文档库 最新最全的文档下载
当前位置:文档库 › 肝脏的营养与代谢

肝脏的营养与代谢

肝脏的营养与代谢
肝脏的营养与代谢

肝脏与营养代谢

作者:佚名文章来源:本站编辑点击数:85 更新时间:2007-10-13 11:49:08

肝脏是消化系统最重要的脏器之一,是体内代谢的主要器官、

各种物质代谢的中心,有合成、贮存、分解、排泄、解毒和分泌等多种功能。各种营养素在小肠被吸收后,由血液运送到肝脏发生生化反应,变成可利用物质,提供机体活动所需要能量。肝脏代谢作用主要有以下几个方面。

一、肝脏与糖类代谢

肝脏是维持糖类贮存及适当分布的中心部位。肝脏通过4个主要途径来维持糖类代谢的平衡:即糖原贮存、糖原异生合成葡萄糖、糖原分解成为葡萄糖和糖类转化为脂肪。维持血糖的恒定,是肝脏在糖类代谢中的主要作用。肝脏病变后,肝内糖原的合成、贮存、释放都发生障碍,使血糖不稳定,不仅使机体利用糖原发生故障,而且容易出现低血糖的症状。

(一)合成糖原

摄取血液中的葡萄糖和其他单糖及糖类分解的产物,如乳酸等合成糖原。这种肝糖原生成作用是发生在糖类食物消化吸收以后,或是体内乳酸增加时进行,可暂时积蓄多余的糖类,避免血中葡萄糖和乳酸过多,维持人体血糖的正常浓度。

(二)糖异生作用

肝脏能利用蛋白质和脂肪的分解产物,即某些氨基酸,如甘氨酸、丙氨酸、谷氨酸、天门冬氨酸、甘油及某些脂肪酸合成肝糖原。

(三)调节血糖

当血液中的糖含量减少时,肝脏可把肝糖原再分解成葡萄糖,释放入血,供给组织。在肝脏病理情况下,常常发生糖代谢失常。

1、低血糖因为肝脏患病时,,合成肝糖原的能力降低,肝糖原贮存减少,进食后虽然可以出现一过性的高血糖,但由于不能合成肝糖原,患者饥饿或进食减少时,血糖浓度便下降,此时患者感到饥饿,并有四肢无力、心慌、多汗等症状。

2、乳酸堆积当肝脏受到损害时,乳酸不能及时转变为肝糖原或葡萄糖,结果堆积在体内,这样容易产生酸中毒症状,患者发生肢体酸痛,特别在活动以后,或肝功能出现波动时,症状明显加重,严重时可产生酸中毒。

二、肝脏与脂肪代谢

肝脏为甘油三酯、磷脂及胆固醇代谢的场所。肝脏所分泌的胆汁酸盐,可促进脂肪的乳化及吸收,并活化脂肪酶。患肝脏疾病时,肝内分泌胆汁的功能受到影响,没有足够的胆汁流入肠腔,使肠对脂肪的消化、吸收发生困难。随之而出现对脂溶性维生素吸收减少,机体则因缺乏这些维生素而患某些疾病。

(一)对脂肪酸有减饱和作用

使脂肪酸的氢原子数减少,使饱和脂肪酸变为不饱和脂肪酸,有利于脂肪进一步分解和转化。

(二)肝脏类脂代谢很活跃

肝脏将摄入的各种脂肪转变成血浆中的磷脂、胆固醇、胆固醇酯与脂蛋白,使脂肪离开肝脏,在血液中运输方便,并容易被组织吸收利用。

(三)肝脏能氧化脂肪酸,产生酮体

在肝脏中生成的酮体运至其他组织,特别是肌肉,氧化产生能量。在代谢正常时,酮体量不多,可以完全氧化,当糖类代谢发生障碍时,机体能量主要靠脂肪供给,这时酮体产生过多,血酮体浓度增加,出现酮尿,表示所动用脂肪超过肝脏的处理能力。

(四)将多余的胆固醇分解,变成制造胆汁的主要成分

(五)肝脏将糖和蛋白质代谢的中间产物转化为脂肪,形成体脂在体内贮存

当肝脏有病时,肝功能不好或合成磷脂的原料,如胆碱、甲硫氨酸、叶酸及维生素B12等不足,会影响脂蛋白形成,使脂肪不易运出;或由于摄入的脂肪过多,聚积在肝细胞中,形成脂肪肝,阴囊而使肝细胞受到损害,肝功能受损,结缔组织增生,引起肝硬化。

三、肝脏与蛋白质代谢

(一)蛋白质合成

肝脏是合成蛋白质的主要场所。食物中的蛋白质,在胃肠经各种蛋白酶的作用分解成氨基酸,大部分氨基酸从门静脉输送到肝脏,有80%能在肝脏中合成蛋白质,如每天能合成清蛋白12~18克。当肝脏受损时,便可影响血浆蛋白质的浓度,特别是清蛋白含量降低,即出现白/球比倒置的现象。

(二)氨基酸代谢

肝脏氨基酸代谢很旺盛,代谢过程中产生对人体有害的氨,在肝脏合成尿素使氨分解。当肝功能衰竭时,尿素合成减少,血氨含量升高,可引起肝昏迷。

(三)凝血因子合成

血浆凝血酶原仅在肝脏合成,与纤维蛋白原都是血凝过程中必需的物质。当肝功能不良时,凝血酶原及纤维蛋白原的合成均减少,凝血时间延长,严重者有出血现象。

(四)血胆红素代谢

肝脏在血胆红素代谢中起重要作用,将血液运来的间接胆红素改造成直接胆红素,以胆汁的形式排入肠内。在肠吸收的粪胆素原、尿胆素原由肝脏重新排泄入肠,使血浆中的胆红素、尿胆素等维持在正常水平。当肝脏发生病变时,改造、排泄胆红素的能力降低,血中胆红素浓度增加,形成黄疸。

四、肝脏与维生素代谢

肝脏不但能贮存维生素,而且直接参与其代谢过程。

(一)脂溶性维生素吸收

肝脏分泌胆盐,促使脂溶性维生素的吸收。

(二)胡萝卜素代谢

肝脏含有胡萝卜素酶,使胡萝卜素转变为维生素A,人体约有95%维生素A贮存于肝内。

(三)维生素代谢

许多B族维生素在肝内形成辅酶,参与各种物质代谢,如维生素B1构成脱羧酶的辅酶,参与糖类代谢;维生素C可以促进肝糖原形成,缺乏能产生肝脂肪变性;增加体内维生素C的浓度,可保护肝内酶系统,增加肝细胞抵抗力及促进肝细胞再生,

五、肝脏与激素代谢

肝脏能将许多激素分解,使其失去活性,叫做激素“灭活”。有肝病的人不能有效地灭活雌激素,使其在肝内积蓄,可引起性征的改变,如男性乳房发育;雌激素还有扩张小动脉的作用,肝病患者手掌可出现红斑,俗称“肝掌”,或是因局部小血管扩张扭曲而形成蜘蛛痣;如醛固酮和糖皮质激素灭活障碍,使得水和钠在体内潴留,引起水肿。

六、肝脏解毒功能

肝脏是人体主要的解毒器官,不论是外来的,或是自身代谢产生的有毒物质,都要经过肝脏处理,使毒物成为比较无毒或溶解度较大的物质,最后随胆汁或尿液排出体外。肝脏的解毒作用主要以氧化和结合两种方式进行。氧化作用如大肠内食物残渣的腐败产物腐胺和尸胺进入肝内,首先被氧化成醛和氨,醛再氧化成酸,最后酸被氧化为二氧化碳和水。结合作用如肝脏利用葡萄糖合成葡萄糖醛酸,葡萄糖醛酸能结合芳香酸类,去掉其毒性。蛋白质在肝脏代谢使产生的硫酸盐与大肠腐败作用产生的酚类和吲哚类化合物结合,以降低其毒性损害作用。

