文档库 最新最全的文档下载
当前位置:文档库 › 发酵罐温度控制系统的设计

发酵罐温度控制系统的设计

发酵罐温度控制系统的设计
发酵罐温度控制系统的设计

洛阳理工学院

计算机控制技术与应用课程设计

题目:发酵培养基温度控制系统设计

学生姓名:

学号:

班级:

专业:

摘要

本题要设计的是发酵培养基温度控制系统,发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响。因此,对发酵过程中的温度进行检测和控制就显得十分重要。

本课题设计了发酵罐温度控制系统,选择的传感器为Cu100,由于信号很小,所以就需要通过差动放大电路进行放大并且经过了滤波电路滤波,然后将处理后的电压信号经过V/I转换,输出4~20mA的电流信号,最后进行仿真分析以及参数的计算,以达到通过对冷水阀开度的控制对发酵罐温度控制的目的。

本系统应用温度控制系统,有助于提高发酵效率,有助于提高工厂产值,并且可以使资源得到更充分的作用。

关键词:温度控制,PID控制器,V/I转换,比较机构

目录

前言........................................................................................ 错误!未定义书签。

1.1.1 发酵培养基简介 3

1.1.2工艺背景:................................................................ 错误!未定义书签。

1.2温度对发酵的影响...................................................... 错误!未定义书签。

1.2.1温度影响微生物细胞生长................................. 错误!未定义书签。

1.2.2温度影响产物的生成量..................................... 错误!未定义书签。

1.2.3温度影响生物合成的方向................................. 错误!未定义书签。

1.2.4温度影响发酵液的物理性质............................. 错误!未定义书签。

1.3、影响发酵温度变化的因素:..................................... 错误!未定义书签。

1.4发酵热的测定................................................................ 错误!未定义书签。

1.5最适温度的选择与发酵温度的控制............................ 错误!未定义书签。

1.5.1温度的选择....................................................................................... VII

2 培养基温度控制系统的设计.................................................. 错误!未定义书签。

2.1总体设计方案.............................................................................................. VII

2.1.1 系统总框图...................................................................................... VII

2.2硬件设计................................................................................................... V III

2.2.1温度采集电路.................................................................................. V III

2.2.2 PLC与计算机的通信......................................................................... I X

2.3软件部分......................................................................................................... X 3总结........................................................................................................................ X III 参考文献:............................................................................................................... X III

前言

计算机控制技术以自动控制理论和计算机技术为基础,自动控制理论的发展给计算机控制系统增添了理论工具,而计算机技术的发展为新型控制规律的实现、构建高性能的计算机控制技术提供了物质基础,而两者的结合极大地推动了计算机控制技术的发展。

本课程设计主题以啤酒厂发酵罐培养基温度控制系统的设计为例,具体实现培养基温度的控制以及原理,要求了解发酵罐温度控制的工艺背景、设计控制方案。

1 工艺过程概述

1.1.1 发酵培养基

培养基(Medium)是供微生物、植物和动物组织生长和维持用的人工配制的养料,一般都含有水、氮源、无机盐(包括微量元素)、碳源、生长因子(维生素、氨基酸、碱基、抗菌素、色素、激素和血清等)等。

培养基由于配制的原料不同,使用要求不同,而贮存保管方面也稍有不同。一般培养基在受热、吸潮后,易被细菌污染或分解变质,因此一般培养基必须防潮、避光、阴凉处保存。对一些需严格灭菌的培养基(如组织培养基),较长时间的贮存,必须放在3-6℃的冰箱内。由于液体培养基不易长期保管,均改制成粉末。

1.1.2工艺背景

啤酒发酵过程是啤酒酵母在一定的条件下,利用麦汁中的可发酵性物质而进行的正常生命活动,其代谢的产物就是所要的产品--啤酒。

啤酒发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。发酵过程中的温度的变化直接影响到啤酒质量和生产的效率。因此,对发酵过程中的温度进行控制显得十分重要。啤酒发酵的全过程分成多个阶段,各个阶段都有对应的温度曲线。为了使啤酒有更好的品质,需要让发酵罐的温度根据工艺温度曲线变化。

1.2温度对发酵的影响

温度对发酵过程的影响是多方面的,它会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制除这些直接影响外,温度还对发酵液的理化性质产生影响,如发酵液的粘度。基质和氧在发酵液中的溶解度和传递速率。某些基质的分解和吸收速率等,进而影响发酵的动力学特性和产物的生物合成。

1.2.1温度影响微生物细胞生长

随着温度的上升,细胞的生长繁殖加快。这是由于生长代谢以及繁殖都是酶

参加的。根据酶促反应的动力学来看,温度升高,反应速度加快,呼吸强度增加,最终导致细胞生长繁殖加快。但随着温度的上升,酶失活的速度也越大,使衰老提前,发酵周期缩短,这对发酵生产是极为不利的。

1.2.2温度影响产物的生成量

1.2.3温度影响生物合成的方向

1.2.4温度影响发酵液的物理性质

温度除了影响发酵过程中各种反应速率外,还可以通过改变发酵液的物理性质间接影响微生物的生物合成。

1.3影响发酵温度变化的因素:

发酵热就是发酵过程中释放出来的净热量。是生产菌在生长繁殖时产生的大量热量。生物热主要是培养基中碳水化合物、脂肪、蛋白质等物质被分解为CO

2

NH

3

时释放出的大量能量。主要用于合成高能化合物,供微生物生命代谢活动及热能散发。菌体在生长繁殖过程中,释放出大量热量。

生物热的大小与菌种遗传特性、菌龄有关,还与营养基质有关。在相同条件下,培养基成分越丰富,产生的生物热也就越大。

1.4发酵热的测定

通过测量一定时间冷却水的流量和冷却水的进、出口温度,由下式计算出发酵热:

