文档库 最新最全的文档下载
当前位置:文档库 › LNG液化工艺的三种流程

LNG液化工艺的三种流程

LNG液化工艺的三种流程
LNG液化工艺的三种流程

LNG液化工艺的三种流程

LNG是通过将常压下气态的天然气冷却至-162℃,使之凝结成液体。天然气液化后可以大大节约储运空间,而且具有热值大、性能高、有利于城市负荷的平衡调节、有利于环境保护,减少城市污染等优点。

由于进口LNG有助于能源消费国实现能源供应多元化、保障能源安全,而出口LNG有助于天然气生产国有效开发天然气资源、增加外汇收入、促进国民经济发展,因而LNG贸易正成为全球能源市场的新热点。为保证能源供应多元化和改善能源消费结构,一些能源消费大国越来越重视LNG的引进,日本、韩国、美国、欧洲都在大规模兴建LNG接收站。我国对LNG产业的发展也越来越重视,LNG项目在我国天然气供应和使用中的作用尤为突出,其地位日益提升。

1 天然气液化流程

液化是LNG生产的核心,目前成熟的天然气液化流程主要有:级联式液化流程、混合制冷剂液化流程、带膨胀机的液化流程。

1.1 级联式液化流程

级联式(又称复迭式、阶式或串级制冷)天然气液化流程,利用冷剂常压下沸点不同,逐级降低制冷温度达到天然气液化的目的。常用的冷剂为水、丙烷、乙烯、甲烷。该液化流程由三级独立的制冷循环组成,制冷剂分别为丙烷、乙烯、甲烷。每个制冷循环中均含有三个换热器。第一级丙烷制冷循环为天然气、乙烯和甲烷提供冷量;第二级乙烯制冷循环为天然气和甲烷提供冷量;第三级甲烷制冷循环为天然气提供冷量;通过9个换热器的冷却,天然气的温度逐步降低,直至液化如下图所示。

1.2 混合制冷剂液化流程

混合制冷剂液化流程(Mixed-Refrigerant Cycle,MRC)是以C1~C5的碳氢物及N2等五种以上的多组分混合制冷剂为工质,进行逐级的冷凝、蒸发、膨胀,得到不同温度水平的制冷量,逐步冷却和液化天然气。混合制冷剂液化流程分为许多不同型式的制冷循环。

1.2.1 闭式混合制冷剂液化流程

下图为闭式混合制冷剂液化流程(Closed Mixed Refrigerant Cycle)。在闭式液化流程中,制冷剂循环和天然气液化过程分开,自成一个独立的制冷循环。

制冷剂循环中制冷剂常由N2、CH4、C2H6、C3H8、C4H10、C5H10组成。这些组分都可以从天然气中提取。液化流程中天然气依次流过四个换热器后,温度逐渐降低,大部分天然气被液化,最后节流后在常压下保存,闪蒸分离产生的气体可直接利用,也可回到天然气入口在进行液化。

1.2.2 开式混合制冷剂液化流程

下图为开式混合制冷剂液化流程(Open Mixed Refrigerant Cycle)。在开式液化流程中,天然气既是制冷剂又是需要液化的对象。原料天然气经净化后,经压缩机压缩后达到高温、高压,首先用水冷却,经分离器分离掉重烃,得到的液体经换热器1冷却,并经节流后,与返流气混合后为换热器1提供冷量。

分离器1分离的气体经换热器1冷却后,进入气液分离器2,产生的液体经换热器2冷却,并经节流后,与返流气混合为换热器2提供冷量。

分离器2分离的气体经换热器2冷却后,进入气液分离器3,产生的液体经换热器3冷却,并经节流后,与返流气混合为换热器3提供冷量。气液分离器3分离的气体经换热器3冷却后,并经节流后,进入气液分离器4,产生的液体进入液化天然气储罐储存。

1.2.3 丙烷预冷混合制冷剂液化流程

丙烷预冷混合制冷剂液化流程由三部分组成:①混合制冷剂循环,②丙烷预冷循环,③天然气液化回路。

在此液化流程中,丙烷预冷循环用于预冷混合制冷剂和天然气,和混合制冷剂循环用于深冷和液化天然气。下图为丙烷预冷循环和混合制冷剂循环,在混合制冷剂液化流程中,天然气首先经过丙烷预冷循环预冷,然后流经换热器1~3逐步被冷却,最后经节流阀进行降压,从而使液化天然气在常压下储存。

1.2.4 双混合制冷剂循环流程

双混合制冷剂循环流程如下图所示,包括两个制冷循环,都采用的混合制冷剂。系统中主要设备有预冷制冷剂压缩机和深冷制冷剂压缩机,预冷和深冷换热器。

双混合制冷液化流程是以传统的MRC为基础的。与丙烷预冷的混合制冷剂循环类似,双混合制冷剂液化流程的天然气液化流程包括两个密闭的制冷剂液化系统。两者的区别主要在于前者采用了单组分(丙烷)制冷剂作为预冷级的冷源;而后者则由高沸点混合制冷剂(C2~C5烃类)为预冷级换热器提供冷源。与丙烷预冷的混合制冷剂循环相比,双混合制冷剂循环降低了系统功率、提高了系统生产能力,在投资方面比丙烷预冷混合制冷剂液化流程更有竞争力。

1.3 带膨胀机的液化流程

带膨胀机的液化流程是指利用高压制冷剂通过透平膨胀机绝热膨胀的逆克劳德循环制冷实现天然气液化的流程。气体在膨胀机中膨胀降温的同时,能够输出功,可用于驱动流程中的压缩机。带膨胀机的液化流程分为氮气膨胀循环、氮甲烷膨胀循环和天然气膨胀循环。

1.3.1 氮气膨胀液化流程

氮气膨胀液化流程如下图所示较为简单、紧凑、造价略低,运行灵活、适应性强制冷剂采用单组分气体,但其能耗要比混合制冷剂液化流程高40%左右,二级氮气膨胀液化流程是经典氮膨胀液化流程的一种变形,如下图所示,该液化流程有原料气回路和N2膨胀液化循环组成。