七、肝脏排泄作用

肝细胞不断清除体内的代谢产物,通常先由肝脏保存,以防止向全身扩散,然后再缓慢地随胆汁排入肠腔。

药物在肝脏内的代谢

药物在肝脏内的代谢 药物在肝脏内的代谢 一、药物在肝内的生物转化 肝脏在药物(或外源性毒物)的代谢和处置中起着十分重要的作用,大多数药物和毒物在肝内经生物转化作用而排出体外。肝脏的病理状态可以影响药物在体内的代谢过程,从而影响药物的疗效和不良反应。另一方面,药物的代谢过程中的产物,可以造成肝损害。药物在肝内所进行的生物转化过程,可分为两个阶段:①氧化、还原和水解反应;②结合作用。 (一)第一相反应 多数药物的第一相反应在肝细胞的光面内质网(微粒体)处进行。此系由一组药酶(又称混合功能氧化酶系)所催化的各种类型的氧化作用,使非极性脂溶性化合物产生带氧的极性基因(如羟基),从而增加其水溶性。有时羟化后形成的不稳定产物还可进一步分解,脱去原来的烷基或氨基等。其反应可概括如下: D+A→DA NADPH+DA+H+→DAH2+NADP- DAH2+O2+HADPH→A+DOH+H2O+NADP- (注:D=药物;A=细胞色素P450) 药酶是光面内质网上的一组混合功能氧化酶系,其中最重要的是细胞色素P450,其他有关的酶和辅酶包括:NADPH细胞色素P450还原酶、细胞色素b5、磷脂酰胆碱和NADPH等。细胞色素P450(以下简称P450)是一种铁卟啉蛋白,能进行氧化和还原。当外源性化学物质进入肝细胞后,即在光面内质网上与氧化型P450结合,形成一种复合物,再在NADPH细胞色素P450还原酶作用下,被NADPH所提供的电子还原,并形成还原型复合物。后者与分子氧(O2)作用,产生含氧复合物,并接受NADPH所提供的电子,与O2形成H2O,同时药物(或毒物)被氧化成为氧化产物。 细胞色素P450:药物代谢的第一相反应,主要在肝细胞的光面内质网(微粒体)进行,此过程系由一组混合功能氧化酶系(又称药酶)所催化促进,其中最重要的是P450和有关的辅酶类。P450酶系包括二个重要的蛋白质组分:含铁的血红素蛋白和黄素蛋白,后者能从NADPH将电子转移至P450底物复合体。药物与P450结合位点与血红素分子非常接近,有利于电子的转移。药物与氧化型P450结合,此时血红素的铁为三价铁(Fe3+),通过NADPH还原酶的作用,将NADPH的电子转移给P450,使其还原,血红素铁成二价(Fe2+)。还原型的P450药物复合物与氧分子作用,成为含氧复合物,并接受NADPH所提供的电子,与氧生成H2O,同时药物也被氧化,P450又成为氧化型(Fe3+)。如此反复循环,使药物进行第一相的代谢。 P450实际上为同一家庭的多种异构型。迄今为止,人类P450的基因已发现有27种,编码多种P450。基本上分成至少4个基因族,又可进一步区分为不同亚族。其分类为CYP1,CYP2,CYP3和CYP4,亚族的分类按英语A、B、C……和阿拉伯数字1,2,3,……进一步分类。按其功能,人类的P450可分成二类。CYP1,2,3,主要代谢外源性化合物,如药物、毒物等,有交叉的底物特异性,常可被外源性物质诱导,在进化过程中,其保守性差。GYP4则主要代谢内源性物质,有高度特异性,通常不能被外源性物质诱导,在进行过程中相对保守。此类P450在类固醇、脂肪酸和前列腺素代谢中起作用。在药物代谢中起重要作用的P450。 表39-1具有代表性药物代谢CYP1,CYP2和CYP3亚家族 P450亚族代谢的底物(药物) CYP1A2 氧阿米替林,咖啡因,氟哌啶醇,茶碱,他克林,西咪替丁 CYP2B6 环磷酰胺 CYP2C 卡马西平,环磷酰胺,地西泮,布洛芬,奈普生,奥美拉唑,苯妥英,普奈洛尔,甲苯磺西脲 CYP2D6 异喹胍,大多数β受体拮抗剂,氧阿米替林,氯丙嗪,可待因,右美沙芬,恩卡尼,氟哌啶醇,去甲替林,维拉帕米 CYP2E 对乙酰氨基酚,乙醇,氟烷 CYP3A 胺碘酮,卡马西平,西沙必利,可卡因,皮质醇,环孢素,氨苯砜,地塞米松,地尔硫草,红霉素,丙米嗪,利多卡因,洛伐他汀,硝苯地平,孕酮,他克莫司,他莫昔芬,睾丸酮,丙戊酸盐,维拉帕米,长春新碱,华法令 一般说来,药物经过第一相的氧化、还原等作用,变为极性和水溶性较高而活性低的代谢物,再经过第二相的结合作用,通过胆汁或尿液排到体外。但有些药物,在P450药酶作用下,转化为对肝细胞肝毒性的代谢物。

关于肝脏的功能及作用

关于肝脏的功能及作用 肝脏有什么功能? 肝脏是人体最大的实质性消化器官,位于右上腹部,具有代谢、分泌、排泄解毒等非常复杂的生理功能,对脂类、蛋白质及糖等营养物质的消化、吸收、氧化、分解、转化等起着重要的作用。使其保持动态平衡,为机体的活动提供热能。 肝脏还是分泌(制造)和排泄胆汁的场所,胆酸也在肝脏中合成,并随胆汁排入肠内,参与脂质代谢、转化等生化过程,从而保障了人体各处器官,尤其是心、脑、肾等脏器的功能活动。 同时肝脏也是人体重要的代谢器官,每时每刻都在进行着一系列的物质代谢过程,被喻为人体的中心化工厂。 因此肝脏的健康保护对提高人的生活质量、促进您的健康长寿是至关重要的。 解毒功能:肝脏是人体的主要解毒器官,它可保护机体免受损害,使毒物成为低毒的或溶解度大的物质,随胆汁或尿液排出体外。 此外,肝脏还有防御机能、调节血液循环量、制造凝血因子、产生热量、肝脏再生能力等。因此,在某种意义上讲,肝脏健康是人体健康的基本条件之一。体内的某些代谢废物或肠道细菌的腐败产物以及服用的药物等,经过肝脏处理,把有毒物质变成无毒或毒性较小、或易于溶解的物质而便于排出体外,这些变化过程称为解毒作用。如酒精在肝内经过氧化过程,变成二氧化碳和水,胆红素与葡萄

糖醛酸结合,变成直接胆红素,随肝汁排入肠道,这些变化过程,就是肝脏的解毒作用。 【肝脏的生理功能】 ●肝脏是人体内最大的消化腺。也是体内新陈代谢的中心站。在肝脏中发生的化学反应有500种以上,实验证明,动物在完全摘除肝脏后即使给予相应的治疗,最多也只能生存50多个小时。这说明肝脏是维持生命活动的一个必不可少的重要器官。肝脏的血流量极为丰富,约占心输出量的1/4。每分钟进入肝脏的血流量为1000-1200ml。肝脏的主要功能是进行糖的分解、贮存糖原;参与蛋白质、脂肪、维生素、激素的代谢;解毒;分泌胆汁;吞噬、防御机能;制造凝血因子;调节血容量及水电解质平衡;产生热量等。在胚胎时期肝脏还有造血功能。肝呈红褐色,质软而脆嫩。成人肝重约1500克左右。肝大部分位于右腹上部,小部分延伸到左腹上部。人们常把它比喻为机体内的化工厂,起着改造、加工、合成、转变、排泄等复杂的作用。肝脏除能分泌胆汁外,还有很多重要功能。 ●肝脏的胆汁分泌作用:肝细胞能不断地生成胆汁酸和分泌胆汁,胆汁在消化过程中可促进脂肪在小肠内的消化和吸收。每天有600-1100ml的胆汁,经胆管输送到胆囊。胆囊起浓缩和排放胆汁的功能。 人体需要的能源,是我们吃进去的食物,它们含有碳水化合物、蛋白质和脂肪。这些营养物质的代谢过程和相互转化,主要是在肝脏内进行的。

