文档库 最新最全的文档下载
当前位置:文档库 › 高中数学竞赛讲义(15)复数

高中数学竞赛讲义(15)复数

高中数学竞赛讲义(15)复数
高中数学竞赛讲义(15)复数

高中数学竞赛讲义(十五)

──复数

一、基础知识

1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。

2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z). z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z). r称为z的模,也记作|z|,由勾股定理知|z|=.如果用e iθ表示cosθ+isin θ,则z=re iθ,称为复数的指数形式。

3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z的共轭复数。模与共轭的性质有:(1);(2);

(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)

|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。

4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1), z2=r2(cosθ2+isinθ2),

则z1??z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θθ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2e i(θ1+θ1-

2),

5.棣莫弗定理:[r(cosθ+isinθ)]n=r n(cosnθ+isinnθ).

6.开方:若r(cosθ+isinθ),则

,k=0,1,2,…,n-1。

7.单位根:若w n=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Z nq+r=Z r;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z1)(x-Z2)…(x-Z n-1)=(x-Z1)(x-)…(x-).

8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。

9.复数z是实数的充要条件是z=;z是纯虚数的充要条件是:z+=0(且z≠0).

10.代数基本定理:在复数范围内,一元n次方程至少有一个根。

11.实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(b≠0)是方程的一个根,则=a-bi也是一个根。

12.若a,b,c∈R,a≠0,则关于x的方程ax2+bx+c=0,当Δ=b2-4ac<0

时方程的根为

二、方法与例题

1.模的应用。

例1 求证:当n∈N+时,方程(z+1)2n+(z-1)2n=0只有纯虚根。

[证明] 若z是方程的根,则(z+1)2n=-(z-1)2n,所以|(z+1)2n|=|-(z-1)2n|,即|z+1|2=|z-1|2,即(z+1)(+1)=(z-1)(-1),化简得z+=0,又z=0不是方程的根,所以z是纯虚数。

例2 设f(z)=z2+az+b,a,b为复数,对一切|z|=1,有|f(z)|=1,求a,b的值。

[解] 因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)

=|f(1)+f(-1)-f(i)-f(-i)|

≥|f(1)|+|f(-1)|+|f(i)|+|f(-i)|=4,其中等号成立。

所以f(1),f(-1),-f(i),-f(-i)四个向量方向相同,且模相等。

所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0.

2.复数相等。

例3 设λ∈R,若二次方程(1-i)x2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件。

[解] 若方程有实根,则方程组有实根,由方程组得(λ+1)x+λ+1=0.若λ=-1,则方程x2-x+1=0中Δ<0无实根,所以λ≠-1。所以x=-1, λ=2.所以当λ≠2时,方程无实根。所以方程有两个虚根的充要条件为λ≠2。

3.三角形式的应用。

例4 设n≤2000,n∈N,且存在θ满足(sinθ+icosθ)n=sinnθ+icosnθ,那么这样的n有多少个?

[解] 由题设得

,所以n=4k+1.又因为0≤n≤2000,所以1≤k≤500,所以这样的n 有500个。

4.二项式定理的应用。

例5 计算:(1);(2)

[解] (1+i)100=[(1+i)2]50=(2i)50=-250,由二项式定理(1+i)100=

=)+()i,比较实部和虚部,得=-250,=0。

5.复数乘法的几何意义。

例6 以定长线段BC为一边任作ΔABC,分别以AB,AC为腰,B,C为直角顶点向外作等腰直角ΔABM、等腰直角ΔACN。求证:MN的中点为定点。

[证明] 设|BC|=2a,以BC中点O为原点,BC为x轴,建立直角坐标系,确定复平面,则B,C对应的复数为-a,a,点A,M,N对应的

复数为z1,z2,z3,,由复数乘法的几何意义得:

,①,②由①+②得z2+z3=i(z1+a)-i(z1-a)=2ai.设MN的中点为P,对应的复数

z=,为定值,所以MN的中点P为定点。

例7 设A,B,C,D为平面上任意四点,求证:AB?AD+BC?AD≥AC?BD。

[证明] 用A,B,C,D表示它们对应的复数,则(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因为|A-B|?|C-D|+|B-C|?|A-D|≥(A-B)(C-D)+(B-C)(A-D).