在天然气回路中,原料气经预处理装置预处理,进入换热器冷却,再进去重烃分离器分离掉重烃,经换热器2换热后进入氮气提塔分离部分氮气,在进入换热器3进一步冷却和过冷后,LNG进储罐储存。

在氮气膨胀液化循环中,氮气经循环压缩机压缩进换热器1冷却后,进入透平膨胀机膨胀降温后,为换热器提供冷量,离开换热器1的低压氮气进入循环压缩机压缩,开始下一轮的循环。

1.3.2 氮-甲烷膨胀液化流程

为减低膨胀机的功耗,采用氮-甲烷混合气体代替纯N2,与混合制冷剂液化流程相比,氮-甲烷膨胀液化流

程(N2-CH4 Cycle)具有启动时间短,流程简单,控制容易、混合制冷剂测定及计算方便等优点,由于缩小冷锻换热温差,它比纯氮膨胀液化流程等节省10%~20%的动力消耗。

1.3.3 天然气膨胀液化流程

天然气膨胀液化流程,是指直接利用高压天然气在膨胀机中绝热膨胀到输出管道压力而使天然气液化的流程。这种流程最突出优点是功耗小、只对需液化的那部分天然气脱除杂质,因而预处理的天然气量可大为减少(约占气量的20%~35%)但液化流程不能获得像氮气膨胀液化流程那样低的温度、循环气量、液化率低。膨胀机的工作性能受原料气压力和组成变化的影响较大,对系统的安全性要求较高。

2 液化流程对比分析

2.1 级联式液化流程

级联式液化流程主要运用于基本负荷型液化装置,能耗低,采用九台串联换热器,每台换热器内部温差较小,减少了因温差引起的不可逆损失,从而降低了系统的比功耗;技术成熟,操作稳定。在实际循环中采用的压缩级数要综合考虑初投资费用,运行费用等多方面因素。级数多、则初投资成本大、功耗低、运行费用小;级数少,则初投资成本低,但功耗大、运行费用高。级联式液化流程的突出特点是流程设备多、流程复杂、初投资大,管理复杂。

康菲优化级联技术(POC),在阿拉斯加Kenai液化厂项目应用的级联工艺基础上进行了一系列改进,优化技术采用开放式甲烷制冷循环,在乙烯蒸发器产生的冷凝产品与部分蒸发了的甲烷相遇后,进入开放式制冷循环,生成甲烷制冷剂回收气和LNG产品。下表列出来了部分国内LNG级联式液化流程项目。

2.2 混合制冷剂液化流程

混合制冷剂液化流程既达到类似级联式液化流程的目的,又克服了其系统复杂的缺点。与级联式液化流程相比,其优点是:机组设备少、流程简单、投资省,投资费用比经典级联式液化流程约低15%~20%;管理方便;混合制冷剂组分可以部分或全部从天然气本身提取与补充。缺点是能耗高,组分配比比较困难。

美国气体化工产品公司(APCI)拥有C3-MRC技术,该技术可设计为由两台涡轮机驱动的LNG液化生产线,年产量可达450万吨。

壳牌的C3-MRC技术,提供了一种丙烷预冷混合制冷剂工艺的专有技术,在文莱的LNG工厂得到第一次应用。该项目使用了蒸汽轮机作为压缩机的驱动,如采用燃气轮机驱动,单条生产线年产量可达到450万吨。该技术可通过使用分体丙烷技术增加产量至500万吨。

壳牌的双循环混合制冷剂技术(DMR),使用二级混合制冷剂循环,并将每个循环的压缩驱动机并联配置。该技术已在俄罗斯萨哈林州LNG项目上应用,能够年产520万吨的LNG的产品。

法国Axens公司与法国石油研究院合作开发了Liquenfin液化天然气技术,该技术生产LNG的费用每吨可降低25%,带有2台标准燃气透平的Liquenfin技术的系列装置,能够年产600万吨的LNG产品。

挪威国家石油公司与林德公司(Statoil-Linde)共同开发的混合制冷剂级联技术(MFC),该技术综合了混合制冷剂工艺和级联工艺的优点,以其适应较低冷却水温度的能力,在挪威SNOHVIT 430万吨/年的LNG项目上首次应用。

法国燃气公司开发了新型混合制冷剂液化工艺,即整体结合式级联型液化技术(Integral Incorporated Cascade CII)技术吸收了国外LNG液化技术最新发展成果,代表了天然气液化技术的发展趋势。上海浦东建造的我国第一座调峰型天然气液化装置,采用CII技术。

壳牌在双循环混合制冷剂工艺基础上的优化和改进,开发了并联混合制冷剂技术(PMRTM),壳牌PMRTM 技术是为大型LNG生产线开发的技术,采用成熟设备,不需要增大现有设备规模。两条并行而独立的液化混合制冷循环,在其中一套设备出现故障时,仍能保证60%的产能不间断生产。在建造期间工期延误时,液化厂并列的两个液化循环可分期投产。当壳牌PMRTM工艺采用3台涡轮机时,单线LNG生产能力可达800万吨/年。

自20世纪70年代,对于基本负荷型天然气液化装置,广泛采用了各种不通类型的混合制冷剂液化流程,下表列出了部分国内典型LNG混合制冷液化工艺流程项目。

2.3 带膨胀机的液化流程

带膨胀机的液化流程流程简单、调节灵活、工作可靠,易启动、易操作、维护方便;用天然气本身为工质,节省生产、运输、储存冷冻机的费用。缺点是:原料气需要深度干燥,回流压力低,换热面积大,设备金属投入量大;液化率低,如在循环,则在增加循环压缩机后,功耗大大增加。

林德公司拥有氮双膨胀机技术,该技术采用一台两级压缩机,将氮制冷剂从2MPa压缩到5MPa,并保留了LNG调峰工厂所采用的氮循环的简单性。一般用海水进行中间冷却和后冷却,也可用空冷。