肝脏的营养与代谢

肝脏与营养代谢 作者:佚名文章来源:本站编辑点击数:85 更新时间:2007-10-13 11:49:08 肝脏是消化系统最重要的脏器之一,是体内代谢的主要器官、 各种物质代谢的中心,有合成、贮存、分解、排泄、解毒和分泌等多种功能。各种营养素在小肠被吸收后,由血液运送到肝脏发生生化反应,变成可利用物质,提供机体活动所需要能量。肝脏代谢作用主要有以下几个方面。 一、肝脏与糖类代谢 肝脏是维持糖类贮存及适当分布的中心部位。肝脏通过4个主要途径来维持糖类代谢的平衡:即糖原贮存、糖原异生合成葡萄糖、糖原分解成为葡萄糖和糖类转化为脂肪。维持血糖的恒定,是肝脏在糖类代谢中的主要作用。肝脏病变后,肝内糖原的合成、贮存、释放都发生障碍,使血糖不稳定,不仅使机体利用糖原发生故障,而且容易出现低血糖的症状。 (一)合成糖原 摄取血液中的葡萄糖和其他单糖及糖类分解的产物,如乳酸等合成糖原。这种肝糖原生成作用是发生在糖类食物消化吸收以后,或是体内乳酸增加时进行,可暂时积蓄多余的糖类,避免血中葡萄糖和乳酸过多,维持人体血糖的正常浓度。 (二)糖异生作用 肝脏能利用蛋白质和脂肪的分解产物,即某些氨基酸,如甘氨酸、丙氨酸、谷氨酸、天门冬氨酸、甘油及某些脂肪酸合成肝糖原。 (三)调节血糖 当血液中的糖含量减少时,肝脏可把肝糖原再分解成葡萄糖,释放入血,供给组织。在肝脏病理情况下,常常发生糖代谢失常。 1、低血糖因为肝脏患病时,,合成肝糖原的能力降低,肝糖原贮存减少,进食后虽然可以出现一过性的高血糖,但由于不能合成肝糖原,患者饥饿或进食减少时,血糖浓度便下降,此时患者感到饥饿,并有四肢无力、心慌、多汗等症状。 2、乳酸堆积当肝脏受到损害时,乳酸不能及时转变为肝糖原或葡萄糖,结果堆积在体内,这样容易产生酸中毒症状,患者发生肢体酸痛,特别在活动以后,或肝功能出现波动时,症状明显加重,严重时可产生酸中毒。 二、肝脏与脂肪代谢 肝脏为甘油三酯、磷脂及胆固醇代谢的场所。肝脏所分泌的胆汁酸盐,可促进脂肪的乳化及吸收,并活化脂肪酶。患肝脏疾病时,肝内分泌胆汁的功能受到影响,没有足够的胆汁流入肠腔,使肠对脂肪的消化、吸收发生困难。随之而出现对脂溶性维生素吸收减少,机体则因缺乏这些维生素而患某些疾病。 (一)对脂肪酸有减饱和作用 使脂肪酸的氢原子数减少,使饱和脂肪酸变为不饱和脂肪酸,有利于脂肪进一步分解和转化。 (二)肝脏类脂代谢很活跃 肝脏将摄入的各种脂肪转变成血浆中的磷脂、胆固醇、胆固醇酯与脂蛋白,使脂肪离开肝脏,在血液中运输方便,并容易被组织吸收利用。 (三)肝脏能氧化脂肪酸,产生酮体 在肝脏中生成的酮体运至其他组织,特别是肌肉,氧化产生能量。在代谢正常时,酮体量不多,可以完全氧化,当糖类代谢发生障碍时,机体能量主要靠脂肪供给,这时酮体产生过多,血酮体浓度增加,出现酮尿,表示所动用脂肪超过肝脏的处理能力。 (四)将多余的胆固醇分解,变成制造胆汁的主要成分 (五)肝脏将糖和蛋白质代谢的中间产物转化为脂肪,形成体脂在体内贮存

药物体外肝代谢研究方法

药物体外肝代谢研究方法 摘要:对近几年的文献资料进行分析、综合、归纳。介绍肝微粒体体外温孵法、肝细胞体外温孵法、离体肝灌流及器官组织切片法。其中,肝细胞体外温孵法是当今药物体外肝代谢研究的热点,对新药研究与开发及正确指导临床合并用药有着巨大的推动作用,将对其进行重点论述。 关键词:体外肝代谢;肝微粒体;肝细胞;离体肝灌流;组织切片 广义的药物代谢指药物在体内吸收、分布、代谢、排泄等一系列过程[1]。狭义的药物代谢是指药物的生物转化。生物转化后,药物的理化性质发生变化,从而引起其药理和毒理活性的改变。因此,研究药物的生物转化,明确其代谢途径[2],对制定合理的临床用药方案,剂型设计及新药开发工作都具有重要的指导意义。当前,国内外对药物代谢的研究主要集中在代谢产物生成和确定代谢途径。在分子生物学技术推动下,药物代谢酶[3]领域的研究因其对临床药物间相互作用的研究有着积极的推动意义,已得到广泛的重视。 肝脏是药物代谢的重要器官,是机体进行生物转化的主要场所,富含参与药物代谢的一个庞大的依赖细胞色素P450的混合功能氧化酶系统[4],大多数药物的Ⅰ相反应及Ⅱ相反应都依赖于肝脏酶系统而发生。以肝脏为基础的体外代谢模型以其特有的优势在药物代谢研究中得到广泛应用,现概述如下。 1 肝微粒体体外温孵法 肝微粒体法[5]是由制备的肝微粒体辅以氧化还原型辅酶[6],在模拟生理温度及生理环境条件下进行生化反应的体系,制备肝微粒体一般用差速离心法。 肝微粒体体外温孵法和其它的体外肝代谢方法相比较,其酶制备技术简单,代谢过程快,结果重现性好,易大量操作,便于积累代谢样品供结构研究;同时,该方法可用于对药酶的抑制及体外代谢清除等方面的研究,因而在实际工作中应用较为普遍。但肝微粒体体外温孵法同其它体外肝代谢方法相比,在体内情况的一致性方面存在不足,因而其实验结果用于预测体内情况仍需进一步的确证。 2 肝细胞体外温孵法 肝细胞体外温孵法同肝微粒体法相似,即以制备的肝细胞辅以氧化还原型辅酶,在模拟生理温度及生理环境条件下进行生化反应的体系,适于研究蛋白及mRNA水平药物代谢酶诱导及酶活性,在评估药物代谢过程中药物间的相互作用时,该方法得到广泛的应用。但肝细胞制备技术较复杂,目前以胶原酶灌注技术为主[7],且体外肝细胞活性仅能维持4h,不利于储存和反复使用。 3 离体肝灌流法