Q发酵=G.C

W .(t

2

-t

1

)/V (1-1)

式中:G——冷却水的流量(kg/h);C

W

——水的比热[kJ/(kg?℃)];

t

2 t

1

——分别为冷却水的进、出口温度(℃); V--发酵液的体积(m3)。

通过发酵罐温度的自动控制,先使罐温达到恒定,再关闭自动控制装置,测定温度随时间上升的速率,按下式计算发酵热:

Q发酵=(M

l C

l

+M

2

c

2

).S (1-2)

M l 一系统中发酵液的质量(kg);M

2

一发酵罐的质量(kg);

C l —发酵液的比热[kJ/(kg?℃)];C

2

—发酵罐材料的比热[kJ/(kg?℃));

S—温度上升速率(℃/h)。

1.5最适温度的选择与发酵温度的控制

1.5.1温度的选择

最适温度是一种相对概念,是指在该温度下最适于菌的生长或发酵产物的生成。选择最适温度应该考虑微生物生长的最适温度和产物合成的最适温度。最适发酵温度与菌种,培养基成分,培养条件和菌体生长阶段有关。

工业上使用大体积发酵罐的发酵过程,一般不须要加热,因为释放的发酵热常常超过微生物的最适培养温度,所以需要冷却的情况较多。

2发酵罐温度控制系统的设计

2.1总体设计方案

发酵罐的温度控制选择了检测发酵罐的上、中、下段温度的方法,通过上、中、下3段液氨进口的两位式电磁阀来实现发酵罐温度控制,其原理图如图1所示。

图1 发酵罐控制过程原理图

2.1.1 系统总框图

设计在本设计中采用闭环控制系统,温度采集电路从发酵罐中采集温度,通过模拟量控制模块,把采集的模拟信号转换成对应的数值信号送入PLC中,与给

定的温度信号进行比较,经过PID运算后,通过输出差值信号来调节电磁阀的开关状态,从而来控制进入发酵罐冷却夹套中液氨的多少来调节发酵罐的温度。图2是发酵罐温度控制系统总框图。

图2 发酵罐温度控制系统总框图

2.2硬件设计

2.2.1温度采集电路

图3是实际的测量电路。图中,AD581输出一个标准的+10V电压,RP1用于调零,RP2用于调满刻度。AD590输出电流在R1和RP1上产生压降,该电压经过运算放大(R2+RP2)/(R1+RP1)倍后输出。调整过程分别在0℃(冰水混合物中)和100℃(沸水中)两点温度进行,通过运算放大器A放大使输出灵敏度为100mV/℃,即在0℃时,调整RP1时输出0V,在100℃时,调整RP2使输出为10V。

15V

图3 温度采集电路

2.2.2 PLC 与计算机的通信

设计系统中,采用一台PC 机和多台PLC

组成控制系统,计算机实行图形显示数据处理打印报表以及中文显示等功能,PLC 则执行控制功能。图4是FX2N PLC 与计算机连接图。

转换器

计算机

图4 PLC 与计算机连接图

2.3软件部分

图5 是发酵罐控制过程的程序流程图。本设计选择FX2N-4AD模块,并且选择通道和相应的量程。序的作用是选择通道一、A/D转换和将转换的数据放在地址D201中。A/D采样时间是选用了15s,这是根据采样定理确定的,并参考了工程手册上的参数设定。罐状态操作包括:温度控制自动调谐程序、长定时子程序和各阶段温度控制。

图6是长定时子程序:

图5 发酵罐控制过程程序流程图

图6 长定时程序流程图

各阶段温度控制分为:

(1)进料阶段,温度保持在8℃,流程图如图7所示:

图7 进料阶段流程图

(2)还原双乙酰阶段,温度保持在12℃,流程图如图8所示:

图8 还原双乙酰阶段流程图

(3)停留观察,温度保持在6℃,流程图如图9所示;具体停留观察阶段设定为10个小时,用于检测发酵液体内的化学物质含量,并将发酵液中的

酵母排出。在没有到达停留观察阶段时,其PID输出值为零;

图9 停留观察阶段程序流程图

(4)储酒阶段,将温度控制到-1℃,直到发酵周期结束,流程图如图10所示。

图10 存储阶段程序流程图

参考文献:

[1] 李文涛,李忠虎.过程控制[M].北京:科学出版社,2012.2

[2] 黄桂梅.计算机控制技术与系统[M].北京:中国电力出版社,2008

[3] 林锦国.过程控制[M].2版.南京:东南大学出版社,2006

[4] 牛超,徐定伟,王军,吕冰.发酵罐温度控制系统的设计[J].自动化与仪器

仪表,2008(05)

[5] 刁育群.微机在啤酒发酵生产控制系统中的应用[J].仪器仪表分析与检测,

1990(3)

[6] 顾庆才.啤酒发酵期间温度和压力对酵母生长/杂醇/酯比例的影响[J].啤

酒科技,2002(8)

[7] 杜锋,雷鸣.啤酒发酵过程温度控制策略[J].酿酒,2002(2)

[8] 王国安,张利波.发酵罐恒温供冷控制系统[J].赤峰学院学报,2009(7)

[9] 孙波,陈刚,王尔智,张炳义.啤酒发酵中温度的测控方法[J].控制工程,

2008(5)

[10] 杨德,畅福善,沈俊霞.基于PLC的发酵罐温度控制系统[J].自动化仪表,

2012(5)

