文档库 最新最全的文档下载
当前位置:文档库 › 中考数学综合题专题复习【相似】专题解析

中考数学综合题专题复习【相似】专题解析

中考数学综合题专题复习【相似】专题解析
中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题)

1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.

(1)求抛物线解析式及对称轴;

(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;

(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.

【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得

解得

∴抛物线解析式为:y= x2?x?1

∴抛物线对称轴为直线x=- =1

(2)解:存在

使四边形ACPO的周长最小,只需PC+PO最小

∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.

设过点C′、O直线解析式为:y=kx

∴k=-

∴y=- x

则P点坐标为(1,- )

(3)解:当△AOC∽△MNC时,

如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E

∵∠ACO=∠NCD,∠AOC=∠CND=90°

∴∠CDN=∠CAO

由相似,∠CAO=∠CMN

∴∠CDN=∠CMN

∵MN⊥AC

∴M、D关于AN对称,则N为DM中点

设点N坐标为(a,- a-1)

由△EDN∽△OAC

∴ED=2a

∴点D坐标为(0,- a?1)

∵N为DM中点

∴点M坐标为(2a,a?1)

把M代入y= x2?x?1,解得

a=4

则N点坐标为(4,-3)

当△AOC∽△CNM时,∠CAO=∠NCM

∴CM∥AB则点C关于直线x=1的对称点C′即为点N

由(2)N(2,-1)

∴N点坐标为(4,-3)或(2,-1)

【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。

(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。

(3)分情况讨论:当△AOC∽△MNC时,延长MN交y轴于点D,过点N作NE⊥y轴于点E,由∠ACO=∠NCD,∠AOC=∠CND=90°得出∠CDN=∠CAO,再证明∠CDN=∠CMN,根

据MN⊥AC,可得出M、D关于AN对称,则N为DM中点,设点N坐标为(a,- a-1),根据△EDN∽△OAC,得出点D、M的坐标,然后将点M的坐标代入抛物线的解析式求出a的值,即可得出点N的坐标;当△AOC∽△CNM时,∠CAO=∠NCM,得出CM∥AB 则点C关于直线x=1的对称点C′即为点N,就可求出点N的坐标。

2.

(1)问题发现:

如图1,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为________;

(2)深入探究:

如图2,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;

(3)拓展延伸:

如图3,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN= ,试求EF的长.【答案】(1)NC∥AB

(2)解:∠ABC=∠ACN,理由如下:

∵ =1且∠ABC=∠AMN,

∴△ABC~△AMN

∴,

∵AB=BC,

∴∠BAC= (180°﹣∠ABC),

∵AM=MN

∴∠MAN= (180°﹣∠AMN),

∵∠ABC=∠AMN,

∴∠BAC=∠MAN,

∴∠BAM=∠CAN,

∴△ABM~△ACN,

∴∠ABC=∠ACN

(3)解:如图3,连接AB,AN,

∵四边形ADBC,AMEF为正方形,

∴∠ABC=∠BAC=45°,∠MAN=45°,

∴∠BAC﹣∠MAC=∠MAN﹣∠MAC

即∠BAM=∠CAN,

∵,

∴,

∴△ABM~△ACN

∴,

∴ =cos45°= ,

∴,

∴BM=2,

∴CM=BC﹣BM=8,

在Rt△AMC,

AM= ,

∴EF=AM=2 .

【解析】【解答】解:(1)NC∥AB,理由如下:

∵△ABC与△MN是等边三角形,

∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAM=∠CAN,

在△ABM与△ACN中,

∴△ABM≌△ACN(SAS),

∴∠B=∠ACN=60°,

∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,

∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,

∴CN∥AB;

【分析】(1)由题意用边角边易得△ABM≌△ACN,则可得∠B=∠ACN=60°,所以∠BCN+∠B=∠BCA+∠ACN+∠B=180°,根据平行线的判定即可求解;

(2)由题意易得△ABC~△AMN,可得比例式,由三角形内角和定理易得∠BAM=∠CAN,根据相似三角形的判定可得△ABM~△ACN,由相似三角形的性质即可求解;

(3)要求EF的值,只须求得CM的值,然后解直角三角形AMC即可求解。连接AB,AN,由正方形的性质和相似三角形的判定易得△ABM~△ACN,可得比例式

,可求得BM的值,而CM=BC﹣BM,解直角三角形AMC即可求得AM的值,即为EF的值。

3.正方形ABCD的边长为6cm,点E,M分别是线段BD,AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.