2001年APCI注册了AP-XTM专利,AP-XTM技术利用氮膨胀机制冷系统来实现LNG低温冷却,从而扩展了C3-MR循环,并提高了LNG的产能。氮膨胀机制冷系统分担了制冷负荷,降低了丙烷和混合制的用量,减少了制冷系统设备的要求。该技术在卡塔尔的Qatargas LNG工厂4#和5#生产线上应用,单线生产能力780万吨/年。

由于带膨胀机的液化流程操作比较简单。投资适中,特别适合用于液化能力小的调峰型天然气液化装置。下表列出了部分国内带膨胀机的液化流程项目。

3 结语

随着世界能源需求的不断增长以及人们环保意识的不断加强,液化天然气(LNG)产业进入了前所未有的黄金发展期。LNG液化工艺技术也在不断改进,根据天然气储量、市场需求、原料气性质、厂址和投资情况,采用不同的液化工艺技术,优缺点各不相同。如何选择合适的工艺流程降低LNG液化过程中消耗的大量能量,提高制冷系统的效率,提高经济效益,是投资者和研究者看中的重点。

LNG气化站工艺流程

LNG气化站工艺流程 LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。

进入城市管网 储罐增压器 整个工艺流程可分为:槽车卸液流程、气化加热流程(含热水循环流程)、调压、计量加臭流程。 卸液流程:LNG由LNG槽车运来,槽车上有3个接口,分别为液相出液管、气相管、增压液相管,增压液相管接卸车增压器,由卸车增压器使槽车增压,利用压差将LNG送入低温储罐储存。卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装

LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每 次卸车前都应当用储罐中的LNG 对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG 的流速突然改变而产生液击损坏管 道。 气化流程: 靠压力推动,LNG 从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG 的流出,罐内压力不断降低,LNG 出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG 气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储罐内LNG 靠液位差流入自增压空温式气化器(自增压空温式气化器的安装高度应低于储罐的最低液位),在自增压空温式气化器中LNG 经过与空气换热气化成气态天然气,然后气态天然气流入储罐内,将储罐内压力升至所需的工作压力。利用该压力将储罐内LNG 送至空温式气化器气化,然后对气化后的天然气进行调压(通常调至0.4MPa)、计量、加臭后,送入城市中压输配管网为用户供气。在夏季空温式气化 加压蒸发器卸车方式二 槽车自增压/压缩机辅助方式 BOG加热器 LNG气化器 加压蒸发器 卸车方式三 气化站增压方式 LNG贮罐 LNG贮罐 BOG压缩机 加压蒸发器 卸车方式五低温烃泵卸车方式 V-3 PC LNG贮罐 LNG贮 低温烃泵

LNG气化站工艺流程

LNG气化站工艺流程 LNG卸车工艺 系统:EAG系统安全放散气体 BOG系统蒸发气体 LNG系统液态气态 LNG通过公路槽车或罐式集装箱车从LNG液化工厂运抵用气城市LNG气化站,利用槽车上的空温式升压气化器对槽车储罐进行升压(或通过站内设臵的卸车增压气化器对罐式集装箱车进行升压),使槽车与LNG储罐之间形成一定的压差,利用此压差将槽车中的LNG卸入气化站储罐内。卸车结束时,通过卸车台气相管道回收槽车中的气相天然气。 卸车时,为防止LNG储罐内压力升高而影响卸车速度,当槽车中的LNG温度低于储罐中LNG的温度时,采用上进液方式。槽车中的低温LNG通过储罐上进液管喷嘴以喷淋状态进入储罐,将部分气体冷却为液体而降低罐内压力,使卸车得以顺利进行。若槽车中的LNG温度高于储罐中LNG

的温度时,采用下进液方式,高温LNG由下进液口进入储罐,与罐内低温LNG混合而降温,避免高温LNG由上进液口进入罐内蒸发而升高罐内压力导致卸车困难。实际操作中,由于目前LNG气源地距用气城市较远,长途运输到达用气城市时,槽车内的LNG温度通常高于气化站储罐中LNG的温度,只能采用下进液方式。所以除首次充装LNG 时采用上进液方式外,正常卸槽车时基本都采用下进液方式。 为防止卸车时急冷产生较大的温差应力损坏管道或影响卸车速度,每次卸车前都应当用储罐中的LNG对卸车管道进行预冷。同时应防止快速开启或关闭阀门使LNG的流速突然改变而产生液击损坏管道。 1.2 LNG气化站流程与储罐自动增压 ①LNG气化站流程 LNG气化站的工艺流程见图1。

图1 城市LNG气化站工艺流程 ②储罐自动增压与LNG气化 靠压力推动,LNG从储罐流向空温式气化器,气化为气态天然气后供应用户。随着储罐内LNG的流出,罐内压力不断降低,LNG出罐速度逐渐变慢直至停止。因此,正常供气操作中必须不断向储罐补充气体,将罐内压力维持在一定范围内,才能使LNG气化过程持续下去。储罐的增压是利用自动增压调节阀和自增压空温式气化器实现的。当储罐内压力低于自动增压阀的设定开启值时,自动增压阀打开,储