所以|A-B|?|C-D|+|B-C|?|A-D|≥|A-C|?|B-D|, “=”成立当且仅

当,即=π,即A,B,C,D共圆时成立。不等式得证。

6.复数与轨迹。

例8 ΔABC的顶点A表示的复数为3i,底边BC在实轴上滑动,且|BC|=2,求ΔABC的外心轨迹。

[解]设外心M对应的复数为z=x+yi(x,y∈R),B,C点对应的复数分别是b,b+2.因为外心M是三边垂直平分线的交点,而AB的垂直平分线方程为|z-b|=|z-3i|,BC的垂直平分线的方程为|z-b|=|z-b-2|,所以点M对应的复数z满足|z-b|=|z-3i|=|z-b-2|,消去b解得

所以ΔABC的外心轨迹是轨物线。

7.复数与三角。

例9 已知cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,求证:cos2α+cos2β+cos2γ=0。

[证明] 令z1=cosα+isinα,z2=cosβ+isinβ,z3=cosγ+isin γ,则

z1+z2+z3=0。所以又因为|z i|=1,i=1,2,3.

所以z i?=1,即

由z1+z2+z3=0得①

所以

所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0.

所以cos2α+cos2β+cos2γ=0。

例10 求和:S=cos200+2cos400+…+18cos18×200.

[解] 令w=cos200+isin200,则w18=1,令P=sin200+2sin400+…+18sin18×200,则S+iP=w+2w2+…+18w18. ①由①×w得

w(S+iP)=w2+2w3+…+17w18+18w19,②由①-②得(1-w)(S+iP)=w+w2+…

+w18-18w19=,所以S+iP=,所以8.复数与多项式。

例11 已知f(z)=c0z n+c1z n-1+…+c n-1z+c n是n次复系数多项式(c0≠0).

求证:一定存在一个复数z0,|z0|≤1,并且|f(z0)|≥|c0|+|c n|.

[证明] 记c 0z n+c1z n-1+…+c n-1z=g(z),令=Arg(c n)-Arg(z0),则方程g(Z)-c0e iθ=0为n次方程,其必有n个根,设为z1,z2,…,z n,从而g(z)-c0e iθ=(z-z1)(z-z2)?…?(z-z n)c0,令z=0得-c0e iθ=(-1)n z1z2…z n c0,取模得|z1z2…z n|=1。所以z1,z2,…,z n中必有一个z i使得|z i|≤1,从而f(z i)=g(z i)+c n=c0e iθ=c n,所以|f(z i)|=|c0e iθ+c n|=|c0|+|c n|.

9.单位根的应用。

例12 证明:自⊙O上任意一点p到正多边形A1A2…A n各个顶点的距离的平方和为定值。

[证明] 取此圆为单位圆,O为原点,射线OA n为实轴正半轴,建立复平面,顶点A1对应复数设为,则顶点A2A3…A n对应复数分别为ε2,ε3,…,εn.设点p对应复数z,则|z|=1,且

=2n-

=2n-命题得证。

10.复数与几何。

例13 如图15-2所示,在四边形ABCD内存在一点P,使得ΔPAB,ΔPCD都是以P为直角顶点的等腰直角三角形。求证:必存在另一点Q,使得ΔQBC,ΔQDA也都是以Q为直角顶点的等腰直角三角形。

[证明] 以P为原点建立复平面,并用A,B,C,D,P,Q表示它们对应的复数,由题设及复数乘法的几何意义知D=iC,B=iA;取

,则C-Q=i(B-Q),则ΔBCQ为等腰直角三角形;又由C-Q=i(B-Q)得,即A-Q=i(D-Q),所以ΔADQ也为等腰直角三角形且以Q为直角顶点。综上命题得证。

例14 平面上给定ΔA1A2A3及点p0,定义A s=A s-3,s≥4,构造点列p0,p1,p2,…,使得p k+1为绕中心A k+1顺时针旋转1200时p k所到达的位置,k=0,1,2,…,若p1986=p0.证明:ΔA1A2A3为等边三角形。