(1)如图①,若点M与点D重合,求证:AF=MN;

(2)如图②,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B 出发,以 cm/s的速度沿BD向点D运动,运动时间为ts.

①设BF=ycm,求y关于t的函数表达式;

②当BN=2AN时,连接FN,求FN的长.

【答案】(1)证明:∵四边形ABCD为正方形,

∴AD=AB,∠DAN=∠FBA=90°.

∵MN⊥AF,

∴∠NAH+∠ANH=90°.

∵∠NDA+∠ANH=90°,

∴∠NAH=∠NDA,

∴△ABF≌△MAN,

∴AF=MN.

(2)解:①∵四边形ABCD为正方形,

∴AD∥BF,

∴∠ADE=∠FBE.

∵∠AED=∠BEF,

∴△EBF∽△EDA,

∴= .

∵四边形ABCD为正方形,

∴AD=DC=CB=6cm,

∴BD=6 cm.

∵点E从点B出发,以 cm/s的速度沿BD向点D运动,运动时间为ts,

∴BE= tcm,DE=(6 - t)cm,

∴=,

∴y= .

②∵四边形ABCD为正方形,

∴∠MAN=∠FBA=90°.

∵MN⊥AF,

∴∠NAH+∠ANH=90°.

∵∠NMA+∠ANH=90°,

∴∠NAH=∠NMA.

∴△ABF∽△MAN,

∴= .

∵BN=2AN,AB=6cm,

∴AN=2cm.

∴=,

∴t=2,

∴BF==3(cm).

又∵BN=4cm,

∴FN==5(cm).

【解析】【分析】(1)根据正方形的性质得出AD=AB,∠DAN=∠FBA=90°.再根据同角的

余角相等得出∠NAH=∠NDA,进而证出△ABF≌△MAN即可解答,

(2)根据正方形的性质得出两角相等证出△EBF∽△EDA,得出BD的长度,利用△EBF∽△EDA得出比例式,得出y和t之间的函数解析式,

据正方形的性质得出两角相等证出△ABF∽△MAN,得出比例式,进而解答.

4.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE·CA.

(1)求证:BC=CD;

(2)分别延长AB,DC交于点P,若PB=OB,CD=,求⊙O的半径.

【答案】(1)证明:∵DC2=CE·CA,

∴,

∵∠DCE=∠ACD,

∴△CDE~△CAD,

∴∠CDE=∠CAD,

又∵∠CBD=∠CAD,

∴∠CDE=∠CBD,

∴CD=CB.

(2)解:连结OC(如图),设⊙O的半径为r,

由(1)知CD=CB,

∴弧CD=弧CB,

∴∠CDB=∠CBD=∠CAB=∠CAD=∠BAD,∠BOC=2∠CAB,

∴∠BOC=∠BAD,

∴OC∥AD,

∴,

∵PB=OB,

∴PB=OB=OA=r,PO=2r,

∴=2,

∵CD=2,

∴PC=4,PD=PC+CD=6,

又∵∠PCB=∠CDB+∠CBD,∠PAD=∠PACB+∠CAD,

∴∠PCB=∠PAD,

∵∠CPB=∠APD,

∴△PCB~△PAD,

∴,

即,

解得:r=4.

即⊙O的半径为4.

【解析】【分析】(1)根据相似三角形的判定:两边对应成比例及夹角相等可得△CDE~△CAD,再由相似三角形的性质:对应角相等,等量代换可得

∠CDE=∠CBD,根据等腰三角形的性质即可得证.

(2)连结OC,设⊙O的半径为r,根据圆周角定理可得∠BOC=∠BAD,由平行线的判定得OC∥AD,根据平行线所截线段成比例可得=2,从而求得PC、PD长,再根据相似三角形的判定可得△PCB~△PAD,由相似三角形的性质可得,从而求得半径.

5.如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.

(1)猜想BG与EG的数量关系.并说明理由;

(2)延长DE,BA交于点H,其他条件不变,

①如图2,若∠ADC=60°,求的值;

②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)【答案】(1)解:,

理由如下:

∵四边形是平行四边形,

∴∥, .

∵四边形是菱形,

∴∥, .

∴∥, .

∴ .

又∵,

∴≌ .

(2)解:方法1:过点作∥,交于点,

∴ .

∵,

∴∽ .

∴ .

由(1)结论知 .

∴ .

∴ .

∵四边形为菱形,

∴ .

∵四边形是平行四边形,

∴∥ .

∴ .

∵∥,

∴ .

∴,

即 .

∴是等边三角形。

∴ .

∴ .

方法2:延长,交于点,

∵四边形为菱形,

∴ .