LNG液化工艺的三种流程

LNG液化工艺的三种流程 LNG是通过将常压下气态的天然气冷却至-162℃,使之凝结成液体。天然气液化后可以大大节约储运空间,而且具有热值大、性能高、有利于城市负荷的平衡调节、有利于环境保护,减少城市污染等优点。 由于进口LNG有助于能源消费国实现能源供应多元化、保障能源安全,而出口LNG有助于天然气生产国有效开发天然气资源、增加外汇收入、促进国民经济发展,因而LNG贸易正成为全球能源市场的新热点。为保证能源供应多元化和改善能源消费结构,一些能源消费大国越来越重视LNG的引进,日本、韩国、美国、欧洲都在大规模兴建LNG接收站。我国对LNG产业的发展也越来越重视,LNG项目在我国天然气供应和使用中的作用尤为突出,其地位日益提升。 1 天然气液化流程 液化是LNG生产的核心,目前成熟的天然气液化流程主要有:级联式液化流程、混合制冷剂液化流程、带膨胀机的液化流程。 1.1 级联式液化流程 级联式(又称复迭式、阶式或串级制冷)天然气液化流程,利用冷剂常压下沸点不同,逐级降低制冷温度达到天然气液化的目的。常用的冷剂为水、丙烷、乙烯、甲烷。该液化流程由三级独立的制冷循环组成,制冷剂分别为丙烷、乙烯、甲烷。每个制冷循环中均含有三个换热器。第一级丙烷制冷循环为天然气、乙烯和甲烷提供冷量;第二级乙烯制冷循环为天然气和甲烷提供冷量;第三级甲烷制冷循环为天然气提供冷量;通过9个换热器的冷却,天然气的温度逐步降低,直至液化如下图所示。 1.2 混合制冷剂液化流程 混合制冷剂液化流程(Mixed-Refrigerant Cycle,MRC)是以C1~C5的碳氢物及N2等五种以上的多组分混合制冷剂为工质,进行逐级的冷凝、蒸发、膨胀,得到不同温度水平的制冷量,逐步冷却和液化天然气。混合制冷剂液化流程分为许多不同型式的制冷循环。

液化天然气贮罐气化站工艺流程和使用说明

浙江长荣能源有限公司 液化天然气(LNG)贮罐气化站供气系统流程说明 一、工艺流程图: 二、槽罐车卸液操作: 1、罐车停稳与连接:液化天然气的专用槽罐车开到装卸区停稳、熄火、拉手刹,用斜木垫固定车轮,防止滑移;先把装卸台上的静电接地线与LN G槽罐车可靠夹接,再用三根软管分别把卸液箱卸液口与槽罐车装卸口可靠连接;并打开卸液箱接口处排气阀,打开槽车顶部充装阀、回气阀,使气体进入软管,再从排气阀放气置换软管内空气,关闭排气阀,检查软管接头处是否密封至不漏气。 2、槽罐与贮罐压力平衡:查看槽罐车内压力和贮罐内的压力,如贮罐内的压力大于槽罐车内压力时,这时打开贮罐顶部充装管道至槽罐车增压器进液管之间的阀门和增压器进液口阀门,使贮罐内的气相与槽罐车内的液相相通,以降低贮罐内的气相压力。当贮罐内与槽罐内的压力相同时,关闭贮罐顶部充装管至槽罐车增压器进液管之间的阀门。 3、槽罐的增压:打开槽罐车与槽罐车增压器进液管之间的阀门,以及槽罐车增压器回气至槽罐车气相管之间的阀门,通过槽罐车增压器增压以提高槽罐车内的气相压力。 4、槽罐卸液:当槽罐罐内压力大于贮罐中压力0.2Mpa左右,可逐渐打开槽罐车出液阀至全开状态。这样槽罐车内的液化天然气通过卸液箱的软管与贮罐上的装卸口连接卸入液化天然气(LNG)贮罐。

三、贮罐的使用操作: 1、贮罐的压力调整至恒压:利用贮罐自带的增压阀、节气回路、增压器把贮罐的压力调整在一定的范围内(一般控制在0.2~0.35MPa),若贮罐内的压力不够,可通过调整增压阀升高设定压力,从而获得足够的供液压力确保正常供气。正常工作时,贮罐增压器的进液阀和出气阀需要打开,以保证贮罐增压器正常工作,确保贮罐的工作压力。 2、供气系统的供气: 、管道和相关设备在首次使用液化天然气时,应使用氮气置换管道和相关设备内的空气,然后用天然气置换管道和相关设备内的氮气,以确保系统中天然气的含量后才能使用液化天然气。正常用气时可根据车间用气量大小确定是开二台空温式气化器还是开一台空温式气化器。打开空温式气化器前后相关阀门以及至车间用气点的阀门,缓慢打开贮罐出液使用阀,液化天然气(LNG)通过空温式气化器吸收空气中的热量,使液态介质气化成气体,同时对气体进行加热升温,使气体接近常温。气化后的天然气再经一级调压阀组调压,把气相压力调至一较低值(一般调至0.09Mpa),然后通过工艺管道进入用气设备前的二级调压阀组,经过二级调压后进入用气设备。 ②、贮罐操作主要是开关出液口阀门及气相使用阀门,一般出液口、气相使用阀门均为双阀,靠近贮罐的一只阀门是常开阀门,另一只是工艺操作阀,这样,一旦工艺操作阀因经常开关而损坏,把近罐的根部阀关闭就可以修理。 ③、贮罐节气操作:在正常用气时,如发现贮罐的压力达到0.6Mpa时,这时可打开贮罐气相使用阀、同时关闭贮罐出液使用阀,让气相代替液相进入空温气化器供气使用;当贮罐压力值下降至正常值0.2Mpa时,再开贮罐出液使用阀,同时关闭气相使用阀;如反复出现贮罐压力达到0.6Mpa时,应报设备产权单位修理或调整设定压力。在使用贮罐气相使用阀时,必须确保贮罐压力不得低于0.15 MPa。以保证生产的正常用气供应。 ④、当生产停产后恢复生产时,应首先确定供气系统和管道内的介质是天然气还是空气。如果介质是空气,则先要用氮气置换供气系统和管道内的空气,再用天然气置换供气系统和管道内的氮气,以确保系统中天然气的含量后才能恢复生产。如果介质是天然气,则可先开贮罐出液口阀旁的贮罐气相使用阀,让贮罐内的气相代替液相进入空温气化器和相关的工艺管道至车间用气设备。等相关设备和管道预冷后再开贮罐出液阀,同时关闭气相使用阀。 四、空温气化器和调压系统的操作: 1、关闭空温气化器出口阀,缓慢打开空温气化器的进液阀,待空温气化器内压力与贮罐内压力相等时,缓慢打开空温气化器出口阀。

LNG气化站工艺流程图

如图所示,LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气(Liquefied Natural Gas)的简称,主要成分是甲烷。先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。 一、LNG气化站主要设备的特性 ①LNG场站的工艺特点为“低温储存、常温使用”。储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。