发酵罐温度串级控制系统概述

一、被控对象工作原理及结构特点等 发酵工程是应用生物(主要是微生物)为工业大规模生产服务的一门工程技术,也称微生物工程。发酵工程是包括微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。 现代发酵工程不但应用于生产酒精类饮料、醋酸和面包,而且还可以生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子、酶以及维生素和单细胞蛋白等。 发酵反应器(发酵罐)是发酵企业中最重要的设备。发酵罐式必须具有适宜于微生物生长和形成产物的各种条件,促进微生物的新陈代谢,使之能在低消耗下获得较高产量。例如,发酵罐的结构应尽可能简单,便于灭菌和清洗;循环冷却装置维持适宜的培养温度;由于发酵时采用的菌种不同、产物不同或发酵类型不同,培养或发酵条件又各有不同,还要根据发酵工程的特点和要求来设计和选择发酵罐的类型和结构。 通风发酵设备要将空气不断通入发酵液中,供给微生物所需的氧,气泡越小,气泡的表面积越大,氧的溶解速率越快,氧的利用率也越高,产品的产率就越高。通风发酵罐有鼓泡式、气升式、机械搅拌式、溢流喷射自吸式等多种类型。 机械搅拌通风发酵罐是发酵工厂常用的类型之一,它是利用机械搅拌器的作用,使空气和賿液充分混合促使氧在賿液中溶解,以保证供给微生物生长繁殖、发酵所需要的氧气,同时强化热量传递。无论是微生物发酵、酶催化或动物植物细胞培养的微生物工程工厂都应用此类设备,占目前发酵罐总数的70%~80%,常用语抗生素、氨基酸、有机酸和酶的发酵生产。机械搅拌通风发酵罐是属于一种搅拌釜式反应器,除用作化学反应和生物反应器外搅拌反应器还大量用于混合、分散、溶解、结晶、萃取、吸收或解吸传热等操作。搅拌反应器由搅拌容器和搅拌机两大部分组成。加班容器包括筒体、换热原件及内构件、搅拌器、搅拌轴及其密封装置、传动装置等统称为搅拌机。 1.1温度对发酵的影响 微生物药品发酵所用的菌体绝大多数十中温菌,如丝状真菌、放线菌和一般细菌。它们的最适生长温度一般在20~40摄氏度。在发酵过程中,应维持适当温度,以使微生物生长代谢顺利进行。由于微生物的种类不同,所具有的酶系及其性质也不同,因此所要求的温度也不同,如细菌的生长温度大多比霉菌高。有些微生物在生长、繁殖和合成代谢产物等各个阶

自动控制原理课程设计速度伺服控制系统设计样本

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指引教师 机电工程学院 12月

目录一课程设计设计目 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参照文献

一、课程设计目: 通过课程设计,在掌握自动控制理论基本原理、普通电学系统自动控制办法基本上,用MATLAB实现系统仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,规定运用根轨迹法拟定测速反馈系数' k,以 t 使系统阻尼比等于0.5,并估算校正后系统性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改进控制系统性能,除可选用串联校正方式外,经常采用反馈校正方式。常用有被控量速度,加速度反馈,执行机构输出及其速度反馈,以及复杂系统中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中一某些环节以实现校正,。从控制观点来看,采用反馈校正不但可以得到与串联校正同样校正效果,并且尚有许多串联校正不具备突出长处:第一,反馈校正能有效地变化

被包围环节动态构造和参数;第二,在一定条件下,反馈校正装置特性可以完全取代被包围环节特性,反馈校正系数方框图从而可大大削弱这某些环节由于特性参数变化及各种干扰带给系统不利影响。 该设计应用是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +()=22t 1T s T K s ζ+(2+)+1 =22'1T s 21Ts ζ++ 试中,'ζ=ζ+t K 2T ,表白微分负反馈不变化被包围环节性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改进了系统平稳性。 微分负反馈校正系统方框图

空调自动化控制原理.

空调自动化控制原理说明 自动化系统是智能建筑的一个重要组成部分。楼宇自动化系统的功能就是对大厦内的各种机电设施,包括中央空调、给排水、变配电、照明、电梯、消防、安全防范等进行全面的计算机监控管理。其中,中央空调的能耗占整个建筑能耗的50%以上,是楼宇自动化系统节能的重点[1]。由于中央空调系统十分庞大,反应速度较慢、滞后现象较为严重,现阶段中央空调监控系统几乎都采用传统的控制技术,对于工况及环境变化的适应性差,控制惯性较大,节能效果不理想。传统控制技术存在的问题主要是难以解决各种不确定性因素对空调系统温湿度影响及控制品质不够理想。而智能控制特别适用于对那些具有复杂性、不完全性、模糊性、不确定性、不存在已知算法和变动性大的系统的控制。“绿色建筑”主要强调的是:环保、节能、资源和材料的有效利用,特别是对空气的温度、湿度、通风以及洁净度的要求,因此,空调系统的应用越来越广泛。空调控制系统涉及面广,而要实现的任务比较复杂,需要有冷、热源的支持。空调机组内有大功率的风机,但它的能耗很大。在满足用户对空气环境要求的前提下,只有采用先进的控制策略对空调系统进行控制,才能达到节约能源和降低运行费用的目的。以下将从控制策略角度对与监控系统相关的问题作简要讨论。 2 空调系统的基本结构及工作原理 空调系统结构组成一般包括以下几部分[2] [3]:

(1) 新风部分 空调系统在运行过程中必须采集部分室外的新鲜空气(即新风),这部分新风必须满足室内工作人员所需要的最小新鲜空气量,因此空调系统的新风取入量决定于空调系统的服务用途和卫生要求。新风的导入口一般设在周围不受污染影响的地方。这些新风的导入口和空调系统的新风管道以及新风的滤尘装置(新风空气过滤器)、新风预热器(又称为空调系统的一次加热器)共同组成了空调系统的新风系统。 (2) 空气的净化部分 空调系统根据其用途不同,对空气的净化处理方式也不同。因此,在空调净化系统中有设置一级初效空气过滤器的简单净化系统,也有设置一级初效空气过滤器和一级中效空气过滤器的一般净化系统,另外还有设置一级初效空气过滤器,一级中效空气过滤器和一级高效空气过滤器的三级过滤装置的高净化系统。 (3) 空气的热、湿处理部分 对空气进行加热、加湿和降温、去湿,将有关的处理过程组合在一起,称为空调系统的热、湿处理部分。在对空气进行热、湿处理过程中,采用表面式空气换热器(在表面式换热器内通过热水或水蒸气的称为表面式空气加热器,简称为空气的汽水加热器)。设置在系统的新风入口,一次回风之前的空气加热器称为空气的一次加热器;设置在降温去湿之后的空气加热器,称为空气的二次加热器;设置

关于发酵罐的控制系统

关于发酵罐的控制系统 一参数控制 1温度控制 a 信号输入为4-20mA电流,对应输出为0-150℃温度 b 输出温度需通过校对调整,可编在程序内,也可以做个人机界面,使用人调整(a+bx) c 工作温度设定,通过人机界面由使用人输入 d 控制温度设定,分上限和下限,可采用工作温度加偏差温度(如0.5℃、1℃等)由使用人设定,也可以采用直接的温度值由使用人设定,也可以以0.5℃的偏差直接写入程序 e 控制方式:低于下限温度自动启动加热,高于上限温度自动启动冷却;加热和冷却过程需分别由使用人通过人机界面设定参数,参数为:加热时间(热水阀开启的时间,范围0-5分钟)和加热间隔时间(可设置为两次加热的间隔时间,也可以设置为热水阀关闭的时间,可以0-10分钟,由于加热过程中,热水进入发酵罐夹套后,发酵罐的温度上升要滞后一段时间,所以,关闭热水阀后要等一段时间,避免频繁启动而温度波动过大;同理,冷却过程也需要设置“冷却时间”和“冷却间隔时间” 2 酸碱度(pH)控制 a 信号输入为4-20mA电流,对应输出为0-14的pH值 b 输出pH需通过校对调整,需通过人机界面,使用人调整(a+bx) c pH值设定,通过人机界面由使用人输入 d 控制pH值设定,分上限和下限,可采用工作pH值加偏差pH值(如0.1、0.2等)由使用人设定,也可以采用直接的pH值由使用人设定, e 控制方式:低于下限pH值自动启动加碱,高于上限温度自动启动加酸;加碱和加酸过程需分别由使用人通过人机界面设定参数,参数为:加碱时间(加碱蠕动泵开启的时间,范围0-5分钟)和加碱间隔时间(可设置为两次加碱的间隔时间,也可以设置为加碱蠕动泵关闭的时间,可以0-10分钟,由于加碱过程中,氨水进入发酵罐后,发酵罐的pH值上升要滞后一段时间,所以,关闭加碱蠕动泵后要等一段时间,避免频繁启动而pH值波动过大;同理,加酸过程也需要设置“加酸时间”和“加酸间隔时间” 3 溶氧值(Do)控制 a 信号输入为4-20mA电流,对应输出为0-100的Do值 b 输出Do需通过校对调整,需通过人机界面,使用人调整(a+bx) c Do值设定,通过人机界面由使用人输入 d 控制Do值设定,分上限和下限,可以采用直接的Do值由使用人设定, e 搅拌电机的转速可设定为手动和自动,手动时由使用人通过人机界面直接输入,自动时则需要设定一个初始值和最低值,然后与溶氧(Do)相关联 f 控制方式:低于下限Do值自动启动搅拌电机加速,高于上限Do值自动启动搅拌电机减速;加速和减速过程需分别由使用人通过人机界面设定参数,参数

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

发酵罐温度控制系统讲解

题目:发酵罐温度控制系统设计

课程设计(论文)任务及评语院(系):教研室:Array 注:成绩:平时40% 论文质量40% 答辩20% 以百分制计算

摘要 本题要设计的是温度控制系统,发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响。因此,对发酵过程中的温度进行检测和控制就显得十分重要。 本课题设计了发酵罐温度控制系统,选择的传感器为Cu100,由于信号很小,所以就需要通过差动放大电路进行放大并且经过了滤波电路滤波,然后将处理后的电压信号经过V/I转换,输出4~20mA的电流信号,最后进行仿真分析以及参数的计算,以达到通过对冷水阀开度的控制对发酵罐温度控制的目的。 本系统应用温度控制系统,有助于提高发酵效率,有助于提高工厂产值,并且可以使资源得到更充分的作用。 关键词:温度控制;PID控制器;V/I转换;比较机构

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1 概述 (2) 2.2 系统组成总体结构 (2) 2.3 传感器选择 (2) 第3章电路设计 (4) 3.1 传感器电路 (4) 3.2 比较机构电路 (7) 3.3 PID调节器并联实现电路 (7) 3.4 V/I转换电路 (8) 3.5 直流稳压电源电路 (9) 第4章仿真与分析 (10) 4.1 传感器电路仿真 (10) 4.2 PID控制器电路 (11) 4.3 V/I转换电路 (12) 第5章课程设计总结 (14) 参考文献 (15) 附录Ⅰ (16) 附录Ⅱ (18) 附录Ⅲ (20)