∵四边形为平形四边形,

∴,∥ .

∴ .

,即 .

∴为等边三角形.

∴ .

∵∥,

∴ , .

∴∽,

∴ .

由(1)结论知

∴ .

∴ .

∵ ,

∴ .

如图3,连接EC交DF于O,

∵四边形CFED是菱形,

∴EC⊥AD,FD=2FO,

设FG=a,AB=b,则FG=a,EF=ED=CD=b,

Rt△EFO中,cosα= ,

∴OF=bcosα,

∴DG=a+2bcosα,

过H作HM⊥AD于M,

∵∠ADC=∠HAD=∠ADH=α,

∴AH=HD,

∴AM= AD= (2a+2bcosα)=a+bcosα,

Rt△AHM中,cosα= ,

∴AH= ,

∴ = =cosα

【解析】【分析】(1)利用菱形和平行四边形的性质可得出AB∥CD∥EF,AB=CD=EF,再利用平行线的性质可证得∠ABG=∠FEG,然后利用AAS可证得△ABG≌△FEG,由全等三角形的性质可证得结论。

(2)①过点 G 作 GM ∥ BH ,交 DH 于点 M ,易证△GME∽△BHE。得出对应边成比例,求出MG与BH的比值,再利用菱形的性质及平行四边形的性质证明DG=MG,即可解答;

②连接EC交DF于O,利用菱形的性质可得出EC⊥AD,FD=2FO,设FG=a,AB=b,可表示出FG,EF=ED=CD=b,Rt△EFO中,利用锐角三角函数的定义可得出OF、DG,过H作HM⊥AD于M,易证AH=HD,AM=a+bcosα,再在Rt△AHM中,利用锐角三角函数的定义求出AH的长,继而可得出DG与BH的比值,可解答。

6.已知二次函数y=ax2+bx+3的图象分别与x轴交于点A(3,0),C(-1,0),与y轴交于点B.点D为二次函数图象的顶点.

(1)如图①所示,求此二次函数的关系式:

(2)如图②所示,在x轴上取一动点P(m, 0),且1<m<3,过点P作x轴的垂线分别交二次函数图象、线段AD,AB于点Q、F,E,求证:EF=EP;

(3)在图①中,若R为y轴上的一个动点,连接AR,则BR+AR的最小值________(直接写出结果).

【答案】(1)解:将A(3,0),C(-1,0)代入y=ax2+bx+3,得:

,解得:,

∴此二次函数的关系式为y=-x2+2x+3

(2)证明:∵y=-x2+2x+3=-(x-1)2+4,

∴点D的坐标为(1,4).

设线段AB所在直线的函数关系式为y=kx+c(k≠0),

将A(3,0),C(0,3)代入y=kx+c,得:

,解得:,

∴线段AB所在直线的函数关系式为y=-x+3.

同理,可得出:线段AD所在直线的函数关系式为y=-2x+6.

∵点P的坐标为(m,0),

∴点E的坐标为(m,-m+3),点F的坐标为(m,-2m+6),

∴EP=-m+3,EF=-m+3,

∴EF=EP.

(3)

【解析】【解答】解(3)如图③,连接BC,过点R作RQ⊥BC,垂足为Q.

∵OC=1,OB=3,

∴BC= .(勾股定理)

∵∠CBO=∠CBO,∠BOC=∠BQR=90°,

∴△BQR∽△AOB,

∴ ,即 ,

∴RQ= BR,

∴AR+ BR=AR+RQ,

∴当A,R,Q共线且垂直AB时,即AR+ BR=AQ时,其值最小.

∵∠ACQ=∠BCO,∠BOC=∠AQC,

∴△CQA∽△COB,

∴ ,即

∴AQ= ,

∴ BR+CR的最小值为.

故答案为:.

【分析】(1)根据A,C点的坐标,利用待定系数法可求出二次函数的关系式;(2)利用待定系数法求出线段AB,AD所在直线的函数关系式,用m表示EF,EP的长,可证得结论;(3)连接BC,过点R作RQ⊥BC,垂足为Q,则△BQR∽△AOB,利用相似三角形

的性质可得出RQ= BR,结合点到直线之间垂直线段最短可得出当A,R,Q共线且垂直

AB时,即AR+ BR=AQ时,其值最小,由∠ACQ=∠BCO,∠BOC=∠AQC可得出△CQA∽△COB,利用相似三角形的性质可求出AQ的值,此题得解.

7.如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P 从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒1cm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.

(1)求t=9时,△PEF的面积;

(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;

(3)当t为何值时,△EOP与△BOA相似.