肝脏与营养代谢的关系

肝脏与营养代谢的关系 肝脏是消化系统最重要脏器之一,是体内代谢主要器官、各种物质代谢的中心,有合成、贮存、分解、排泄、解毒和分泌等多种机能。各种营养素被肠管吸收后,由血液运送到肝脏发生生化反应,变成可利用物质,提供机体活动所需要能量。故肝脏发生病变时,机体的新陈代谢,特别是营养代谢发生障碍。肝脏代谢作用主要有以下几个方面。 一、肝脏与碳水化合物代谢 肝脏是维持碳水化合物贮存及适当分布的中心部位。肝脏通过4个主要途径来维持碳水化合物代谢的平衡。即糖原贮存、糖原异生合成葡萄糖、糖原分解成为葡萄糖和碳水化合物转化为脂肪。维持血糖的恒定,是肝脏在碳水化合物代谢中的主要作用。肝脏病变后,肝内糖原的合成、贮存、释放都发生障碍,使血糖不稳定。不仅使机体利用糖原发生故障,而且容易出现低血糖的症状。 (一)合成糖原摄取血液中的葡萄糖和其他单糖及碳水化合物分解的产物,如乳酸等合成糖原。这种肝糖原生成作用主要是发生在碳水化合物食物消化吸收以后,或是体内乳酸增加时进行,可暂时积蓄多余的碳水化合物,避免血中葡萄糖和乳酸过多,维持人体血糖的正常浓度。 (二)糖异生作用肝脏能利用蛋白质和脂肪的分解产物,即某些氨基酸,如甘氨酸、丙氨酸、谷氨酸、天门冬氨酸、甘油及某些脂肪酸合成肝糖原,这是肝糖原异生的机能。 (三)调节血糖当血液中的糖含量减少时,肝脏可把肝糖原再分解成葡萄糖,释放入血,供给组织。在肝脏病理情况下,常常发生碳水化合物代谢失常。 1.低血糖因为肝脏患病时,合成肝糖原的能力降低,肝糖原贮存减少,进食后虽然可以出现一过性的高血糖,但由于不能合成肝糖原,患者饥饿或进食减少时,血糖浓度便下降,此时患者感到饥饿,并有四肢无力、心慌、多汗等症状。 2.乳酸堆积当肝脏受到损害时,乳酸不能及时转变为肝糖原或葡萄糖,结果堆积在体内,这样容易产生酸中毒症状,患者发生肢体酸疼,特别在活动以后,或肝功能出现波动时,症状明显加重,严重时可产生酸中毒。 二、肝脏与脂肪代谢 肝脏为三酰甘油、磷脂及胆固醇代谢的场所,肝脏所分泌的胆汁酸盐,可促进脂肪的乳化及吸收,并活化脂肪酶。患肝脏病时,肝内分泌胆汁的机能受到影响,没有足够的胆汁流入肠腔,使肠管对脂肪的消化、吸收发生困难。随之而出现对脂溶性维生素A、维生素D、维生素E等吸收减少,机体则因缺乏这些维生素而患某些疾病。 (一)对脂肪酸有减饱和作用,使脂肪酸的氢原子数减少,使饱和脂肪酸变为不饱和脂肪酸,有利于脂肪进一步分解和转化。 (二)肝脏类脂代谢很活跃,肝脏将摄入的各种脂肪转变成血浆中的磷脂、胆固醇、胆固醇酯与脂蛋白,使脂肪离开肝脏,在血液中运输方便,并容易被组织吸收利用。

(完整版)执业药师药物代谢动力学习题及答案

第二章药物代谢动力学 一、最佳选择题 1、决定药物每天用药次数的主要因素是 A、吸收快慢 B、作用强弱 C、体内分布速度 D、体内转化速度 E、体内消除速度 2、药时曲线下面积代表 A、药物血浆半衰期 B、药物的分布容积 C、药物吸收速度 D、药物排泄量 E、生物利用度 3、需要维持药物有效血浓度时,正确的恒定给药间隔时间是 A、每4h给药一次 B、每6h给药一次 C、每8h给药一次 D、每12h给药一次 E、每隔一个半衰期给药一次 4、以近似血浆半衰期的时间间隔给药,为迅速达到稳态血浓度,可以首次剂量 A、增加半倍 B、增加1倍 C、增加2倍 D、增加3倍 E、增加4倍 5、某药的半衰期是7h,如果按每次0.3g,一天给药3次,达到稳态血药浓度所需时间是 A、5~10h B、10~16h C、17~23h D、24~28h E、28~36h 6、按一级动力学消除的药物,按一定时间间隔连续给予一定剂量,达到稳态血药浓度时间长短决定于 A、剂量大小 B、给药次数 C、吸收速率常数 D、表观分布容积 E、消除速率常数 7、恒量恒速给药最后形成的血药浓度为 A、有效血浓度 B、稳态血药浓度 C、峰浓度 D、阈浓度 E、中毒浓度 8、药物吸收到达血浆稳态浓度时意味着 A、药物作用最强 B、药物吸收过程已完成 C、药物消除过程正开始 D、药物的吸收速度与消除速率达到平衡 E、药物在体内分布达到平衡 9、按一级动力学消除的药物有关稳态血药浓度的描述中错误的是 A、增加剂量能升高稳态血药浓度 B、剂量大小可影响稳态血药浓度到达时间 C、首次剂量加倍,按原间隔给药可迅速达稳态血药浓度 D、定时恒量给药必须经4~6个半衰期才可达稳态血药浓度 E、定时恒量给药达稳态血药浓度的时间与清除率有关 10、按一级动力学消除的药物,其消除半衰期 A、与用药剂量有关 B、与给药途径有关 C、与血浆浓度有关 D、与给药次数有关 E、与上述因素均无关 11、某药按一级动力学消除,其血浆半衰期与消除速率常数k的关系为 A、0.693/k B、k/0.693 C、2.303/k D、k/2.303 E、k/2血浆药物浓度 12、对血浆半衰期(一级动力学)的理解,不正确的是 A、是血浆药物浓度下降一半的时间 B、能反映体内药量的消除速度 C、依据其可调节给药间隔时间 D、其长短与原血浆浓度有关 E、一次给药后经4~5个半衰期就基本消除 13、静脉注射1g某药,其血药浓度为10mg/dl,其表观分布容积为 A、0.05L B、2L C、5L D、10L E、20L 14、在体内药量相等时,Vd小的药物比Vd大的药物 A、血浆浓度较低 B、血浆蛋白结合较少 C、血浆浓度较高 D、生物利用度较小 E、能达到的治疗效果较强 15、下列叙述中,哪一项与表观分布容积(Vd)的概念不符 A、Vd是指体内药物达动态平衡时,体内药量与血药浓度的比值 B、Vd的单位为L或L/kg C、Vd大小反映分布程度和组织结合程度 D、Vd与药物的脂溶性无关 E、Vd与药物的血浆蛋白结合率有关 16、下列关于房室概念的描述错误的是 A、它反映药物在体内分却速率的快慢 B、在体内均匀分布称一室模型 C、二室模型的中央室包括血浆及血流充盈的组织 D、血流量少不能立即与中央室达平衡者为周边室 E、分布平衡时转运速率相等的组织可视为一室 17、影响药物转运的因素不包括