②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震,耐台风和满足设计要求,达到最大的气化流量。 ⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范;气化器和低温烃泵在国内均无相关法规加以规范,在其制造过程中执行美国相关行业标准,在压力容器本体上焊接、改造、维修或移动压力容器的位置,都必须向压力容器的监查单位申报。 二、LNG气化站主要设备结构、常见故障及其维护维修方法 1.LNG低温储罐 LNG低温储罐由碳钢外壳、不锈钢内胆和工艺管道组成,内外壳之间充填珠光沙隔离。内外壳严格按照国家有关规范设计、制造和焊接。经过几十道工序制造、安装,并经检验合格后,其夹层在滚动中充填珠光沙并抽真空制成。150W低温储罐外形尺寸为中3720×22451米,空重50871Kg,满载重量123771№。 (1)储罐的结构 ①低温储罐管道的连接共有7条,上部的连接为内胆顶部,分别有气相管,上部进液管,储罐上部取压管,溢流管共4条,下部的连接为内胆下部共3条,分别是下进液管、出液管和储罐液体压力管。7条管道分别独立从储罐的下部引出。 ②储罐设有夹层抽真空管1个,测真空管1个(两者均位于储罐底部);在储罐顶部设置有爆破片(以上3个接口不得随意撬开)。 ③内胆固定于外壳内侧,顶部采用十字架角铁,底部采用槽钢支架固定。内胆于外壳间距为300毫米。储罐用地脚螺栓固定在地面上。 ④储罐外壁设有消防喷淋管、防雷避雷针、防静电接地线。 ⑤储罐设有压力表和压差液位计,他们分别配有二次表作为自控数据的采集传送

2020年常用的天然气液化流程

常用的天然气液化流程 常用的天然气液化流程 不同液化工艺流程,其制冷方式各不相同。在天然气液化过程中,常用天然气液化流程主要包括级联式:液化流程、混合制冷剂液化流程与带膨胀机的液化流程,它们的制冷方式如下。 一、级联式液化流程 由若干个在不同温度下操作的制冷循环重叠组成,其中的高、中、低温部分分别使用高、中、低温制冷剂。高温部分中制冷剂的蒸发用来使低温部分中的制冷剂冷凝,低温部分制冷剂再蒸发输出冷量,用几个蒸发冷凝器将这几部分联系起来。蒸发冷凝器既是高温部分的蒸发器又是低温部分的冷凝器。对于天然气液化,多采用由丙烷、乙烯和甲烷为制冷剂的三级复叠式制冷循环。 级联式液化流程的优点主要包括: 1、逐级制冷循环所需的能耗最小,也是目前天然气液化循环中效率最高的流程。 2、与混合制冷剂循环相比,换热面积较小; 3、制冷剂为纯物质,无配比问题; 4、各制冷循环系统与天然气液化系统彼此独立,相互影响少、操作稳定、适应性强、技术成熟。 级联式液化流程的缺点: 1、流程复杂、所需压缩机组或设备多,至少要有3台压缩机,初期投资大;

2、附属设备多,必须有生产和储存各种制冷剂的设备,各制冷循环系统不允许相互渗漏,管线及控制系统复杂,管理维修不方便; 3、对制冷剂的纯度要求严格。 根据级联式液化流程的以上特点,该流程无法满足小型撬装式LNG 装置对设备布局要求简单紧凑的要求,因此只适用于大型装置,常用于2X104~5X104m3/d的装置。通过优化设备的配置,级联式液化流程可以与在基本负荷混合制冷剂厂中占主导地位的带预冷的混合制冷 剂循环相媲美。 二、混合制冷剂液化流程 该工艺是20世纪60年代末期,由级联式制冷工艺演变而来的,多采用烃类混合物(N2、C1、C2、C3、C4、C5)作为制冷剂,代替级联式制冷工艺中的多个纯组分,其组成根据原抖气的组成和压力确是,利用多组分混合物中重组分先冷凝、轻组分后冷凝的特性,将其依次冷凝、分离、节流、蒸发得到不同温度级的冷量,又据混合制冷剂是否与原料天然气相混合,分为闭式和开式两种混合制冷工艺。 混合制冷剂液化流程的特点是什么? 以C1~C5的碳氢化合物及N2等五种以上的多组分混合制冷剂为工质,进行逐级的冷凝、蒸发、节流、膨胀得到不同温度水平的制冷量,以实现逐步冷却和LNG的工艺流程称之为混合制冷剂液化流程(Mixed-RefrigerantCycle,MRC),这种流程一般用于液化能力为7443X10~30XI0m/d的装置。 与级联式液化流程相比,MRC的优点是:

液化天然气的流程和工艺

液化天然气的流程与工艺研究 随着“西气东输”管线的建成,沿线许多城镇将要实现天然气化,为了解决天然气的储气、调峰及偏远小城镇的供气问题, 液化天然气(英文缩写为LNG) 技术将有十分广阔的应用前景[1 ,2 ] 。天然气液化技术涉及传热、传质、相变及超低温冷冻等复杂的工艺及设备。在发达国家LNG 装置的设计与制造已经是一项成熟的技术。 一、天然气在进入长输管线之前,已经进行了分离、脱凝析油、脱硫、脱水等 净化处理。但长输管线中的天然气仍含有二氧化碳、水及重质气态烃和汞,这些化合物在天然气液化之前都要被分离出来,以免在冷却过程中冷凝及产生腐蚀。因此我们需要进行预处理。天然气的预处理包括脱酸和脱水。一般的脱除酸气和脱水方法有吸收法、吸附法、转化法等。 1. 1 吸收法 该种方法又分为化学溶剂吸收和物理溶剂吸收两类。化学溶剂吸收是溶剂在水中同酸性气体作用,生成“络合物”,待温度升高,压力降低,络合物分解,释放出酸性气体组分,溶剂循环回用。常用的溶剂有一乙醇胺(MEA) 和二乙醇胺(DEA) ,以上方法又叫胺法.物理吸收法的实质是溶剂对酸性气体的选择性吸收而不是起反应。一般来说有机溶剂的吸收能力与被吸收气体的分压成正比,较新的方法是由醇胺和环丁砜加水组成的环丁砜法或苏菲诺法。 1. 2 吸附法 吸附法实质上是固体干燥剂脱水。一般采用两个干燥塔切换吸附与再生,处理量