【答案】(1)解:∵EF∥OA,

∴∠BEF=∠BOA

又∵∠B=∠B,

∴△BEF∽△BOA,

∴ = ,

当t=9时,OE=9,OA=20,OB=15,

∴EF= =8,

∴S△PEF= EF?OE= ×8×9=36(cm2)

(2)解:∵△BEF∽△BOA,

∴EF= = = (15-t),

∴ × (15-t)×t=40,

整理,得t2-15t+60=0,

∵△=152-4×1×60<0,

∴方程没有实数根.

∴不存在使得△PEF的面积等于40cm2的t值

(3)解:当∠EPO=∠BAO时,△EOP∽△BOA,

∴ = ,即 = ,

解得t=6;

当∠EPO=∠ABO时,△EOP∽△AOB,

∴ = ,即 = ,

解得t= .

∴当t=6或t= 时,△EOP与△BOA相似

【解析】【分析】(1)由于EF∥x轴,则S△PEF= ?EF?OE.t=9时,OE=9,关键是求

EF.易证△BEF∽△BOA,则 = ,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于40cm2,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.

8.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.

(1)求∠AHC与∠ACG的大小关系(“>”或“<”或“=”)

(2)线段AC,AG,AH什么关系?请说明理由;

(3)设AE=m,

①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.

②请直接写出使△CGH是等腰三角形的m值.

【答案】(1)∵四边形ABCD是正方形,

∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,

∴AC=,

∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,

∴∠AHC=∠ACG.

故答案为=.

(2)解:结论:AC2=AG?AH.

理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,

∴△AHC∽△ACG,

∴,

∴AC2=AG?AH.

(3)解:①△AGH的面积不变.

理由:∵S△AGH=?AH?AG=AC2= ×(4 )2=16.∴△AGH的面积为16.

②如图1中,当GC=GH时,易证△AHG≌△BGC,

可得AG=BC=4,AH=BG=8,

∵BC∥AH,

∴ ,

∴AE=AB=.

如图2中,当CH=HG时,

易证AH=BC=4,

∵BC∥AH,

∴=1,

∴AE=BE=2.

如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5.

在BC上取一点M,使得BM=BE,

∴∠BME=∠BEM=45°,

∵∠BME=∠MCE+∠MEC,

∴∠MCE=∠MEC=22.5°,

∴CM=EM,设BM=BE=m,则CM=EM m,

∴m+ m=4,

∴m=4(﹣1),

∴AE=4﹣4(﹣1)=8﹣4 ,

综上所述,满足条件的m的值为或2或8﹣4 .

【解析】【分析】(1)证明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG?AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.

9.如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点的⊙O交AB于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.

(1)求证:BC是⊙O的切线;

(2)若sin∠EFA= ,AF= ,求线段AC的长. 【答案】(1)解:如图1,连接,

∵,

∴ .

∵平分,

∴ .

∴ .

∴∥ ,

∴ .

∵为的半径,

∴是的切线.

(2)解:如图2,连接 .

由题可知为的直径,

∴ .

∵平分,

∴ .

∴ .

∴△AFD为等腰直角三角形,

∴ .

在中,,

∴ .

∴ .

∵,,

∴ .

在中, .

∴ .

∵,,

∴∽ .

∴ .

∴(或6.4)

【解析】【分析】(1)连接OE,根据等腰三角形的性质和角平分线定义可得,根据平行线的判定可得OE∥AC,再由平行线的性质可得∠BEO=∠C=90°,即可证得结论;(2)连接 ,根据已知条件易证 .在中,根据勾股定理求得 .根据同弧所对的圆周角相等及已知条件可得

.在中求得AE的长,再证明ΔACE∽ΔAED,根据相似三角形的性质即可求得线段AC的长.

10.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,连结EB,交OD于点F.

(1)求证:OD⊥BE.

(2)若DE= ,AB=6,求AE的长.

(3)若△CDE的面积是△OBF面积的,求线段BC与AC长度之间的等量关系,并说明理由.