肝脏在物质代谢中的作用

一、肝脏在糖代谢中的作用 肝脏是调节血糖浓度的主要器官。当饭后血糖浓度升高时,肝脏利用血糖合成糖原(肝糖原约占肝重的5%)。过多的糖则可在肝脏转变为脂肪以及加速磷酸戊糖循环等,从而降低血糖,维持血糖浓度的恒定。相反,当血糖浓度降低时,肝糖原分解及糖异生作用加强,生成葡萄糖送入血中,调节血糖浓度,使之不致过低。因此,严重肝病时,易出现空腹血糖降低,主要由于肝糖原贮存减少以及糖异生作用障碍的缘故。临床上,可通过耐量试验(主要是半乳糖耐量试验)及测定血中乳酸含量来观察肝脏糖原生成及糖异生是否正常。 肝脏和脂肪组织是人体内糖转变成脂肪的两个主要场所。肝脏内糖氧化分解主要不是供给肝脏能量,而是由糖转变为脂肪的重要途径。所合成脂肪不在肝内贮存,而是与肝细胞内磷脂、胆固醇及蛋白质等形成脂蛋白,并以脂蛋白形式送入血中,送到其它组织中利用或贮存。 肝脏也是糖异生的主要器官,可将甘油、乳糖及生糖氨基酸等转化为葡萄糖或糖原。在剧烈运动及饥饿时尤为显著,肝脏还能将果糖及半乳糖转化为葡萄糖,亦可作为血糖的补充来源。 糖在肝脏内的生理功能主要是保证肝细胞内核酸和蛋白质代谢,促进肝细胞的再生及肝功能的恢复。(1)通过磷酸戊糖循环生成磷酸戊糖,用于RNA的合成;(2)加强糖原生成作用,从而减弱糖异生作用,避免氨基酸的过多消耗,保证有足够的氨基酸用于合成蛋白质或其它含氮生理活性物质。 肝细胞中葡萄糖经磷酸戊糖通路,还为脂肪酸及胆固醇合成提供所必需的NADPH。通过糖醛酸代谢生成UDP?葡萄糖醛酸,参与肝脏生物转化作用。 二、肝脏在脂类代谢中的作用 肝脏在脂类的消化、吸收、分解、合成及运输等代谢过程中均起重要作用。 肝脏能分泌胆汁,其中的胆汁酸盐是胆固醇在肝脏的转化产物,能乳化脂类、可促进脂类的消化和吸收。 肝脏是氧化分解脂肪酸的主要场所,也是人体内生成酮体的主要场所。肝脏中活跃的β-氧化过程,释放出较多能量,以供肝脏自身需要。生成的酮体不能在肝脏氧化利用,而经血液运输到其它组织(心、肾、骨骼肌等)氧化利用,作为这些组织的良好的供能原料。 肝脏也是合成脂肪酸和脂肪的主要场所,还是人体中合成胆固醇最旺盛的器官。肝脏合成的胆固醇占全身合成胆固醇总量的80%以上,是血浆胆固醇的主要来源。此外,肝脏还合成并分泌卵磷脂?胆固醇酰基转移酶(LCA T),促使胆固醇酯化。当肝脏严重损伤时,不仅胆固醇合成减少,血浆胆固醇酯的降低往往出现更早和更明显。

肝脏中糖类、脂肪和蛋白质的代谢情况

肝脏中糖类、脂肪和蛋白质的代谢情况 一、肝脏在糖代谢中的作用 肝脏是调节血糖浓度的主要器官。当饭后血糖浓度升高时,肝脏利用血糖合成糖原(肝糖原约占肝重的5%)。过多的糖则可在肝脏转变为脂肪以及加速磷酸戊糖循环等,从而降低血糖,维持血糖浓度的恒定。相反,当血糖浓度降低时,肝糖原分解及糖异生作用加强,生成葡萄糖送入血中,调节血糖浓度,使之不致过低。因此,严重肝病时,易出现空腹血糖降低,主要由于肝糖原贮存减少以及糖异生作用障碍的缘故。临床上,可通过耐量试验(主要是半乳糖耐量试验)及测定血中乳酸含量来观察肝脏糖原生成及糖异生是否正常。 肝脏和脂肪组织是人体内糖转变成脂肪的两个主要场所。肝脏内糖氧化分解主要不是供给肝脏能量,而是由糖转变为脂肪的重要途径。所合成脂肪不在肝内贮存,而是与肝细胞内磷脂、胆固醇及蛋白质等形成脂蛋白,并以脂蛋白形式送入血中,送到其它组织中利用或贮存。 肝脏也是糖异生的主要器官,可将甘油、乳糖及生糖氨基酸等转化为葡萄糖或糖原。在剧烈运动及饥饿时尤为显著,肝脏还能将果糖及半乳糖转化为葡萄糖,亦可作为血糖的补充来源。 糖在肝脏内的生理功能主要是保证肝细胞内核酸和蛋白质代谢,促进肝细胞的再生及肝功能的恢复。(1)通过磷酸戊糖循环生成磷酸戊糖,用于RNA的合成; (2)加强糖原生成作用,从而减弱糖异生作用,避免氨基酸的过多消耗,保证有足够的氨基酸用于合成蛋白质或其它含氮生理活性物质。 肝细胞中葡萄糖经磷酸戊糖通路,还为脂肪酸及胆固醇合成提供所必需的NADPH。通过糖醛酸代谢生成UDP?葡萄糖醛酸,参与肝脏生物转化作用。 二、肝脏在脂类代谢中的作用 肝脏在脂类的消化、吸收、分解、合成及运输等代谢过程中均起重要作用。 肝脏能分泌胆汁,其中的胆汁酸盐是胆固醇在肝脏的转化产物,能乳化脂类、可促进脂类的消化和吸收。 肝脏是氧化分解脂肪酸的主要场所,也是人体内生成酮体的主要场所。肝脏中活跃的β-氧化过程,释放出较多能量,以供肝脏自身需要。生成的酮体不能在肝脏氧化利用,而经血液运输到其它组织(心、肾、骨骼肌等)氧化利用,作为这些组织的良好的供能原料。 肝脏也是合成脂肪酸和脂肪的主要场所,还是人体中合成胆固醇最旺盛的器官。肝脏合成的胆固醇占全身合成胆固醇总量的80%以上,是血浆胆固醇的主要来源。此外,肝脏还合成并分泌卵磷脂?胆固醇酰基转移酶(LCAT),促使胆固醇酯化。当肝脏严重损伤时,不仅胆固醇合成减少,血浆胆固醇酯的降低往往出现更早和更明显。 肝脏还是合成磷脂的重要器官。肝内磷脂的合成与甘油三酯的合成及转运有密切关系。磷脂合成障碍将会导致甘油三酯在肝内堆积,形成脂肪肝(fatty liver)。其原因一方面由于磷脂合成障碍,导致前β?脂蛋白合成障碍,使肝内脂肪不能顺利运出;另一方面是肝内脂肪合成增加。卵磷脂与脂肪生物合成有密切关系。卵磷脂合成过程的中间产物——甘油二酯有两条去路:即合成磷脂和合成脂肪,当磷脂合成障碍时,甘油二酯生成甘油三酯明显增多。

体外药物肝代谢研究进展

体外药物肝代谢研究进展 (作者:___________单位: ___________邮编: ___________) 【摘要】目的:介绍药物体外肝代谢方法的最新进展. 方法:根据近几年的文献资料进行分析、综合、归纳. 分别按肝微粒体体外温孵法、肝细胞体外温孵法、肝匀浆体外孵育法进行介绍. 结果:体外肝代谢研究方法发展迅速. 结论:目前主要的药物体外肝代谢方法各有利弊,但对于新药开发来都是必不可少的研究手段. 【关键词】肝代谢;微粒体,肝;肝细胞;药代动力学 0 引言 肝脏是药物主要的和重要的代谢器官,是药物生物转化的主要场所,是富含参与药物代谢的一个庞大的依赖细胞色素P450的混合功能氧化酶系统,大多数药物的Ⅰ相和Ⅱ相代谢反应都是在肝药酶系统的参与下发生的,因此药物的体外代谢模型主要是以肝脏为基础的,并以其特有的优势和特点在药物代谢的研究中得到广泛的应用. 体外药物的肝代谢研究已经发展很长时间,与体内代谢研究相比,体外代谢研究有许多优点,①体外代谢研究可以排除体内诸多的干扰因