[证明] 令u=,由题设,约定用点同时表示它们对应的复数,取给定平面为复平面,则p1=(1+u)A1-up0,

p2=(1+u)A2-up1,

p3=(1+u)A3-up2,

①×u2+②×(-u)得p3=(1+u)(A3-uA2+u2A1)+p0=w+p0,w为与p0无关的常数。同理得p6=w+p3=2w+p0,…,p1986=662w+p0=p0,所以w=0,从而A3-uA2+u2A1=0.由u2=u-1得A3-A1=(A2-A1)u,这说明ΔA1A2A3为正三角形。

三、基础训练题

1.满足(2x2+5x+2)+(y2-y-2)i=0的有序实数对(x,y)有__________组。

2.若z∈C且z2=8+6i,且z3-16z-=__________。

3.复数z满足|z|=5,且(3+4i)?z是纯虚数,则__________。

4.已知,则1+z+z2+…+z1992=__________。

5.设复数z使得的一个辐角的绝对值为,则z辐角主值的取值范围是__________。

6.设z,w,λ∈C,|λ|≠1,则关于z的方程-Λz=w的解为z=__________。

7.设0

8.若α,β是方程ax2+bx+c=0(a,b,c∈R)的两个虚根且,

则__________。

9.若a,b,c∈C,则a2+b2>c2是a2+b2-c2>0成立的__________条件。

10.已知关于x的实系数方程x2-2x+2=0和x2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m取值的集合是__________。

11.二次方程ax2+x+1=0的两根的模都小于2,求实数a的取值范围。

12.复平面上定点Z0,动点Z1对应的复数分别为z0,z1,其中z0≠0,且满足方程|z1-z0|=|z1|,①另一个动点Z对应的复数z满足z1?z=-1,②求点Z的轨迹,并指出它在复平面上的形状和位置。

13.N个复数z1,z2,…,z n成等比数列,其中|z1|≠1,公比为q,|q|=1

且q≠±1,复数w1,w2,…,w n满足条件:w k=z k++h,其中k=1,2,…,n,h 为已知实数,求证:复平面内表示w1,w2,…,w n的点p1,p2,…,p n都在一个焦距为4的椭圆上。

四、高考水平训练题

1.复数z和cosθ+isinθ对应的点关于直线|iz+1|=|z+i|对称,则z=__________。

2.设复数z满足z+|z|=2+i,那么z=__________。

3.有一个人在草原上漫步,开始时从O出发,向东行走,每走1千米后,便向左转角度,他走过n千米后,首次回到原出发点,则n=__________。

4.若,则|z|=__________。

5.若a k≥0,k=1,2,…,n,并规定a n+1=a1,使不等式

恒成立的实数λ的最大值为__________。

6.已知点P为椭圆上任意一点,以OP为边逆时针作正方形OPQR,则动点R的轨迹方程为__________。

7.已知P为直线x-y+1=0上的动点,以OP为边作正ΔOPQ(O,P,Q按顺时针方向排列)。则点Q的轨迹方程为__________。

8.已知z∈C,则命题“z是纯虚数”是命题“”的__________条件。

9.若n∈N,且n≥3,则方程z n+1+z n-1=0的模为1的虚根的个数为__________。

10.设(x2006+x2008+3)2007=a0+a1x+a2x2+…+a n x n,则

+…+a3k-__________。

11.设复数z1,z2满足z1?,其中A≠0,A∈C。证明:

(1)|z1+A|?|z2+A|=|A|2;(2)

12.若z∈C,且|z|=1,u=z4-z3-3z2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值时的复数z.