【答案】(1)证明:连接AD,

∵AB是直径,

∴∠AEB=∠ADB=90°,

∵AB=AC,

∴∠CAD=∠BAD,BD=CD,

∴,

∴OD⊥BE;

(2)解:∵∠AEB=90°,

∴∠BEC=90°,

∵BD=CD,

∴BC=2DE=2 ,

∵四边形ABDE内接于⊙O,

∴∠BAC+∠BDE=180°,

∵∠CDE+∠BDE=180°,

∴∠CDE=∠BAC,

∵∠C=∠C,

∴△CDE∽△CAB,

∴,即,

∴CE=2,

∴AE=AC-CE=AB-CE=4

(3)解:∵BD=CD,

∴S△CDE=S△BDE,

∵BD=CD,AO=BO,

∴OD∥AC,

∵△OBF∽△ABE,

中考数学专题训练---圆的综合的综合题分类含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E. (1)求证:AC∥OD; (2)如果DE⊥BC,求AC的长度. 【答案】(1)证明见解析;(2)2π. 【解析】 试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度. 试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO, ∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD; (2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三 角形,∴∠AOC=60°,∴弧AC的长度=606 180 π? =2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用. 2.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析. 【解析】 【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下: 【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC. (1)判断直线BE与⊙O的位置关系,并证明你的结论; (2)若sin∠ABE= 3 3 ,CD=2,求⊙O的半径. 【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3 . 【解析】 分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下: 连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC. ∵OD=OE,∴∠OED=∠ODE. 又∵∠ABE=∠DBC,∴∠ABE=∠OED, ∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°, ∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

2016中考数学工程问题专题练习(后附答案)

2016年全国各地中考数学试卷分类汇编 工程问题 1.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为() A. B.C.D. 2.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成 任务,则甲志愿者计划完成此项工作的天数是() A.8 B.7 C.6 D.5 3.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方 程为() A.B.C.D. 4.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设 原计划每天加工x套运动服,根据题意可列方程为() A. B.C.D. 5.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是() A.=B.=C.=D.= 6.甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为 A.+=1 B.10+8+x=30 C.+8(+)=1 D.(1﹣)+x=8 7.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产 台机器. 8.列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成 任务,若每人每小时绿化面积相同,求每人每小时的绿化面积. 9.2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震.某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷? 10.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120, 具有一次函数的关系,如下表所示. (1)求y关于x的函数解析式; (2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费. 11.某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变). (1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式? (2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

中考数学综合练习题

42.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P (1)若AE=CF, ①求证:AF=BE,并求∠APB的度数; ②若AE=2,试求AP?AF的值; (2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径的长. 43.合作学习 如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数 的图象分别相交于点E,F,且DE=2,过点E作EH⊥x轴于点H,过点F作FG⊥EH 于点G。回答下列问题: ①该反比例函数的解析式是什么? ②当四边形AEGF为正方形时,点F的坐标是多少? (1)阅读合作学习内容,请解答其中的问题; (2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?” 针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由. 44.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘 制成如下统计图. 根据统计图,解答下列问题: (1)第三次成绩的优秀率是多少?并将条形统计图补充完整;

(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数较稳定? 45.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张? 46.在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0). (1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴; (2)在其它格点位置添加一颗棋子P,使A,O,B,P成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可). 47.如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥轴于点E,点B坐标为(0,2),直线AB交轴于点C,点D与点C关于轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为,△BED的面积为 .

初中数学应用题集锦-工程问题

初中应用题类型集锦—工程问题 ★1、某单位分三期完成一项工程,第一期用了全部工程时间的40%,第二期用了全部工程时36%,第三期工程用了24天,完成全部工程共用了多少天? ★★2、一个水箱有两个塞子,拔出甲塞,箱里的水5分钟流完,拔出乙塞,7分钟流完,若两塞拔出2分钟,一共放水1200升,再把甲塞塞上,问还需多少分钟,把水箱里的水放完? ★★3、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,那么甲桶剩的水是乙桶所剩的4倍。问每桶放出了多少升水? ★★4、一项任务由甲完成一半以后,乙完成其余的部分,两人共用2小时。 1以后,由乙完成其余部分,则两人共用1小时50分钟。如果甲完成任务的 3 间由甲、乙两人单独完成分别要用几小时? 5、一工程原计划要270个工人若干天完成。现只有200个工人,由于工作效率提高了50%,结果比原计划提前10天完成。求原计划工作的天数? ★★★6、车工班原计划每天生产50个零件,改进操作方法后,实际上每天比原计划多生产6个零件,结果比原计划提前5天,并超额8个零件,间原计划车工班应该生产多少个零件?