素,直接观察到代谢酶对底物的选择性代谢,为体内代谢研究提供重要的线索和依据. ②对于体内代谢转化率低且缺乏灵敏检测手段的药物来说,体外代谢不失为一种很好的研究手段. ③体外代谢研究具有快速简便的特点,适合大量化合物的药动学筛选. ④不需要消耗大量的样品和实验动物,因而研究费用相对较低[1]. 我们从体外肝代谢模型入手,综述了近年来药物体外肝代谢的文献. 1 肝微粒体体外温孵法 肝微粒体体外温孵实验是采用从肝脏中提取的肝微粒体,并加入还原型辅酶II(NADPH)再生系统,在体外模拟生理环境下进行代谢反应,采用高效液相色谱(HPLC)、高效液相色谱质谱联用法(HPLC MS)等测定方法对原型药及代谢产物进行测定的一种体外代谢的实验方法. 1.1 Ⅰ相代谢Ⅰ相代谢又称为官能团反应,包括氧化、还原、水解、水合等反应. NADPH为还原型酰胺腺嘌呤二核苷酸磷酸,是许多药物生物转化反应中不可缺少的辅助因子,它在这些反应中起到还原剂的作用,体系中只要NADPH浓度达到1 mmol/L时,便足以维持药物代谢反应进行,但NADPH价格较高,且不易长时间保存. 因此常采用NADPH再生系统来代替NADPH. 即利用相对稳定和廉价的辅酶II(NADP)与6磷酸葡萄糖在6磷酸葡萄糖脱氢酶的作用下生成NADPH. 6磷酸葡萄糖+NADP 6磷酸葡萄糖脱氢酶

肝脏的功能

肝脏的功能 D贮存血液肝脏只有凝血的功能,而没有贮存血液的功能。 肝脏是人体最大的腺体,它在人的代谢、胆汁生成、解毒、凝血、免疫、热量产生及水与 电解质的调节中均起着非常重要的作用,是人体内的一个巨大的化工厂”。 一、代谢功能: ①糖代谢:饮食中的淀粉和糖类消化后变成葡萄糖经肠道吸收,肝脏将它合成肝糖原贮存起来;当机体需要时,肝细胞又能把肝糖原分解为葡萄糖供机体利用。 ②蛋白质代谢:肝脏是人体白蛋白唯一的合成器官;丫球蛋以外的球蛋白、酶蛋白及 血浆蛋白的生成、维持及调节都要肝脏参与;氨基酸代谢如脱氨基反应、尿素合成及氨的处理均在肝脏内进行。 ③脂肪代谢:脂肪的合成和释放、脂肪酸分解、酮体生成与氧化、胆固醇与磷脂的合成、脂蛋白合成和运输等均在肝脏内进行。 ④维生素代谢:许多维生素如 A B C D和K的合成与储存均与肝脏密切相关。肝脏明显受损时会出现维生素代谢异常。 ⑤激素代谢:肝脏参与激素的灭活,当肝功长期损害时可出现性激素失调。 二、胆汁生成和排泄:胆红素的摄取、结合和排泄,胆汁酸的生成和排泄都由肝脏承担。肝细胞制造、分泌的胆汁,经胆管输送到胆囊,胆囊浓缩后排放入小肠,帮助脂肪的消化和吸收。 三、解毒作用:人体代谢过程中所产生的一些有害废物及外来的毒物、毒素、药物的代谢和分解产物,均在肝脏解毒。 四、免疫功能:肝脏是最大的网状内皮细胞吞噬系统,它能通过吞噬、隔离和消除入侵和内生的各种抗原。 五、凝血功能:几乎所有的凝血因子都由肝脏制造,肝脏在人体凝血和抗凝两个系统的 动态平衡中起着重要的调节作用。肝功破坏的严重程度常与凝血障碍的程度相平行,临床上常见有些肝硬化患者因肝功衰竭而致出血甚至死亡。 六、其它:肝脏参与人体血容量的调节、热量的产生和水、电解质的调节。如肝脏损害时对钠、钾、铁、磷、等电解质调节失衡,常见的是水钠在体内潴留,引 起水肿、腹水等。 肝脏的功能和作用 肝为人体最大的消化腺,也是最大的腺体,它不仅分泌胆汁参与消化活动,而且有营养物质代谢、贮存糖原、解毒、吞噬防御等重要机能,在胚胎期还有造血功能。 肝的重量约占体重的1/50~1/40,小儿肝相对比成人的大。据统计,成年男性肝为1230~1500克,女性肝为1100~1300克。 肝的位置和形态人的肝脏位于腹腔,大部分在腹腔的右上部,小部分在左上部,是人体最大的实质性腺体器官,一般重约1200?1600g,约占成人体重的1/50,男性的比女性的略重,胎儿和新生儿的肝脏相对较大,可达体重的 1 /20 。正常肝脏外观呈红褐色,质软而脆。肝脏形态呈一不规则楔形,右侧钝厚而左侧偏窄,一般 左右径(长)约25cm前后径(宽)约15cm上下径(厚)约6cm)上面突起浑圆,与

药物是怎么经肝脏代谢转化的

如对您有帮助,可购买打赏,谢谢药物是怎么经肝脏代谢转化的 导语:我们都知道,肝脏是我们人体内的解毒场所,肝脏内部的代谢对我们是非常重要的。人们所吃下的都需要经过肝脏来进行代谢,对于药物来说,肝脏 我们都知道,肝脏是我们人体内的解毒场所,肝脏内部的代谢对我们是非常重要的。人们所吃下的都需要经过肝脏来进行代谢,对于药物来说,肝脏对其的清除能力也是非常强的,主要还是经过酶的分解以及药物自身的代谢来完成这个过程。那么,药物究竟是怎么经肝脏代谢转化的呢?让我们一起来看一下。 药物代谢是研究药物在生物体内的吸收、分布、生物转化和排泄等过程的特点和规律的一门科学,即药物分子被机体吸收后,在机体作用下发生的化学结构转化。也是药物研发产业链中的重要环节,贯穿药物研究过程的始终。代谢的意义就在于能把外源性的物质包括药物和毒物,进行化学处理失活,并使排出体外。但药物的作用、副作用、毒性、给药剂量、给药方式、药物作用的时间、药物的相互作用等对代谢具有重要的影响。 肝脏是药物的主要清除器官,肝脏清除分成肝脏代谢和胆汁排泄两种方式。肝脏富含药物Ⅰ相代谢和Ⅱ相代谢所需的各种酶,其中以 P450酶最为重要。P450酶是由多种类型的P450酶所组成的一个大家族,根据氨基酸的排序的雷同性,P450酶可以分为不同几个大类,每个大类又可以细分成几个小类。在人体中重要的P450酶有CYP1A2、CYP2A6、CYP2B6、CYP2C8、CYP2C9、CYP2C19、CYP2D6、CYP2E1、CYP3A4和CYP3A5)。 P450酶存在有明显的种属差异,药物在动物和人体内的代谢途径和代谢产物可能是不同的。多态性(polymorphisms)是P450酶的一个重要 预防疾病常识分享,对您有帮助可购买打赏