大的可用3 个或4 个塔。固体干燥剂种类很多,例如氯化钙、硅胶、活性炭、分子筛等。其中分子筛法是高效脱水方法,特别是抗酸性分子筛问世后,即使高酸性天然气也可以在不脱酸性气体情况下脱水。所以分子筛是优良的脱水剂。从长输管道来的天然气进行脱除CO2 和水后,进入液化工序。 二、天然气液化系统主要包括天然气的预处理、液化、储存、运输、利用这5 个子系统。一般生产工艺过程是,将含甲烷90 %以上的天然气,经过“三脱”(即脱水、脱烃、脱酸性气体等) 净化处理后,采取先进的膨胀制冷工艺或外部冷源,使甲烷变为- 162 ℃的低温液体。目前天然气液化装置工艺路线主要有3 种类型:阶式制冷工艺、混合制冷工艺和膨胀制冷工艺。 1. 阶式制冷工艺 阶式制冷工艺是一种常规制冷工艺(图1) 。对于天然气液化过程,一般是由丙烷、乙烯和甲烷为制冷剂的3 个制冷循环阶组成,逐级提供天然气液化所需的冷量,制冷温度梯度分别为- 30 ℃、- 90℃及- 150 ℃左右。净化后的原料天然气在3 个制冷循环的冷却器中逐级冷却、冷凝、液化并过冷,经节流降压后获得低温常压液态天然气产品,送至储罐储存。 阶式制冷工艺制冷系统与天然气液化系统相互独立,制冷剂为单一组分,各系统相互影响少,操作稳定,较适合于高压气源(利用气源压力能) 。但由于该工艺制冷机组多,流程长,对制冷剂纯度要求严格,且不适用于含氮量较多的天然气。因此这种液化工艺在天然气液化装置上已较少应用。 2. 混合制冷工艺 混合制冷工艺是六十年代末期由阶式制冷工艺演变而来的,多采用烃类混合物(N2 、C1 、C2 、C3 、C4 、C5) 作为制冷剂,代替阶式制冷工艺中的多个纯组分。其制冷剂组成根据原料气的组成和压力而定,利用多组分混合物中重组分先冷凝、轻组分后冷凝的特性,将其依次冷凝、分离、节流、蒸发得到不同温度级的冷量。又据混合制冷剂是否与原料天然气相

液化天然气(LNG)接收站的工艺方案

液化天然气(LNG)接收站的工艺方案分为直接输出式和再冷凝式两种,两种工艺方案的主要区别在于对储罐蒸发气的处理方式不同。直接输出式是利用压缩机将LNG储罐的蒸发气(BOG)压缩增压至低压用户所需压力后与低压气化器出来的气体混合外输,再冷凝式是将储罐内的蒸发气经压缩机增压后,进入再冷凝器,与由LNG储罐泵出的LNG进行冷量交换,使蒸发气在再冷凝器中液化,再经高压泵增压后进入高压气化器气化外输。设计时应根据用户压力需要选择合适的工艺方案。为防止卸载时船舱内因液位下降形成负压,储罐内的蒸发气通过回流臂返回到LNG船舱内,以维持船舱压力平衡。储罐内的LNG蒸发气经蒸发气压缩机压缩后进入再冷凝器再液化,经外输泵加压后气化外输。 2.工艺系统描述 液化天然气(LNG)接收站的工艺系统由六部分组成。这六部分分别是NG卸船、LNG储存、LNG再气化/外输、蒸发气(BOG)处理、防真空补气和火炬放空系统。 (1)LNG卸船工艺系统 LNG卸船工艺系统由卸料臂、蒸发气回流臂、LNG取样器、LNG卸船管线,蒸发气回流管线及LNG 循环保冷管线组成。 LNG运输船进港靠泊码头后,通过安装在码头上的卸料臂,将运输船上的LNG出口管线与岸上的LNG 卸船管线联接起来。由船上储罐内的LNG输送泵,将所载LNG输送到岸上储罐内。随着LNG的泵出,运输船上储罐内的气相空间的压力逐渐下降,为维持气相空间的压力,岸上储罐内的部分蒸发气通过蒸发气回流管线、蒸发气回流臂,返回至船上储罐内补压。为保证卸船作业的安全可靠,LNG卸船管线采用双母管式设计。在卸船作业时,两根卸船母管同时工作,各承担总输量的50%。在非卸船作业期间,必须对卸船管线进行循环保冷。双母管设计使卸船管线构成一个循环线,便于对卸船母管进行循环保冷。从储罐输送泵出口分流出一部分LNG,冷却需保冷的管线,经循环保冷管线返回储罐。 (2)LNG储存工艺系统 LNG储存工艺系统由低温储罐、进出口管线、阀门及控制仪表等设备组成。 LNG低温储罐采用绝热保冷设计,储罐中的LNG处于"平衡"状态。由于外界热量(或其它能量)的导入,如储罐绝热层的漏热量、储罐内LNG潜液泵的散热、压力变化、储罐接口管件及附属设施的漏热量等,会导致少量LNG蒸发气化。 LNG潜液泵安装在储罐底部附近,LNG通过泵井从罐顶排出。 LNG储罐上的所有进出口管线全部通过罐顶,罐壁上没有开口。 (3)LNG再气化/外输工艺系统 LNG再气化/外输工艺系统包括LNG潜液泵、LNG高压外输泵、开架式海水气化器、浸没燃烧式气化器及计量系统。 储罐内的LNG经潜液泵增压进入再冷凝器,使再冷凝器中的蒸发气液化,从再冷凝器中出来的LNG 经高压外输泵增压后进入气化系统气化,计量后输往用户。 (4)蒸发气(BOG)处理系统 蒸发气处理工艺系统包括蒸发气(BOG)压缩机、蒸发气冷却器、压缩机分液罐、再冷凝器以及火炬放空系统。 蒸发气处理系统的设计要保证LNG储罐在一定的操作压力范围内正常工作。LNG储罐的操作压力,取决于储罐内气相空间(即蒸发气)的压力。在不同工作状态下,如储罐在正常外输,或储罐正在接收LNG,或储罐既不外输也不接收LNG,蒸发气量有较大差异。因此,储罐设置压力开关来控制气相空间压力,压力开关的设定分为超压和欠压两组,通过压力开关来启停BOG压缩机,从而达到控制压力的目的。 (5)储罐欠压补气系统 为了防止LNG储罐在运行中发生欠压(真空)事故,工艺系统中配置了防真空补气系统。补气气源一般采用接收站再气化的天然气,由气化器出口管汇处引出。