★★★7、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件? 8、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12 5?天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的 6 ★★★9、一个工人在计划时间内加工一批零件,如果每小时做35个,就少10个不能完成任务;如果每小时做40个,则可超额20个。间他加工多少个零件,计划时间是几小时? ★★★10、两个班组工人,按计划本月应共生产680个零件,实际第一组超额20%、第二组超额15%完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件? ★★★11、有一项工作,甲完成需要60小时,如果乙完成需要30小时;(1)甲每小时可以完成工作量的几分之几? (2)那么乙每小时完成工作量的几分之几? (3)如果两人合作,每小时可以完成工作量的几分之几? (4)完成这项工作,两人合作需要几天? (5)如果甲先工作了10小时,则他完成了工作量的几分之几? (6)在(5)的情况下,乙又工作了x小时,则剩余的工作占工作量的几

中考数学专题训练:类比探究类问题解析版

类比探究类问题解析版 1、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动 点,连结EM并延长交线段CD的延长线于点F. (1) 如图1,求证:AE=DF; (2) 如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,判断△GEF的形状,并说明 理由; 2,过点M作 MG⊥EF交线段BC的延长线于点G. (3) 如图3,若AB=3 ① 直接写出线段AE长度的取值范围; ② 判断△GEF的形状,并说明理由. 【答案】解:(1)在矩形ABCD中,∠EAM=∠FDM=900,∠AME=∠FMD。 ∵AM=DM,∴△AEM≌△DFM(ASA)。∴AE=DF。 (2)△GEF是等腰直角三角形。理由如下: 过点G作GH⊥AD于H, ∵∠A=∠B=∠AHG=90°, ∴四边形ABGH是矩形。∴GH=AB=2。 ∵MG⊥EF,∴∠GME=90°。 ∴∠AME+∠GMH=90°。 ∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。 又∵AD=4,M是AD的中点,∴AM=2。∴AN=HG。 ∴△AEM≌△HMG(AAS)。∴ME=MG。∴∠EGM=45°。 由(1)得△AEM≌△DFM,∴ME=MF。 又∵MG⊥EF,∴GE=GF。∴∠EGF=2∠EGM =90°。 ∴△GEF是等腰直角三角形。

(3)①23 3 <AE≤23。 ②△GEF是等边三角形。理由如下: 过点G作GH⊥AD交AD延长线于点H, ∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形。 ∴GH=AB=23。 ∵MG⊥EF,∴∠GME=90°。∴∠AME+∠GMH=90°。∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。 又∵∠A=∠GHM=90°,∴△AEM∽△HMG。∴MG GH EM AM =。 在Rt△GME中,∴tan∠MEG=MG GH23 3 EM AM2 ===。∴∠MEG=600。 由(1)得△AEM≌△DFM.∴ME=MF。 又∵MG⊥EF,∴GE=GF。∴△GEF是等边三角形。 2、(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF; (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD. (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积. 【答案】解:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF, ∴△CBE≌△CDF(SAS)。∴CE=CF。 (2)证明:如图,延长AD至F,使DF=BE.连接CF。 由(1)知△CBE≌△CDF,

初三中考数学综合题一

初三中考数学综合题(一) A 卷 一、选择题(每小题3分,共30分) 1.下列各数中是负数的是( ) A .-(-3) B .-(-3)2 C .-(-2)3 D .|-2| 2.下列计算正确的是( ) A .3a = B .632a a a ÷= C .()1 22a a -=- D .() 3 2628a a -=- 3.6月5日是世界环境日,“海洋存亡,匹夫有责”,目前全球海洋总面积约为36105.9万.平方千米,用科学记数法(保留三个有效数字)表示为( ) A .6 1061.3?平方千米 B .7 1061.3?平方千米 C .81061.3?平方千米 D .91061.3?平方千米 4.一个几何体的三视图如图所示,则这个几何体是( ). 5.已知下列四个命题:(1).对角线互相垂直平分的四边形是正方形;(2).相邻的两个角都互补的四边形是平行四边形;(3).平分弦的直径垂直于弦,并且平分弦所对的两条弧;( 4).对角线垂直相等的四边形是菱形。其中真命题的个数是( ) A .0 B .1 C .2 D .3 6.已知112233 (2)(1)(2)P y P y P y --,,,,,是反比例函数2y x =的图象上的三点,则123y y y ,,的大小关系是( ) A.321y y y << 123y y y << C.213y y y << D. 以上都不对 7.如右图,小明课间把老师的三角板的直角顶点放在黑板的两 条平行线a b 、上,已知155∠=°,则2∠的度数为( ) A .45° B .125° C .55° D .35° 8.已知点P (x ,y )在函数x x y -+= 2 1 的图象上,那么点P 应在平面直角坐标系中的( ) A .第一象限 B . 第二象限 C . 第三象限 D . 第四象限 9.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,成都市某中学九年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额.. 的众数和中位数分别是( ) A .20、20 B .30、20 C .3010.如图,在平面直角坐标系中,点A 在第一象限, ⊙A 与x 轴相切于B ,与y 轴交于C (0,1), D (0,4)两点,则点A 的坐标是 ( ) A .35 (,)22 B .3(,2)2 A B C D 主 视 图左视图俯 视图(第4题)