第1章绪论 在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。其中,温度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉、发酵罐和锅炉中的温度进行检测和控制。 本次课设要求设计发酵罐的温度控制系统。发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响:它会影响各种酶反应的速率,改变菌体代谢产物的合成方向,影响微生物的代谢调控机制,除这些直接影响外;温度还对发酵液的理化性质产生影响,如发酵液的粘度;基质和氧在发酵液中的溶解度和传递速率。某些基质的分解和吸收速率等,进而影响发酵的动力学特性和产物的生物合成。 并且现代发酵工程不但应用于生产酒精类饮料、醋酸和面包,而且还可以生产胰岛素、干扰素、生长激素、抗生素和疫苗等多种医疗保健药物,天然杀虫剂、细菌肥料和微生物除草剂等农用生产资料,在化学工业上生产氨基酸、香料、生物高分子等。而发酵过程是酵母在一定的条件下,利用可发酵性物质而进行的正常生命活动。 发酵工程是应用生物(主要是微生物)为工业大规模生产服务的一门工程技术,也称微生物工程。发酵工程是包括微生物学、化学工程、基因工程、细胞工程、机械工程和计算机软硬件工程的一个多学科工程。 在发酵罐温度控制系统中应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器是工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型,控制理论的其他技术也难以采用,系统控制器的结构和参数必须依靠经验和现场调试来确定时,应用PID控制技术最为方便。采用PID算法进行温度控制,它具有控制精度高,能够克服容量滞后的特点,特别适用于负荷变化大、容量滞后较大、控制品质要求又很高的控制系统。 本次课设要求自行设计模拟式PID控制器,通过与前面传感器测定的发酵罐温度产生的电压信号进行比较,转换为输出时的4~20mA电流信号来对冷水阀门开度进行控制,采用冷水法对发酵罐进行降温,以达到对发酵罐温度进行控制的目的。参数要求测定范围是30℃~50℃,测量精度为±0.5℃,以此作为对温度传感器的选择依据。

自动控制系统概要设计

目录 1引言 (3) 1.1编写目的 (3) 1.2背景 (3) 1.3技术简介 (4) https://www.wendangku.net/doc/2c13894858.html,简介 (4) 1.3.2SQL Server2008简介 (5) 1.3.3Visual Studio2010简介 (5) 1.4参考资料 (6) 2总体设计 (8) 2.1需求规定 (8) 2.2运行环境 (8) 2.3数据库设计 (8) 2.3.1数据库的需求分析 (9) 2.3.2数据流图的设计 (9) 2.3.3数据库连接机制 (10) 2.4结构 (11) 2.5功能需求与程序的关系 (11) 3接口设计 (12) 3.1用户接口 (12) 3.2外部接口............................................................................................错误!未定义书签。 3.3内部接口............................................................................................错误!未定义书签。4运行设计.....................................错误!未定义书签。 4.1运行模块组合....................................................................................错误!未定义书签。 4.2运行控制............................................................................................错误!未定义书签。 4.3运行时间............................................................................................错误!未定义书签。5测试 (13)

空调自控系统方案设计(江森自控)

沈阳利源轨道交通设备有限公司暖通空调自控系统项目 HVAC暖通空调自控系统 技术方案设计书

一. 总体设计方案 根据用户对项目要求,并结合沈阳建筑智能化建筑现状,沈阳利源轨道交通装备有限公司暖通空调自控系统项目是屹今为止整个沈阳所有建筑物厂区当中智能化程度要求较高的。沈阳利源轨道交通装备有限公司暖通空调自控系统项目里面分布着大量的暖通空调机电设备。 ?如何将这些暖通空调机电设备有机的结合起来,达到集中监测和控制,提高设备的无故障时间,给投资者带来明显的经济效益; ?如何能够使这些暖通空调机电设备经济的运行,既能够节能,又能满足工作要求,并在运行中尽快的将效益体现出来; ?如何提高综合物业管理综合水平,将现代化的的计算机技术应用到管理上提高效率。 这是目前业主关心的也是我们设计所侧重的。 沈阳利源轨道交通装备有限公司暖通空调楼宇自动化控制系统的监测和控制主要包括下列子系统: 冷站系统 空调机组系统 本暖通空调楼宇自动化控制系统之设计是依据沈阳利源轨道交通设备有限公司暖通空调自控系统项目的设计要求配置的,主体的设计思想是结合招标文件及设计图纸为准。 1.1冷站系统 (1)控制设备内容 根据项目标书要求,暖通自控系统将会对以下冷站系统设备进行监控:监控设备监控内容 冷却水塔(2台)启停控制、运行状态、故障报警、手 自动状态。 冷却水泵(2台)启停控制、运行状态、故障报警、手

自动状态、水流开关状态; 冷却水供回水管路供水温度、回水温度, 冷水机组(2台)启停控制、运行状态、故障报警、手 自动状态; 冷冻水泵(2台)启停控制、运行状态、故障报警、手 自动状态、水流开关状态; 冷冻水供回水管路供水温度、回水温度、回水流量; 分集水器分水器压力、集水器压力、压差旁通 阀调节; 膨胀水箱高、低液位检测; 有关系统的详细点位情况可参照所附的系统监控点表。 (2)控制说明 本自控系统针对冷站主要监控功能如下: 监控内容控制方法 冷负荷需求计算根据冷冻水供、回水温度和回水流量测量值,自动计算建筑空 调实际所需冷负荷量。 机组台数控制根据建筑所需冷负荷自动调整冷水机组运行台数,达到最佳节 能目的。 独立空调区域负荷计算根据Q=C*M*(T1-T2) T1=分回水管温度,T2=分供水总管温度, M=分回水管回水流量 当负荷大于一台机组的15%,则第二台机组运行。 机组联锁控制启动:冷却塔蝶阀开启,冷却水蝶阀开启,开冷却水泵,冷冻 水蝶阀开启,开冷冻水泵,开冷水机组。停止:停冷水机组, 关冷冻泵,关冷冻水蝶阀,关冷却水泵,关冷却水蝶阀,关冷 却塔风机、蝶阀。 冷却水温度控制根据冷却水温度,自动控制冷却塔风机的启停台数,并且自