LNG加气站工艺流程

L N G加气站工艺流程标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

1 LNG汽车加气站的基本构成 LNG汽车加气站主要由LNG槽车、LNG储罐、卸车/调压增压器、LNG低温泵、加气机及LNG车载系统等设备组成。LNG汽车加气站一般分为常规站和橇装站。 ①常规站:建在固定地点,LNG通过卸气装置,储存在LNG储罐中,采用加气机给汽车加LNG。 ②橇装站:将加气站相关设备和装置安装在汽车或橇体上,工厂高度集成,便于运输和转移,适用于规模较小的加气站。 2 LNG汽车加气站的工艺流程 LNG汽车加气站的工艺流程分为卸车流程、调压流程、加气流程及卸压流程4个步骤[1]。 ①卸车流程 将集装箱或汽车槽车内的LNG转移至LNG汽车加气站储罐内,有3种方式:增压器卸车、浸没式低温泵卸车、增压器和低温泵联合卸车。 a. 增压器卸车 通过增压器将气化后的气态天然气送入LNG槽车,增大槽车的气相压力,将槽车内的LNG压入LNG储罐。此过程给槽车增压,所以卸完车后需要给槽车减压~,需排出大量的气体。 b. 浸没式低温泵卸车 将LNG槽车和LNG储罐的气相空间相连通,通过低温泵将槽车内的LNG卸入LNG储罐。 c. 增压器和低温泵联合卸车 先将LNG槽车和LNG储罐的气相空间相连通,然后断开,在卸车的过程中通过增压器适当增大槽车的气相压力,用低温泵卸车。 第1种卸车方式的优点是节约电能,工艺流程简单;缺点是产生较多的放空气体,卸车时间长。第2种卸车方式的优点是不产生放空气体;缺点是耗能,工艺流程相对复杂。第3种卸车方式与第2种卸车方式相比,卸车时间相差不多,缺点是耗电能,也产生放空气体,流程较复杂。一般工程上选用第2种卸车方式。 ②调压流程 LNG汽车发动机需要车载气瓶内的饱和液体压力较高,一般为~,而运输和储存时LNG饱和液体的压力越低越好。因此,在为汽车加气之前,需使储罐中的LNG升压以得到一定压力的饱和液体,同时在升压的过程中饱和温度相应升高。升压有3种方式:增压器升压、泵低速循环升压、增压器与泵低速循环联合升压。这3种方式各有优缺点,应根据工程的实际需要进行选用。 ③加气流程

LNG工艺流程

工艺流程 L-CNG加气站工艺设计范围包括LNG卸车、贮存增压、LNG加注、LNG 柱塞泵加压、高压气化、CNG贮存、BOG处理、安全泄放、调压计量等。 设计内容包括:对以上各个子工艺进行综合的流程设计、设备选型以及配管设计。 LNG通过槽车运至加气站。 首先,卸车利用低温潜液泵或压差将槽车内LNG输入低温LNG储罐。非工作条件下,LNG储罐内储存温度为-162℃,压力为常压;工作条件下,LNG 储罐内压力稳定为~(以下压力如未加说明,均为表压)。然后,低温LNG自流进入低温烃泵,经泵加压至,进入主气化器,换热后转化为气态NG并升温至温度大于0℃,压力为;然后经顺序控制盘控制自动送入高、中、低储气井,并分配给加气机自动加气。 1.卸车流程 卸车流程采用汽化器卸车和LNG潜液泵卸车两种卸车方式。 ⑴汽化器卸车采用300m3/h增压汽化器卸车:LNG通过槽车的增压口进入增压汽化器,增压汽化器将LNG汽化,在将汽化后的气态天然气通过LNG槽车气相口进入车内给槽车增压,使LNG槽车的压力升高,与加气站内的低温储罐形成压差,在压力作用下,使LNG进入撬内的低温储罐,完成自增压卸车过程。 ⑵潜液泵卸车将LNG槽车的出液口和气相口与储罐的进液口和气相口相连,对潜液泵和管道充分完全预冷后,按下卸车启动按钮,潜液泵开始运行,通过LNG潜液泵系统自动卸车,将槽车内的LNG卸入撬内的低温储罐,完成潜液泵卸车过程。

2.调压过程 以LNG为燃料的汽车发动机需要车载气瓶内的饱和液体压力较高,而运输和储存需要LNG饱和液体压力越低越好。所以在给汽车加注之前须对储罐中的LNG进行升压升温。加注站储罐升压得目的是得到一定压力的饱和液体,在升压的同时饱和温度相应升高。增压过程中低温储罐的LNG从储罐出液口流出,经过工艺管线流到增压汽化器中,通过汽化器与大气换热。升温气化后的天然气在经过储罐的下进液口进入储罐。在此过程中升温后的天然气与储罐中LNG充分混合达到对LNG增压升温的目的。 3.加气过程 潜液泵和管道充分完全预冷后,储罐中的LNG通过潜液泵将液体打入LNG加注机,经计量后加注到以LNG为燃料的车载瓶中。加注时,将加液枪和回气枪连接到汽车加液口和回气口上,介质通过加气管路进入汽车储罐,流量计将脉冲信号传输给微机控制器,微机控制器进行处理后,通过显示器显示总量和金额。 4.加压工艺本工程采用LNG柱塞泵对LNG加压,以满足压缩天然气供 气压力不小于20MPa的要求。泵将自留入的低温LNG加压至后送入主气化器。 本工程选用额定流量1500l/h低温烃泵2台(1用1备,大流量时可以同时打开),泵进出口介质压力~,出口介质压力,设计运行温度-196℃。 5.气化加温工艺考虑到环保节能,主气化器选用空浴式高压气化器。 通过低温LNG与大气换热,实现LNG的气化、升温(LNG温度不小于0℃)。工艺 一、BOG来源

焦炉煤气制LNG工艺流程简述.