13.给定实数a,b,c,已知复数z1,z2,z3满足求

|az1+bz2+cz3|的值。

五、联赛一试水平训练题

1.已知复数z满足则z的辐角主值的取值范围是__________。

2.设复数z=cosθ+isinθ(0≤θ≤π),复数z,(1+i)z,2在复平面上对应的三个点分别是P,Q,R,当P,Q,R不共线时,以PQ,PR为两边的平行四边形第四个顶点为S,则S到原点距离的最大值为__________。

3.设复平面上单位圆内接正20边形的20个顶点所对应的复数依

次为z1,z2,…,z20,则复数所对应的不同点的个数是__________。

4.已知复数z满足|z|=1,则|z+iz+1|的最小值为__________。

5.设,z1=w-z,z2=w+z,z1,z2对应复平面上的点A,B,点O为原点,∠AOB=900,|AO|=|BO|,则ΔOAB面积是__________。

6.设,则(x-w)(x-w3)(x-w7)(x-w9)的展开式为__________。

7.已知()m=(1+i)n(m,n∈N+),则mn的最小值是__________。

8.复平面上,非零复数z1,z2在以i为圆心,1为半径的圆上,?z2的实部为零,z1的辐角主值为,则z2=__________。

9.当n∈N,且1≤n≤100时,的值中有实数__________个。

10.已知复数z1,z2满足,且,,

,则的值是__________。

11.集合A={z|z18=1},B={w|w48=1},C={zw|z∈A,w∈B},问:集合C中有多少个不同的元素?

12.证明:如果复数A的模为1,那么方程的所有根都是不相等的实根(n∈N+).

13.对于适合|z|≤1的每一个复数z,要使0<|αz+β|<2总能成立,试问:复数α,β应满足什么条件?

六、联赛二试水平训练题

1.设非零复数a1,a2,a3,a4,a5满足

其中S为实数且|S|≤2,求证:复数a1,a2,a3,a4,a5在复平面上所对应的点位于同一圆周上。

2.求证:。

3.已知p(z)=z n+c1z n-1+c2z n-2+…+c n是复变量z的实系数多项式,且|p(i)|<1,求证:存在实数a,b,使得p(a+bi)=0且(a2+b2+1)2<4b2+1.

4.运用复数证明:任给8个非零实数a1,a2,…,a8,证明六个数a1a3+a2a4, a1a5+a2a6, a1a7+a2a8, a3a5+a4a6, a3a7+a4a8,a5a7+a6a8中至少有一个是非负数。

5.已知复数z满足11z10+10iz9+10iz-11=0,求证:|z|=1.

6.设z1,z2,z3为复数,求证:

|z1|+|z2|+|z3|+|z1+z2+z3|≥|z1+z2|+|z2+z3|+|z3+z1|。

高中数学竞赛_函数【讲义】

1 第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

高一数学竞赛培训讲义:最大公约数和最小公倍数(学生)

第三节 最大公约数 定义1 整数a 1, a 2, , a k 的公共约数称为a 1, a 2, , a k 的公约数.不全为零的整数a 1, a 2, , a k 的公约数中最大的一个叫做a 1, a 2, , a k 的最大公约数(或最大公因数),记为(a 1, a 2, , a k ). 由于每个非零整数的约数的个数是有限的,所以最大公约数是存在的,并且是正整数. 如果(a 1, a 2, , a k ) = 1,则称a 1, a 2, , a k 是互素的(或互质的);如果 (a i , a j ) = 1,1 ≤ i , j ≤ k ,i ≠ j , 则称a 1, a 2, , a k 是两两互素的(或两两互质的). 显然,a 1, a 2, , a k 两两互素可以推出(a 1, a 2, , a k ) = 1,反之则不然,例如(2, 6, 15) = 1,但(2, 6) = 2. 定理1 下面的等式成立: (ⅰ) (a 1, a 2, , a k ) = (|a 1|, |a 2|, , |a k |); (ⅱ) (a , 1) = 1,(a , 0) = |a |,(a , a ) = |a |; (ⅲ) (a , b ) = (b , a ); (ⅳ) 若p 是素数,a 是整数,则(p , a ) = 1或p ∣a ; (ⅴ) 若a = bq + r ,则(a , b ) = (b , r ). 由定理1可知,在讨论(a 1, a 2, , a n )时,不妨假设a 1, a 2, , a n 是正整数,以后我们就维持这一假设. 定理2 设a 1, a 2, , a k ∈Z ,记 A = { y ;y =∑=k i i i x a 1,x i ∈Z ,1 ≤ i ≤ k }. 如果y 0是集合A 中最小的正数,则y 0 = (a 1, a 2, , a k ).