【中考数学】2018最新版本中考数学工程问题专题练习(历年真题-可打印)

中考数学工程问题专题练习 1.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生 产的电子元件是甲车间的 1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为() A. B.C.D. 2.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是() A.8 B.7 C.6 D.5 3.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方 程为() A.B.C.D. 4.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设 原计划每天加工x套运动服,根据题意可列方程为() A. B.C.D. 5.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是() A.=B.=C.=D.= 6.甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为 A.+=1 B.10+8+x=30 C.+8(+)=1 D.(1﹣)+x=8 7.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产 台机器. 8.列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积. 9.2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震.某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务.在加工了300顶帐篷后,厂家把工作效率提高到原来的 1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷? 10.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示. (1)求y关于x的函数解析式; (2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费. 11.某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变). (1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式? (2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

中考数学综合习题(六)

中考数学综合习题(六) 一、 填空题 1、计算:(2)--= ;15- = ;1 3()2 -= . 2、计算:(52)(52)+-= . 3、计算:2sin60°= . 4、将3 2 x xy -分解因式的结果为 . 5、一个圆锥形容器的底面半径为12cm ,母线长为15cm ,那么这个圆锥形容器的高为 cm. 6、如图,将边长为8cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动三次后,正方形ABCD 的中心经过的路线长是 cm. 选择题(7~12题为单项选择题;13~15题为多项选择题) 7、下列计算正确的是( ) A 、3 2 5 2a a a += B 、32 6 (2)4a a -= C 、2 2 2 ()a b a b +=+ D 、623 a a a ÷= 8、下列各图中,∠1大 于∠2的 是( ) 9、下列运算中,错误.. 的是( ) A 、 (0)a ac c b bc =≠ B 、1a b a b --=-+ C 、0.55100.20.323a b a b a b a b ++= -- D 、x y y x x y y x --=++ 10、将不等式841 13822 x x x x +<-?? ?≤-??的解集在数轴上表示出来,正确的是( ) 11、在下面的四个几何体中,它们各自的左视图与主视图不一样的是( )

12、已知某种品牌电脑的显示器的大约为4 210?小时,这种显示 寿命 器工作的天数为d (天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( ) 13、下列说法正确的是( ) A 、9的算术平方根是3 B 、设a 是实数,则a a -的值可能是正数,也可能是负数 C 、点(2,3)P -关于原点的对称点的坐标是(2,3)-- D 、抛物线2 6y x x =--的顶点在第四象限 14、如图,反映的是某中学七(3)班学生外出乘车、步行、骑车的人数直方图(部分)和扇形分布图,则下列说法正确的是( ) A 、七(3)班外出步行的有8人 B 、七(3)班外出的共有40人 C 、在扇形统计图中,步行人数所占的圆心角度数为82° D 、若该校七年级外出的学生共有500人,那么估计全年级外出骑车的约有150人 15、如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有( ) A 、∠ADE=∠CDE B 、DE ⊥E C C 、AD·BC=BE·DE D 、 CD=AD+BC 三、解答下列各题 A B C D E F 12 20 乘车50% 步行 20% 骑车30% 乘车 步行 骑车

中考数学《压轴题》专题训练含答案解析

压轴题 1、已知,在平行四边形O ABC 中,O A=5,AB =4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t秒. (1)求直线AC 的解析式; (2)试求出当t 为何值时,△O AC 与△PAQ 相似; (3)若⊙P 的半径为 58,⊙Q 的半径为2 3 ;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、B C的位置关系,并求出Q 点坐标。 解:(1)42033 y x =- + (2)①当0≤t≤2.5时,P在O A上,若∠OAQ =90°时, 故此时△OA C与△PAQ 不可能相似. 当t>2.5时,①若∠APQ=90°,则△A PQ ∽△OCA , ∵t>2.5,∴ 符合条件. ②若∠A QP=90°,则△APQ ∽△∠OA C, ∵t>2.5,∴ 符合条件.