温度自动控制系统的设计毕业设计论文

北方民族大学学士学位论文论文题目:温度自动控制系统的设计 北方民族大学教务处制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

发酵罐温度控制系统的设计

洛阳理工学院 计算机控制技术与应用课程设计 题目:发酵培养基温度控制系统设计 学生姓名: 学号: 班级: 专业:

摘要 本题要设计的是发酵培养基温度控制系统,发酵是放热反应的过程。随着反应的进行,罐内的温度会逐渐升高。而温度对发酵过程具有多方面的影响。因此,对发酵过程中的温度进行检测和控制就显得十分重要。 本课题设计了发酵罐温度控制系统,选择的传感器为Cu100,由于信号很小,所以就需要通过差动放大电路进行放大并且经过了滤波电路滤波,然后将处理后的电压信号经过V/I转换,输出4~20mA的电流信号,最后进行仿真分析以及参数的计算,以达到通过对冷水阀开度的控制对发酵罐温度控制的目的。 本系统应用温度控制系统,有助于提高发酵效率,有助于提高工厂产值,并且可以使资源得到更充分的作用。 关键词:温度控制,PID控制器,V/I转换,比较机构

目录 前言........................................................................................ 错误!未定义书签。 1.1.1 发酵培养基简介 3 1.1.2工艺背景:................................................................ 错误!未定义书签。 1.2温度对发酵的影响...................................................... 错误!未定义书签。 1.2.1温度影响微生物细胞生长................................. 错误!未定义书签。 1.2.2温度影响产物的生成量..................................... 错误!未定义书签。 1.2.3温度影响生物合成的方向................................. 错误!未定义书签。 1.2.4温度影响发酵液的物理性质............................. 错误!未定义书签。 1.3、影响发酵温度变化的因素:..................................... 错误!未定义书签。 1.4发酵热的测定................................................................ 错误!未定义书签。 1.5最适温度的选择与发酵温度的控制............................ 错误!未定义书签。 1.5.1温度的选择....................................................................................... VII 2 培养基温度控制系统的设计.................................................. 错误!未定义书签。 2.1总体设计方案.............................................................................................. VII 2.1.1 系统总框图...................................................................................... VII 2.2硬件设计................................................................................................... V III 2.2.1温度采集电路.................................................................................. V III 2.2.2 PLC与计算机的通信......................................................................... I X 2.3软件部分......................................................................................................... X 3总结........................................................................................................................ X III 参考文献:............................................................................................................... X III

液位自动控制系统设计与调试

液位自动控制系统设计 与调试 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

课程设计 2016年6月17日

电气信息学院 课程设计任务书 课题名称液位自动控制系统设计与调试 姓名专业班级学号 指导老师沈细群 课程设计时间2016年6月6日~2016年6月17日(第15~16周) 教研室意见同意开题。审核人:汪超林国汉 一.课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程范围内的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的内容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制水箱液位系统的PLC I/O接线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.上机调试程序。 5.编写设计说明书。 三. 课程设计的要求 1.所选控制方案应合理,所设计的控制系统应能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。

2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》和GB7159-87《电气技术中的文字符号制定通则》的有关规定。 3.所编写的设计说明书应语句通顺,用词准确,层次清楚,条理分明,重点突出,篇幅不少于7000字。