肝脏在物质代谢中的作用

一、肝脏在糖代谢中地作用 肝脏是调节血糖浓度地主要器官.当饭后血糖浓度升高时,肝脏利用血糖合成糖原(肝糖原约占肝重地).过多地糖则可在肝脏转变为脂肪以及加速磷酸戊糖循环等,从而降低血糖,维持血糖浓度地恒定.相反,当血糖浓度降低时,肝糖原分解及糖异生作用加强,生成葡萄糖送入血中,调节血糖浓度,使之不致过低.因此,严重肝病时,易出现空腹血糖降低,主要由于肝糖原贮存减少以及糖异生作用障碍地缘故.临床上,可通过耐量试验(主要是半乳糖耐量试验)及测定血中乳酸含量来观察肝脏糖原生成及糖异生是否正常. 肝脏和脂肪组织是人体内糖转变成脂肪地两个主要场所.肝脏内糖氧化分解主要不是供给肝脏能量,而是由糖转变为脂肪地重要途径.所合成脂肪不在肝内贮存,而是与肝细胞内磷脂、胆固醇及蛋白质等形成脂蛋白,并以脂蛋白形式送入血中,送到其它组织中利用或贮存. 肝脏也是糖异生地主要器官,可将甘油、乳糖及生糖氨基酸等转化为葡萄糖或糖原.在剧烈运动及饥饿时尤为显著,肝脏还能将果糖及半乳糖转化为葡萄糖,亦可作为血糖地补充来源. 糖在肝脏内地生理功能主要是保证肝细胞内核酸和蛋白质代谢,促进肝细胞地再生及肝功能地恢复.()通过磷酸戊糖循环生成磷酸戊糖,用于地合成;()加强糖原生成作用,从而减弱糖异生作用,避免氨基酸地过多消耗,保证有足够地氨基酸用于合成蛋白质或其它含氮生理活性物质. 肝细胞中葡萄糖经磷酸戊糖通路,还为脂肪酸及胆固醇合成提供所必需地.通过糖醛酸代谢生成?葡萄糖醛酸,参与肝脏生物转化作用. 二、肝脏在脂类代谢中地作用 肝脏在脂类地消化、吸收、分解、合成及运输等代谢过程中均起重要作用. 肝脏能分泌胆汁,其中地胆汁酸盐是胆固醇在肝脏地转化产物,能乳化脂类、可促进脂类地消化和吸收. 肝脏是氧化分解脂肪酸地主要场所,也是人体内生成酮体地主要场所.肝脏中活跃地β氧化过程,释放出较多能量,以供肝脏自身需要.生成地酮体不能在肝脏氧化利用,而经血液运输到其它组织(心、肾、骨骼肌等)氧化利用,作为这些组织地良好地供能原料. 肝脏也是合成脂肪酸和脂肪地主要场所,还是人体中合成胆固醇最旺盛地器官.肝脏合成地胆固醇占全身合成胆固醇总量地以上,是血浆胆固醇地主要来源.此外,肝脏还合成并分泌卵磷脂?胆固醇酰基转移酶(),促使胆固醇酯化.当肝脏严重损伤时,不仅胆固醇合成减少,血浆胆固醇酯地降低往往出现更早和更明显. 肝脏还是合成磷脂地重要器官.肝内磷脂地合成与甘油三酯地合成及转运有密切关系.磷脂合成障碍将会导致甘油三酯在肝内堆积,形成脂肪肝( ).其原因一方面由于磷脂合成障碍,导致前β?脂蛋白合成障碍,使肝内脂肪不能顺利运出;另一方面是肝内脂肪合成增加.卵磷脂与脂肪生物合成有密切关系.卵磷脂合成过程地中间产物——甘油二酯有两条去路:即合成磷脂和合成脂肪,当磷脂合成障碍时,甘油二酯生成甘油三酯明显增多.

简述肝脏在糖、脂类、蛋白质等代谢中的作用

1. 简述肝脏在糖、脂类、蛋白质等代谢中的作用 (1)肝脏在糖代谢中的作用:通过肝糖原的合成,分解与糖异生作用来维持血糖浓度的恒定,确保全身各组织,特别是脑组织的能量来源. (2)肝脏在脂类的消化,吸收,分解,合成及运输等过程中均起重要作用.如肝脏生成的胆汁酸盐是乳化剂;酮体只能在肝中生成;VLDL, HDL只能在肝中合成;促进血中胆固醇醋合成的酶(LCAT)由肝脏生成分泌入血. (3)肝脏能合成多种血浆蛋白质,如清蛋白,凝血酶原,纤维蛋白原等;通过鸟氨酸循环,肝脏将有毒的氨转变成无毒的尿素,这是氨的主要去路,也只能在肝中进行. ⑷肝脏对于维生素的消化,吸收,储存,转化等方面均起作用,. ⑸肝脏在激素代谢中的作用主要是参与激素的灭活. 中文名称: 高能磷酸化合物 英文名称: energy-rich phosphate 定义: 生物体内具有高能键的化合物。ATP水解时自由能变化较大(约 34.54kJ/mol),为典型的高能化合物。体内各种磷酸化合物水解时释出的 能量大于或等于ATP水解时释放的能量者均属此类,如磷酸肌酸。 高能磷酸化合物(energy rich phosphate compounds) 定义:水解自由能在20.92kj/mol以上的磷酸化合物。 机体内有许多磷酸化合物如ATP,3—磷酸甘油酸,氨甲酰磷酸,磷酸烯醇式丙酮酸,磷酸肌酸,磷酸精氨酸等,它们的磷酰基水解时,可释放出大量的自由能,这类化合物称为高能磷酸化合物。ATP是这类化合物的典型代表。ATP水解生成ADP及无机磷酸时,可释放自由能7.3千卡(30.52千焦)。一般将水解时释放自由能在5.0千卡(20.9千焦)以上的称为高能化合物。5.0千卡以下的称为低能化合物,化学家认为键能是指断裂一个键所需要的能量,而生物化学家所指的是含有高能键(酸酐键)的化合物水解后释放出的自由能。高能键用“~”表示。 温度对酶促反应速率影响的双重性 酶是生物催化剂,温度对酶促反应有双重影响。升高温度一方面可以加怏酶促反应速率。但是,因为大多数酶是蛋白质大分子,常态下,因分子链中各种基团的相互吸引,使酶蛋白构象呈稳定的“线团”状,而活性中心就在其线团的凹穴表面。提高温度会破坏基团间的相互吸引,严重时会使酶变性失活,所以过分提高温度反会使酶变性失活,并不可逆转。 大多数酶在温度60℃以上时开始变性;8O℃时多数酶的变性就不可逆转。综含考虑这两个因素,人们把酶促反应速率最高时的温度,称为该酶促反应的最适温度(optimum temperature).当反应体系的温度低于最适温度时,温度每提高10℃,酶促反应速率可加快1-2倍。如温度高于最适温度时,反应速率会因酶变性而降低直至酶失活。 酶的最适温度不是酶的特性常数,因为它随反应进行的时间有关。酶可以在较短时间内承受较高的温度。相反,随着反应时间延长,最适反应温度也会降低。低温虽会

肝脏的生理功能

肝脏的生理功能 肝脏是人体中最大的消化腺,也是最重要的器官之一。 人的肝脏分左右二叶,位于腹腔中,左叶小右叶大。肝脏的分泌物是一种黄褐色的苦涩液体,即胆汁。胆汁可直接从胆管流入十二指肠,也可储存于胆囊中,浓缩后,再从胆管进入十二指肠,参与脂肪的消化。 肝脏的功能不只是为脂肪消化提供胆汁,而是多方面的,涉及多个器官系统,简述于下: (1)肝脏对体液的调节作用 食物在小肠中消化后,消化产物通过小肠绒毛而进入血液或淋巴中(血管和淋巴管是相通的),所以小肠壁上毛细血管中的血液含有高量的单糖和氨基酸。如果“放任自流”,全身血液的成分很快就要发生变化,内稳态就要遭到破坏。但实际上这种情况并不发生,因为肝脏发挥了调节的作用。原来,小肠毛细血管在离开小肠时逐渐集合成几条静脉,这些静脉会合流入肝门脉(静脉)而入肝。所以肝脏一方面有肝动脉供应含O2的血液,另一

