥0成立,则实数a的取值范围是________ [4,+∞)

【探究案】 一、合作探究: 例1. 设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间; 增(0,2),减(2,2) (2)若f (x )在(0,1]上的最大值为12,求a 的值. a =1 2 二、拓展探究: 例2. 已知函数f(x)=lg(x +a x -2),其中a >0且为常数. (1)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;ln a 2 (2)若对任意x∈[2,+∞)恒有f(x)>0,试确定实数a 的取值范围.(2,+∞) 三、深层探究:单调性的应用 例3.求f (x )=ax x e -? (a >0)在x ∈[1,2]上的最大值

导数的应用之优化问题

导数的综合应用--优化问题 广东省和平县福和高级中学高三数学组颜贞 1.知识与能力 通过用料最省,利润最高等优化问题,使学生体会导数在解决实际问题中的作用,并且会利用导数解决简单的实际生活优化问题。 2.过程与方法 让学生参与问题的分析,探究解决过程,体会数学建模,从而掌握用导数法解决优化问题的方法。 3.情感、态度与价值观 形成数学建模思想,培养学生应用数学意识,进一步体会导数作为解决函数问题的工具性。激发学生学习热情,培养学生解决问题的能力和创新能力. 4.教学重点和难点 优化问题的数学建模与求解方法的掌握. 上课内容详细分解: 一、复习导数作为工具的具体体现: 1.解决函数的单调性 2.解决函数在某一区间内的极值或最值 3.知识点的综合运用 二、提出本节课听课要求 1.深化理解导数作为工具的卓越表现力 2.掌握用导数法解决生活中优化问题的一般步骤 3.解决生活中优化问题时应注意的问题 三、回顾解决优化问题的一般常用方法 1.基本函数型(如二次函数型,指数对数型)

2.基本不等式型 3.线性规划型…. 最后提出本节课的目的:用导数法解决实际生活中的优化问题. 【设计理念:通过复习知识点,构建学生的知识网络,对开展进一步的教学有一定的好处,也适合学生的学习习惯。】 四、探究实例一(用料最省问题) 老师:设圆柱形金属罐的容积一定,请问怎么来设计它的高与底面的关系,才能使所用材料最身? 学生:积极探索,寻求关系并初步分析问题。部分学生可以解决问题. 老师:(详细分析) 解:设圆柱的高为h ,底面半径为r ,容积为V 。则用料最省问题即可转化为求圆柱体的表面积最小问题。可找函数关系:222r rh S ππ+=, 由V=22r V h h r ππ= ?,有2222222)(r r V r r V r r S ππππ+=+?=.令0)(='r S ,可求得时用料最省。达到最大,即此时r V r V h S V r 24,2323====πππ 【设计理念:探究性学习是我们在新课程改革中一个很重要的成果,通过这道实际例题,既可以培养学生的学习热情,又可以充分调动学生的积极探索的欲望,真正将学生从“要去学”转变到“我要学”.】 五、探究实例一的变式 (问题转化为利润型问题) 老师:某制造商制造并销售瓶装球形饮料,瓶子的制造成本是0.82r π 分/个,已知每出售1mL 饮料,获利0.2分,且制造商能制作的瓶子的最大半径是6cm 。请分析瓶子的半径与利润的关系. 学生:同桌之间开始讨论,有的在独立思考. 老师:(详细分析) 解:由于瓶子的半径为r ,所以每瓶饮料的利润是

天津大学《最优化方法》复习题

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切 )(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{}Λ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

利用导数解决生活中的优化问题

利用导数解决生活中的优化问题

————————————————————————————————作者:————————————————————————————————日期:

建立数学模型 利用导数解决生活中的优化问题 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。 一.解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 二.利用导数解决优化问题的基本思路: 三、应用举例 例1(体积最大问题)用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 解:设长方体的宽为(m)x ,则长为2(m)x ,高为181234.53(m)042x h x x -? ?==-<< ?? ?.故长方体的体积为 2232 3()2(4.53)96(m )02V x x x x x x ? ?=-=-<< ??? . 从而2 ()181818(1)V x x x x x '=-=-. 令()0V x '=,解得0x =(舍去)或1x =,因此1x =. 当01x <<时,()0V x '>;当3 12 x << 时,()0V x '<. 故在1x =处()V x 取得极大值,并且这个极大值就是()V x 的最大值. 从而最大体积2 3 3 (1)91613(m )V V ==?-?=,此时长方体的长为2m ,高为1.5m . 答:当长方体的长为2m ,宽为1m ,高为1.5m 时,体积最大,最大体积为3 3m . 点评:用导数来解决实际问题时,一般首确定自变量,选定了自变量,要搞清自变量的范围,再列出关系式,对关系式进行求导,最后求出最值来。 例2(帐篷设计问题)请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥。试问当帐篷的顶点O到底面中心1o 的距离为多少时,帐篷的体积最大? 解决数学模型 作答 用函数表示的 优化 用导数解决 优化问题

利用导数研究函数的极值和最值问题

利用导数研究函数的极值和最值问题 1.利用导数研究函数的极值的一般步骤: (1)确定函数的定义域. (2)求)(x f '. (3)①若求极值,则先求方程 0)(='x f 的全部实根,再检验)(x f '在方程根的左右两侧值的符号,求出极值.(当根中有参数时,要注意讨论根是否在定义域内) ②若已知极值大小或存在情况,则转化为已知方程 0)(='x f 的根的大小或存在情况,从而求解. 2.求连续函数)(x f y =在[]b a , 上的最大值与最小值的步骤: (1)求函数 )(x f y =在()b a ,内的极值; (2)将函数 )(x f y =的各极值与端点处的函数值 )(a f , )(b f 比较,其中最大的一个 是最大值,最小的一个是最小值. 例1.(2018北京,18,13分)设函数()[] x e a x a ax x f 3414)(2+++-=. (1)若曲线)(x f y =在点()()1,1f 处的切线与x 轴平行,求a ; (2)若)(x f 在2=x 处取得极小值,求a 的取值范围. 解析 (1)因为()[] x e a x a ax x f 3414)(2+++-=, 所以()[] x e x a ax x f 212)(2++-=',()e a f -='1)1(. 由题设知f '(1)=0,即()01=-e a ,解得1=a . 此时03)1(≠=e f .所以a 的值为1.

(2)由(1)得()[] ()()x x e x ax e x a ax x f 21212)(2--=++-='. 若21>a ,则当?? ? ??∈2,1a x 时0)(<'x f ; 当()+∞∈,2x 时,0)(>'x f .所以)(x f 在2=x 处取得极小值. 若21'x f , 所以2不是)(x f 的极小值点. 综上可知,a 的取值范围是?? ? ??∞+,21 。 方法总结:函数极值问题的常见类型及解题策略 (1)已知导函数图象判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧导数的符号. (2)已知函数求极值.求f '(x)→求方程f '(x)=0的根→列表检验f '(x)在f '(x)=0的根的附近两侧的符号→下结论. (3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f '(x0)=0,且在该点左、右两侧导数值的符号相反. 例2.(2017北京,19,13分)已知函数x x e x f x -=cos )(. (1)求曲线)(x f y =在点())0(,0f 处的切线方程; (2)求函数)(x f 在区间?? ????2,0π上的最大值和最小值. 解析 本题考查导数的几何意义,考查利用导数研究函数的单调性、最值. (1)因为x x e x f x -=cos )(, 所以()1sin cos )(--='x x e x f x ,0)0(='f .

相关文档
相关文档 最新文档