太阳能热水器自动温度控制器设计_王彤

接启动一个拨号服务器。然后,在计算机B 中的pc Anywhere 软件中启动一个通过拨号连接的Clinet (客户端),拨通计算机A ,建立起连 接以后,就可以进行通信了 。 图1被控端计算机的屏幕显示在主控端上 图2主控端搜索被控端计算机A 图3在计算机C 中渐入A 的IP 地址 当需要多台计算机终端进行协同交互时,(比如有三台计算机A ,B ,C )。首先启动A 为Host ,B 为Clinet ,建立A 和B 的连接,在重新启动一个计算机B 上的pc Anywhere 被设为Host ,C 为Clinet 。建立C 与B 的hos t 之间的联系。这样A ,B ,C 三台计算机上同时显示计算机A 屏幕上的内容,三台计算机之间即可进行交互工作。 5总 结 综上所述,远程监控技术随着Internet 的不断发展而得到广泛应用,同时,随着控制、计算机、通信及网络技术的发展,信息交换沟通的领域正在迅速覆盖控制应用的现场设备、控制及管理的各个层次。信息技术的飞速发展,引发了自动化结构的深刻变革,逐步形成了以网络集成自动化系统为基础的信息系统。目前在过程自动化、制造自动化、楼宇、家庭及交通等领域得到了广泛的应用。 值得提出的是近年来,随着远程控制技术发展的日趋成熟,黑客技术也在不断发展,对网络安全造成了极大的威胁,黑客的主要攻击手段之一,就是使用远程控制技术,渗透到对方的主机系统里。从而实现远程操作目标主机。其破坏力之大,决不容忽视的。因此,我们必须加强安全意识,合理安全的应用远程控制技术。 参 考 文 献 [1]何牧泓.轻松玩转远程控制.重庆出版社,2002. [2]崔彦锋,许小荣.VB 网络与远程控制编程实例教程.北京希望出版社, 2002.[3]王 达.计算机网络远程控制.清华大学出版社,2003.作者简介:樊丽萍,女,硕士研究生,研究方向:计算机控制及应用,通信地址:大连铁道学院303#(116028)E -mail :xiao fanshi wo @https://www.wendangku.net/doc/2c13894858.html, ;袁爱进,男,研究生导师,研究方向:现场总线技术。作者注:辽宁省教育厅重大项目“工业现场智能化设备的嵌入式软件构件平台研究” 文章编号:1671-1041(2004)05-0029-02 太阳能热水器自动温度控制器设计 王 彤 (丹东电子研究设计院有限责任公司,辽宁丹东118000) 摘要:介绍了太阳能热水器的自动控制器的功能和组成,阐述了控制系统的 工作原理,硬件和软件设计及相关技术问题,实际应用表明该系统可靠性高、操作简单,具有良好的经济和社会效益。关键词:自动控制;单片机中图分类号:T P273 文献标识码:A The design of automatic temperature controller of solar heater W ANG Tong (Dandong Electronic research &Design institute Co .,Ltd .Dandong 118000China ) Ab stract :Fu nctio n an d co mpo sitio n o f au to matic temp era tu re co ntr olle r of so la r h e ate r a re in trod uce d in th is p a pe r .Also d escribe s t he wo rk p rinciple o f th e co nt rol syste m ,t he ha rd wa re d esign ,t he sof twa re d esig n a nd corre lative t ech niq ue pro b -le m .Th e pra ctical a p plica tion h a s sh ow n th at th is system is o f go od re lia blity a nd e as y op e ratio n ,a n d sig nifican t eco no mic an d so cia l be n efit .Ke y Wo rds :a u toma tic con tro l ;sin gle -chip micr ocomp u ter 收稿日期:2004-04-23 电子邮件来稿 目前,市场上销售的太阳能热水器大多没有自动控制功能,使用 起来不灵活方便,为此,为太阳能热水器加装自动控制功能,具有广泛的市场。 1自动控制系统技术要求 (1)设定温度的范围为25℃至65℃。 (2)输入信号为水温传感器产生的温度信号;水位传感器产生的水量信号。 (3)输出信号为控制水温电信号(控制加热电热管)和控制水流量调节阀信号(控制加水电磁阀)。 (4)配有输入功能键盘:完成自动/手动、手动加水键、手动加热键、温度设定键、水位档选择键。 (5)具有两位LED 数码显示电路,显示温度设定值、实际温度测量值,六个发光二极管指示六档水位(10%、30%、50%、70%、90%、100%)。 2系统硬件设计及原理 太阳能热水器加装自动控制功能,主要是加装一个数据采集系 统和一个电脑控制板。根据太阳能热水器的技术要求及经济方面的考虑,我们选用89C51单片机为核心控制器[1],组成热水器温度控制系统。系统由89C51单片机、数据采集系统、水位选择电路、温度显 29 仪器仪表用户 科研设计与成果 欢迎订阅欢迎撰稿欢迎发布广告产品信息

发酵温度控制系统的数学模型及仿真

2 发酵罐温度控制系统的数学模型 发酵罐温度控制系统实验平台是以一个7L 发酵罐为主体,罐壁设置有冷却套,相应的设立测温点和调节阀,通过阀门调节冷却套内冷却液的流量来实现对发酵罐内温度的控制,发酵罐示意图如图1所示。 图1 发酵罐示意图 在白酒发酵的过程中,发酵罐内由于酵母的作用,在发酵过程中会产生生化反应热,热量的逐渐释放导致发酵温度逐渐上升。在整个发酵过程中,发酵温度必须根据具体的生产工艺进行严格控制,罐内温度通过控制冷却夹套内的冷却水的流量进行降温,整套系统没有外部加热措施。罐内发酵反应热有一部分使罐内温度升高,一部分热量散失到罐壁和冷媒中,在此不考虑发酵体与罐壁之间的热量传递,罐内的热平衡方程为: ? =-Tdt mC Q Q 21 (2-1) 式中 1Q :发酵过程产生的热量;2Q :发酵过程散失的热量;m :反应物质量 C :发酵罐内反应物的比热容;T 发酵罐温度。 公式1-1可以写成: ? =?Tdt MC Q (2-2) 式中 21Q Q Q -=? 对公式1-2求拉普拉斯变换得: s m C T Q S S )()(=? (2-3) 即可由罐内的热平衡方程式可以得到发酵罐内的传递函数为: m C s Q T G S S S 1 ) ()()(= ?= (2-4) 考虑到在实际的过程中的干扰因素,所以被控对象的数学模型中添加一个滞后环节。因此,用一阶惯性加纯滞后环节来表示,其传递函数为 mCs e Q T G s S S S τ-= ?= ) ()()( (2-5)

3 模糊预测控制器的设计及仿真结果 针对发酵罐中发酵对象大时滞、大时变、严格的非线性、多变量耦合等特点。采用了将模糊控制与预测控制结合的方法,利用模糊建模方法建立对象预测模型。将设定值与预测输入值之间的预测误差值及预测误差值的变化率作为模糊控制器的输入,模糊控制器再根据模糊规则来推理得到控制量,通过执行机构控制被控对象。其结构图如图2所示。 图2模糊控制系统结构图 3.1预测控制部分 预测控制算法与动态矩阵控制算法类似, 主要通过预测模型,利用系统的输入输出数据预测未来时刻系统输出,作为糊控制器的输入。 3.1.1预测模型 假设被控对象基于阶跃响应的预测模型向量为T N a a a a ],...,,[21=,N 为建模时域。则在k 时刻对系统施加一个控制增量Δu(k)时,即可算出在其作用下未来时刻N 个输出值的向量形式: )()()(k u a k y k y po m ??+= (3-1) 式中)(k y po 为k 时刻未加Δu(k)时的初始预测值,)(k y m 为k 时刻在Δu(k)作用下的模型预测值。 3.1.2在线校正 当k 时刻对系统施加控制u(k)时,利用预测模型即可得出未来时刻的输出预测值 )(k y m 。但是,由于实际存在的模型时变、非线性、环境干扰等因素的影响,预测值会偏离 实际值,故在k+l 时刻要利用系统的实际输出y (k+1)进行在线校正: )]|1()1([)()(k k y k y h k y k y m m p +-++= (3-2) 式中h 为N 维误差校正向量,这里取0.11=h ,9.0=i h ,i=2,3...,N 。)(k y p 为校正后的预测值,经过移位后即可作为k+1时刻的初始预测值,用向量形式可表示为: )()1(k y S k y p po ?=+ (3-3) 式中S 为位移阵。