方面又接受肝门脉送入的含有高量营养物质和CO2的血液。肝门脉和肝动脉入肝之后分支而成毛细血管网(血窦),然后又集合而成肝静脉,肝静脉再和大静脉相连,而入心脏。肝门脉系统是肝脏血液循环的特征。肝门脉中的血是在肠壁上已经流过了一个毛细血管网的血,从肝门脉进入肝脏后,又要经过一个毛细血管网与肝脏细胞交换物质,就是在这一交换物质的过程中,肝脏发挥着它的调节作用。 对糖类代谢的调节:食物消化后产生葡萄糖、果糖、半乳糖等。果糖和半乳糖在进入血液后也都转变为葡萄糖。所谓血糖就是血中的葡萄糖。人的正常血糖含量约为血浆总量的0.08%~0.14%,即每100mL血液中含有0.08g~0.14g(平均0.1g)葡萄糖。饭后,从肝门脉流入肝的血液含葡萄糖的量可高达0.14%,但此时从肝脏流出的肝静脉血液的血糖含量却低至0.11%。这是因为肝脏把血液中过多的葡萄糖转化为糖原而储存于肝细胞中之故。大静脉中的血液是身体各部向心脏回流的血液,由于各组织已经从中吸收了葡萄糖,所以大静脉血液中葡萄糖含量是较低的。肝静脉的血液流入大静脉后,就和身体各处流入大静脉的血混合,葡萄糖含量就恢复了正常。如果食量过大,葡萄糖收入量过多,超过了全身的需要量,也超过了肝脏的储存能力,肝脏就将超量的葡萄糖转化为脂肪,由血液运到各处脂肪组织中储存,结果脂肪增多,人发胖。 反之,如果一个人没有吃饭,“腹内空空”,流入肠壁的血液就不但不能从肠内收入葡萄糖,反而要把带来的葡萄糖输送给肠壁细胞。因而离开肠壁

肝脏的生化功能

肝脏是机体最大的腺体,它在机体的代谢﹑胆汁生成﹑解毒﹑凝血﹑免疫﹑热量产生及水与电解质的调节中均起着非常重要的作用,是机体内的一个巨大的“化工厂”。 代谢功能: ①糖代谢:饮食中的淀粉和糖类消化后变成葡萄糖经肠道吸收,肝脏将它合成肝糖原贮存起来;当机体需要时,肝细胞又能把肝糖原分解为葡萄糖供机体利用。 ②蛋白质代谢:肝脏是人体白蛋白唯一的合成器官;γ球蛋以外的球蛋白﹑酶蛋白及血浆蛋白的生成﹑维持及调节都要肝脏参与;氨基酸代谢如脱氨基反应﹑尿素合成及氨的处理均在肝脏内进行。 ③脂肪代谢:脂肪的合成和释放﹑脂肪酸分解﹑酮体生成与氧化﹑胆固醇与磷脂的合成﹑脂蛋白合成和运输等均在肝脏内进行。 ④维生素代谢:许多维生素如A B C D和K的合成与储存均与肝脏密切相关。肝脏明显受损时会出现维生素代谢异常。 ⑤激素代谢:肝脏参与激素的灭活,当肝功长期损害时可出现性激素失调。 胆汁生成和排泄:胆红素的摄取﹑结合和排泄,胆汁酸的生成和排泄都由肝脏承担。肝细胞制造﹑分泌的胆汁,经胆管输送到胆囊,胆囊浓缩后排放入小肠,帮助脂肪的消化和吸收。 解毒作用:机体代谢过程中所产生的一些有害废物及外来的毒物﹑毒素、药物的代谢和分解产物均在肝脏解毒。 免疫功能:肝脏是最大的网状内皮细胞吞噬系统,它能通过吞噬﹑隔离和消除入侵和内生的各种抗原。 凝血功能:几乎所有的凝血因子都由肝脏制造,肝脏在机体凝血和抗凝两个系统的动态平衡中起着重要的调节作用。肝功破坏的严重程度常与凝血障碍的程度相平行,临床上常见有些肝硬化动物因肝功衰竭而致出血甚至死亡。 其它:肝脏参与肌体血容量的调节﹑热量的产生和水、电解质的调节。如肝脏损害时对钠﹑钾﹑铁﹑磷﹑等电解质调节失衡,常见的是水钠在体内潴留,引起水肿、腹水等。 代谢功能: 1、肝脏参与糖代谢过程。对糖的贮存,分布和调节具有重要意义。在正常情况下,血液中葡萄糖的浓度是恒定的,空腹时血糖的浓度为每100毫升血液中含80-100毫克。饭后,食物在胃肠道内分解成葡萄糖,一部分直接入血液循环供人体利用,大部分经肝细胞合成肝糖元,贮存于肝脏。当饥饿、劳动、发热时,血糖浓度下降,此时肝细胞又能把肝糖元分解成葡萄糖,进入血液循环,提高血糖的浓度,维持血糖的正常乎衡。肝脏可以通过一系列的化学变化,将多余的蛋白质,脂肪转变为糖元。在机体营养状况好肝糖元贮备丰富时,可以保护肝脏免受损害。

肝病与药物肝毒性及其药物代谢

肝病与药物肝毒性及其药物代谢 周权 浙江大学医学院附属二院药剂科临床药学室(310009) 肝病状态下药物代谢能力如何、药物的肝毒性是否与药物代谢机制参与等话题,是临床药师必须关心的内容。笔者简要介绍相关知识。 一、肝脏疾病状态下的药物代谢 肝脏是药物代谢的主要场所,所以肝脏疾病对药物代谢酶的影响最为直接。 a. 病毒性肝炎甲型肝炎患者的CYP2A6活性显著下降,而且在儿童中更甚。慢性活动性丙型肝炎患者CYP2D6和CYP3A4的活性显著下降。经 -干扰素、利巴韦林联合治疗1个月后活性恢复。提示经抗病毒药物治疗后,应用CYP2D6和CYP3A4底物时剂量无需调整。与无脂肪变性的慢性丙型肝炎患者相比,慢性丙型肝炎合并脂肪变性患者的CYP2E1 mRNA表达增加37%。机制与TNF-α mRNA表达增加和氧化应激(谷胱甘肽、超氧化物歧化酶、过氧化氢酶活性下降)有关。提示这些患者应用CYP2E1底物时剂量应适度增加。 b. 肝硬化一般来说,肝硬化比其他肝脏疾病对药物代谢的影响要大。肝硬化对一相代谢有抑制作用,而相对而言葡醛酸转移酶的活性不受肝硬化和慢性肝病的影响。例如地西泮的去甲基化和普萘洛尔的氧化代谢受影响非常显著。奥沙西泮、罗拉西泮的代谢纯粹为葡醛化,在肝硬化病中并无影响。肝硬化患者的CYP3A4活性、含量和基因表达显著下降,且CYP3A4活性与血清白蛋白浓度显著相关,与血清转氨酶浓度则无关。慢性活动性肝炎和代偿期肝硬化患者的CYP1A2和NAT2的活性显著降低。因此,肝硬化患者使用CYP3A4或CYP1A2底物时剂量应降低,参考血清白蛋白浓度有一定的临床价值。 c. 酒精性肝病乙醇对肝药酶活性的影响呈双相性,短时间内大量饮酒,乙醇通过直接竞争性结合CYP2E1而产生药酶抑制作用;乙醇慢性中毒者肝内质网增生,CYP2E1数量和活性增加,使同时服用药物的代谢加快、t1/2缩短、药效降低。 d. 胆汁淤积肝内胆汁淤积患者的P450含量和CYP2E1显著受损,且下降程度与血清总胆红素、胆汁酸浓度相关,但与血清谷草转氨酶水平无相关性。细胞色素b5含量、NADPH-细胞色素还原酶活性无改变。慢性肝病伴血清胆红素浓度升高患者的CYP1A2、CYP2C8/10含量显著下降。提示这些患者应用经P450代谢的药物时,剂量应下降,参考血清胆红素和胆汁酸浓度具有临床价值。 二、肝毒性与药物代谢 药物性肝损伤的机制可纳为:(1)药物的直接损伤;(2)免疫特异质机制损伤;(3)代谢特异质机制损伤和(4)氧应激损伤。本文着重介绍与药物代谢有关的机制。某些药物在肝细胞内经CYP450代谢产生亲电子物、自由基、氧基等,他们可与肝细胞内大分子物质共价结合,引起膜系统脂质过氧化,破坏膜完整性和膜Ca2+-ATP酶系,扰乱细胞内外Ca2+稳态,影响线粒体、内质网等重要细胞器的功能,并最终导致肝细胞损伤甚至死亡。 1 长期饮酒者服用对乙酰氨基酚后致肝细胞损伤 - 118 -

相关文档