综上可知,当 时,△O AC 与△APQ 相似. (3)⊙Q 与直线AC、B C均相切,Q 点坐标为( 10 9 ,5 31) 。 2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x轴,OC 所在的直线为y轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BD A沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y轴上是否分别存在点M 、N ,使得四边形MNF E的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=. 设点P 的坐标为(0)n ,,其中0n >, 顶点(1 2)F ,, ∴设抛物线解析式为2 (1)2(0)y a x a =-+≠. ①如图①,当EF PF =时,22 EF PF =,2 2 1(2)5n ∴+-=. 解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+ (第2题)

中考数学综合复习题共三套含答案

复习题(一) 一、选择题:(本题共10小题,每小题4分,共40分. 在每题所给出的四个选项中,只有 一项是符合题意的. 请把所选项前的字母代号填在题后的括号内.) 1、计算2 )3(-,结果正确的是( ) A 、-9 B 、9 C 、-6 D 、6 2、若a 为任意实数,则下列等式中恒成立的是 ( ). A 、2 a a a =+ B 、a a a 2=? C 、1=÷a a D 、0=-a a 3、如图,桌面上有一个一次性纸杯,它的俯视图应是如图所示的( ) 4、下列结论中正确的是( ) A 、无限小数都是无理数 B 、 3 3 是分数 C 、(-4)2的平方根是±4 D 、a a 221 -=- 5、已知反比例函数y =x a 2 -的图象在第二、四象限,则a 的取值范围是( ) A 、a ≤2 B 、a ≥2 C 、a <2 D 、a >2 6、正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为( ) A 、5 B C 、1 2 D 、2 7、如图,奥运会五环旗是由五个圆组成的图形,此图中存在的圆和圆的位置关系有( ) A 、相交与内含 B 、只有相交 C 、外切与外离 D 、相交与外离 8、如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位 置,若B A AC ''⊥,则BAC ∠是( ) A 、50° B 、60° C 、70° D 、80° 9、如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长均为1,则这个圆锥的底面半径为( ) A 、 2 1 B 、22 C 、2 D 、22 10、固体物质的溶解度是指在一定的温度下,某物质在100克溶剂里达到饱和状态时所溶解 的克数.如图所示,观察硝酸钾和氯化铵在水里的溶解度,下列叙述不正确...的是( ) A 、硝酸钾的溶解度比氯化铵的溶解度大 B 、约25℃时二者的溶解度相等 C 、温度为10℃时氯化铵的溶解度大 D 、温度为40℃时,硝酸钾的溶解度大

数学北师大版八年级下册分式方程的应用——(工程问题)

《分式方程的应用---工程问题》教学设计 一、设计思路 列分式方程解应用题是初中数学教学的难点之一,部分学生的困难是:看不清题意;不明确问题中的基本量;不会运用未知数表示与之相关的未知量;不善于抓住关键语句和关键词,寻找问题中的等量关系;列出方程等。 为此我在本节课的教学中,首先引导学生明确题意,接着引领学生进行分析:一是确定应用题的基本类型;二是明确这类应用题中的基本量及它们之间的数量关系;三是在设出未知数之后,辅以图形、表格、式子,寻找关键语句和关键词,用未知数x表示其他相关量,列出等量关系,建立分式方程.特别是第三步分析,是突破难点的关键给力之处,也是列方程解应用题的教学智慧所在。下面工程问题分为工作总量为单位“1”和工作总量非单位“1”这两个部分进行教学,重点培养学生在分析问题的过程中的明确思维导向能力及熟悉我们解应用题的模型。 本节课重在是学生分析问题的培养,除了一道题需要学生完整解题外,其它题目均为只列式不求解。 二、教学目标 1、会分析题意找出等量关系并列出分式方程来解决实际问题。 2、通过日常生活中的情境创设,经历探索分式方程应用的过程,会检验根的合理性。 3、经历“实际问题情境——建立分式方程模型——求解——解释解的合理性”的过程,进一步提高学生分析问题和解决问题的能力,增强学生学数学、用数学的意识。 三、教学重难点 教学重点:找出实际问题中的关键等量关系,并会列出分式方程。 教学难点:将实际问题中的等量关系用分式方程来表示。 四、教学过程 第一环节:小试牛刀 1、小同每小时打2400字,打x小时可以打个字。 2、小同打一篇4800字文章需要x小时,那么他每小时可以打个字。 3、小同每小时打x字,打一篇4800字文章需要小时。 4、小同打一篇文章需要2小时,那么他每小时完成这篇文章的。 5、打一篇文章由小同单独打 2小时完成,由小胜单独做3小时完成,则小同、小胜合作1小时完成这篇文章的。 第二环节:合作探究 1、某市政工程队准备修建一条长1200m的污水处理管道,为了能赶在汛期前完成,采用了新技术,实际每天比原计划多修10m,原计划修建400m与实际修建500m所用的时间相等。求原计划每天修建管道多少m?

相关文档
相关文档 最新文档