基于PLC的大棚温度自动控制系统设计

清华大学 毕业设计(论文) 题目基于PLC的大棚温度自动控制 系统设计 系(院)自动化系 专业电气工程与自动化班级2009级3班 学生姓名雷大锋 学号2009022321 指导教师王晓峰 职称副教授 二〇一三年六月二十日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 年月日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 年月日

基于PLC的大棚温度自动控制系统设计 摘要 大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。 关键词:大棚,温度控制,PLC

过程控制课程设计——啤酒发酵罐温度控制系统

内蒙古科技大学信息工程学院过程控制课程设计报告 题目:啤酒发酵罐的温度控制系统设计 学生姓名:赵晓红 学号:0967112235 专业:测控技术及仪器 班级:09测控2班 指导教师:左鸿飞

前言 啤酒生产是一个利用生物加工进行生产的过程,生产周期长,过程参数分散性大,传统操作方式难以保证产品的质量。近年来,国外的各大啤酒生产厂家纷纷进军中国市场,凭借技术优势与国内的啤酒生产厂家争夺市场份额。国内的啤酒行业迫切要求进行技术改造,提高生产率,保证产品质量,以确保在激烈的市场竞争中立于不败之地。 啤酒的发酵过程是一个微生物代谢过程。它通过多种酵母的多种酶解作用,将可发酵的糖类转化为酒精和CO2,以及其他一些影响质量和口味的代谢物。在发酵期间,工艺上主要控制的变量是温度、糖度和时间。 啤酒发酵对象的时变性、时滞性及其不确定性,决定了发酵罐控制必须采用特殊的控制算法。由于每个发酵罐都存在个体的差异,而且在不同的工艺条件下,不同的发酵菌种下,对象特性也不尽相同。因此很难找到或建立某一确切的数学模型来进行模拟和预测控制我国大部分啤酒生产厂家目前仍然采用常规仪表进行控制,人工监控各种参数,人为因素较多。这种人工控制方式很难保证生产工艺的正确执行,导致啤酒质量不稳定,波动性大且不利于扩大再生产规模。 在啤酒生产过程中,糖度的控制是由控制发酵的温度来完成的,而在一定麦芽汁浓度、酵母数量和活性的条件下时间的控制也取决于发酵的温度。因此控制好啤酒发酵过程的温度及其升降速率是解决啤酒质量和生产效率的关键。 在本次啤酒发酵温度控制系统设计过程中各种工艺参数的控制采用串级控制系统实现,主要控制锥形发酵罐的中部温度,采用常规自动化仪表及装置来实现温度及其他参数的检测与控制、显示。

发酵罐的设计

目录 第一章啤酒发酵罐结构与动力学特征 (3) 一、概述 (3) 二、啤酒发酵罐的特点 (3) 三、露天圆锥发酵罐的结构 (4) 3.1罐体部分 (4) 3.2温度控制部分 (5) 3.3操作附件部分 (5) 3.4仪器与仪表部分 (5) 四、发酵罐发酵的动力学特征 (6) 第二章发酵罐的化工设计计算 (7) 一、发酵罐的容积确定 (7) 二、基础参数选择 (7) 三、D、H的确定 (7) 四、发酵罐的强度计算 (9) 4.1 罐体为内压容器的壁厚计算 (9) 五、锥体为外压容器的壁厚计算 (11) 六、锥形罐的强度校核 (13) 6.1内压校核 (13) 6.2外压实验 (14) 6.3刚度校核 (14)

第三章发酵罐热工设计计算 (14) 一、计算依据 (14) 二、总发酵热计算 (15) 第四章发酵罐附件的设计及选型 (19) 一、人孔 (19) 二、接管 (19) 三、支座 (20) 第五章发酵罐的技术特性和规范 (21) 一、技术特性 (21) 二、发酵罐规范表 (22) 参考文献 (24)

发酵罐设计实例 第一章啤酒发酵罐结构与动力学特征 一、概述 啤酒是以大麦喝水为主要原料,大米、酒花和其他谷物为辅料经制麦、糖化、发酵酿制而成的一种含有二氧化碳、酒精和多种营养成分的饮料酒。我国是世界上用谷物原料酿酒历史最悠久的国家之一,但我国的啤酒工业迄今只有100余年的历史。改革开放以来,我国啤酒工业得到了很大的发展,生产大幅度增长,发展到现在距世界第二位。由于啤酒工业的飞速发展,陈旧的技术,设备将受到严重的挑战。为了扩大生产,减少投资保证质量,满足消费等各方面的需要,国际上啤酒发酵技术子啊原有传统技术的基础上有很大进展。尤其是采用设计多种形式的大容量发酵和储酒容器。这些大容器,不依靠室温调节温度,而是通过自身冷却来控制温度,具有较完善的自控设施,可以做到产品的均一性,从而降低劳动强度,提高劳动生产率。 就发酵罐的外形来分,主要有圆柱锥形底罐、圆柱蝶形罐、圆柱加斜底的朝日罐和球形罐等。 二、啤酒发酵罐的特点 1、单位占地面积的啤酒产量大;而且可以节约土建费用; 2、可以方便地排放酵母及其他沉淀物(相对朝日罐、通用罐、贮就罐而言);

相关文档