高中数学竞赛讲义_复数

1 复数 一、基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=2 2b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2121z z z z =???? ??;(5)||||||2121z z z z ?=?;(6)|||||| 2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1=。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n πθπθ+++=,k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

高中数学竞赛讲义(16)平面几何

高中数学竞赛讲义(十六) ──平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则 梅涅劳斯定理的逆定理条件同上,若 则三点共线。 塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点, 则 塞瓦定理的逆定理设分别是ΔABC的三边 BC,CA,AB或其延长线上的点,若则三线共点或互相平行。 角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点 的充要条件是 广义托勒密定理设ABCD为任意凸四边形,则AB?CD+BC?AD≥AC?BD,当且仅当A,B,C,D四点共圆时取等号。

斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有 AP2=AB2?+AC2?-BP?PC. 西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。 [证明] 设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP= ∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有

高中数学竞赛讲义-抽屉原理

§23抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n 个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学竞赛讲义_三角函数

三角函数 一、基础知识 定义1 角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。 定义2 角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角的弧长为L ,则其弧度数的绝对值|α|=r L ,其中r 是圆的半径。 定义3 三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x 轴的正半轴重合,在角的终边上任意取一个不同于原点的点P ,设它的坐标为(x ,y ),到原点的距离为r,则正 弦函数s in α= r y ,余弦函数co s α=r x ,正切函数tan α=x y ,余切函数cot α=y x ,正割函数se c α=x r ,余割函数c s c α=.y r 定理1 同角三角函数的基本关系式,倒数关系:tan α=αcot 1,s in α=αcsc 1,co s α=α sec 1;商数关系:tan α=αααααsin cos cot ,cos sin =;乘积关系:tan α×co s α=s in α,cot α×s in α=co s α;平方关系:s in 2α+co s 2α=1, tan 2α+1=se c 2α, cot 2α+1=c s c 2α. 定理2 诱导公式(Ⅰ)s in (α+π)=-s in α, co s(π+α)=-co s α, tan (π+α)=tan α, cot (π+α)=cot α;(Ⅱ)s in (-α)=-s in α, co s(-α)=co s α, tan (-α)=-tan α, cot (-α)=cot α; (Ⅲ)s in (π-α)=s in α, co s(π-α)=-co s α, tan =(π-α)=-tan α, cot (π-α)=-cot α; (Ⅳ)s in ??? ??-απ2=co s α, co s ??? ??-απ2=s in α, tan ?? ? ??-απ2=cot α(奇变偶不变,符号看象限)。 定理3 正弦函数的性质,根据图象可得y =s inx (x ∈R )的性质如下。单调区间:在区间 ?? ????+-22,22ππππk k 上为增函数,在区间??????++ππππ232,22k k 上为减函数,最小正周期为2π. 奇偶数. 有界性:当且仅当x =2kx +2π时,y 取最大值1,当且仅当x =3k π-2 π时, y 取最小值-1。对称性:直线x =k π+2 π均为其对称轴,点(k π, 0)均为其对称中心,值域为[-1,1]。这里k ∈Z . 定理4 余弦函数的性质,根据图象可得y =co s x (x ∈R )的性质。单调区间:在区间[2k π, 2k π+π]上单调递减,在区间[2k π-π, 2k π]上单调递增。最小正周期为2π。奇偶性:偶函数。对称性:直线x =k π均为其对称轴,点?? ? ?? +0,2ππk 均为其对称中心。有界性:当且仅当x =2k π时,y 取最大值1;当且仅当x =2k π-π时,y 取最小值-1。值域为[-1,1]。这里k ∈Z . 定理5 正切函数的性质:由图象知奇函数y =tanx (x ≠k π+ 2π)在开区间(k π-2π, k π+2π)上为增函数, 最小正周期为π,值域为(-∞,+∞),点(k π,0),(k π+2π ,0)均为其对称中心。 定理6 两角和与差的基本关系式:co s(α±β)=co s αco s β s in αs in β,s in (α±β)=s in αco s β±co s αs in β; tan (α±β)= .) tan tan 1()tan (tan βαβα ±

高中数学竞赛讲义_数列

数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学竞赛标准教材讲义函数教案

第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射. 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射. 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射. 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆 映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1 : A →B . 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数.A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y 则y 叫做x 的象,x 叫y 的原象.集合{f (x )|x ∈A }叫函数的值域.通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1 : A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域.例如:函数y = x -11的反函数是y =1-x 1 (x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称. 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数. 定义7 函数的性质. (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有 f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间. (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期. 定义8 如果实数a a }记作开区间(a , +∞集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域.通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对 称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1 (x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称. 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”.例如y = x -21 , u=2-x 在(-∞,2)上是减函数,y = u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数. 注:复合函数单调性的判断方法为同增异减.这里不做严格论证,求导之后是显然的. 二、方法与例题

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+

高中数学竞赛 函数【讲义】

高中数学竞赛标准教材 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

高中数学竞赛讲义_复数

复数 一、基础知识 1.复数的定义:设i 为方程x 2 =-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ 表示cos θ+isin θ,则z=re i θ ,称为复数的指数形 式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2 1 21z z z z =???? ??;(5)||||||2121z z z z ?=?; (6)| || |||2121z z z z = ;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2 +|z 1-z 2|2 =2|z 1|2 +2|z 2|2 ;(9)若|z|=1,则z z 1= 。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1 212, 0r r z z z = ≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2) , .) (2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n π θπ θ+++= , k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n π π2sin 2cos +,则全部单位根可表示为1,1Z ,1 1 21,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

高中数学竞赛标准教材1人教版 集合与简易逻辑【讲义】

第一章 集合与简易逻辑 一、基础知识 定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ?.例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用?来表示.集合分有限集和无限集两种. 集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法.例如{有理数},}0{>x x 分别表示有理数集和正实数集. 定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ?,例如Z N ?.规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等.如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集. 定义3 交集,}.{B x A x x B A ∈∈=且 定义4 并集,}.{B x A x x B A ∈∈=或 定义5 补集,若},{,1A x I x x A C I A ?∈=?且则称为A 在I 中的补集. 定义6 差集,},{\B x A x x B A ?∈=且. 定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合 },,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞ 定理1 集合的性质:对任意集合A ,B ,C ,有: (1));()()(C A B A C B A = (2))()()(C A B A C B A =; (3));(111B A C B C A C = (4)).(111B A C B C A C = 【证明】这里仅证(1)、(3),其余由读者自己完成. (1)若)(C B A x ∈,则A x ∈,且B x ∈或C x ∈,所以)(B A x ∈或)(C A x ∈,即)()(C A B A x ∈;反之,)()(C A B A x ∈,则)(B A x ∈或)(C A x ∈,即A x ∈且B x ∈或C x ∈,即A x ∈且)(C B x ∈,即).(C B A x ∈ (3)若B C A C x 11 ∈,则A C x 1∈或B C x 1∈,所以A x ?或B x ?,所以)(B A x ?,又I x ∈,所以)(1B A C x ∈,即)(111B A C B C A C ?,反之也有 .)(111B C A C B A C ? 定理2 加法原理:做一件事有n 类办法,第一类办法中有1m 种不同的方法,第二类办法中有2m 种不同的方法,…,第n 类办法中有n m 种不同的方法,那么完成这件事一共有n m m m N +++= 21种不同的方法. 定理3 乘法原理:做一件事分n 个步骤,第一步有1m 种不同的方法,第二步有2m 种不同的方法,…,第n 步有n m 种不同的方法,那么完成这件事一共有n m m m N ???= 21种不同的方法. 二、方法与例题 1.利用集合中元素的属性,检验元素是否属于集合. 例1 设},,{2 2Z y x y x a a M ∈-==,求证: (1))(,12Z k M k ∈∈-; (2))(,24Z k M k ∈∈-;

相关文档 最新文档