徐州东兴能源有限公司 焦 炉 煤 气 制 L N G 流 程 简 述

焦炉煤气制 LNG流程简述 焦化厂送来的焦炉煤气经过二期煤气管道CG0000-1200- BIF4然后通过偏心紧急切断阀XV11101和紧急停车疏散阀XSV11101及XV11102,(阀前设有氧含量自动分析仪AT11101、温度TE11101、压力指示PG11151、PT11101、取样AP11111)CG1101-1200-BIF4管道上(有N1102-65-B2F1氮气置换管线)进入焦炉气预处理1100#工序,工序有脱油脱萘器T1101A、B、C(每台脱油脱萘塔配有LS1103A、B、C-80蒸汽热煮管线及下部加热器用蒸汽管线LS1102A、B、C-32- B2F4-1-H及疏水管线SC1102A、B、C-32-B2F4-P和N1101-65-B2F1氮气置换管线和放空管线VT1101A、B、C-100-B2F4-1和放空气总管VT1101-150-B2F4-1阻燃器SP11101,以利于置换和热煮),经总管CG1101-1200-BIF4来的焦炉煤气分别通过CG1102A、B、C-900- BIF4支管和手动蝶阀后进入脱油脱萘器T1101A、B、C被焦炭吸收焦油和萘后、从上部通过CG1103A、B、C-900-BIF4支管和手动蝶阀后汇入总管CG1104-1200-B1F4去1200#焦炉气气柜工序1100#进出口设有测温测压设施和排污收集隔油池X1101。从预处理出来的焦炉煤气通过CG1201-1200-B1F4然后通过两个支管CG1202-800-B1F4 和CG1203-800-B1F4进入30000M3气柜缓冲储存和进一步除尘净化后由出口支管CG1204-800-B1F4 CG1205-800-B1F4汇入总管CG1206-1200-B1F4送到1300#焦炉煤气湿法脱硫工序。气柜进出口管道设有放空管线VT1201-150-B1F4和VT1204-150-B1F4,并设有蒸

(工艺流程)LNG气化站工艺流程图

LNG气化站工艺流程图 如图所示,LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。 LNG液化天然气化站安全运行管理 LNG就是液化天然气(Liquefied Natural Gas)的简称,主要成分是甲烷。先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。 一、LNG气化站主要设备的特性 ①LNG场站的工艺特点为“低温储存、常温使用”。储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。 ②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下

操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震,耐台风和满足设计要求,达到最大的气化流量。 ⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范;气化器和低温烃泵在国内均无相关法规加以规范,在其制造过程中执行美国相关行业标准,在压力容器本体上焊接、改造、维修或移动压力容器的位置,都必须向压力容器的监查单位申报。 二、LNG气化站主要设备结构、常见故障及其维护维修方法 1.LNG低温储罐 LNG低温储罐由碳钢外壳、不锈钢内胆和工艺管道组成,内外壳之间充填珠光沙隔离。内外壳严格按照国家有关规范设计、制造和焊接。经过几十道工序制造、安装,并经检验合格后,其夹层在滚动中充填珠光沙并抽真空制成。150W低温储罐外形尺寸为中3720×22451米,空重50871Kg,满载重量123771№。 (1)储罐的结构 ①低温储罐管道的连接共有7条,上部的连接为内胆顶部,分别有气相管,上部进液管,储罐上部取压管,溢流管共4条,下部的连接为内胆下部共3条,分别是下进液管、出液管和储罐液体压力管。7条管道分别独立从储罐的下部引出。 ②储罐设有夹层抽真空管1个,测真空管1个(两者均位于储罐底部);在储罐顶部设置有爆破片(以上3个接口不得随意撬开)。 ③内胆固定于外壳内侧,顶部采用十字架角铁,底部采用槽钢支架固定。内胆于外壳间距为300毫米。储罐用地脚螺栓固定在地面上。 ④储罐外壁设有消防喷淋管、防雷避雷针、防静电接地线。 ⑤储罐设有压力表和压差液位计,他们分别配有二次表作为自控数据的采集传送终端。 (2)低温储罐的故障及维护 ①内外夹层问真空度的测定(周期一年)

LNG加注站工艺流程分析(一)

LNG加气站工艺流程介绍 LNG加气站的工艺主要包括三部分流程:卸车流程、储罐调压流程、加气流程。 1 卸车流程 LNG的卸车工艺是将集装箱或槽车内的LNG转移至LNG储罐内的操作,LNG的卸车流程主要有两种方式可供选择:潜液泵卸车方式、自增压卸车方式. ①潜液泵卸车方式 该方式是通过系统中的潜液泵将LNG从槽车转移到LNG储罐中,我公司LNG加气站使用的潜液泵是北京长征天民高科技有限公司生产的,以下是泵的相关参数: 类型:潜液浸没式低温离心泵 设计温度:-196℃ 额定流量:12m3/h 额定扬程:220m 电机参数:380V 25~100Hz 3相 2极 额定功率:11KW 工作转速:5500 rpm(r/min) (电机调频范围:1500~6000rpm) 叶轮级数:2级 潜液泵卸车方式是LNG液体经LNG槽车卸液口进入潜液泵,潜液泵将LNG增压后充入LNG储罐。LNG槽车气相口与储罐的气相管连通,LNG储罐中的BOG气体通过气相管充入LNG槽车,一方面解决LNG槽

车因液体减少造成的气相压力降低,另一方面解决LNG储罐因液体增多造成的气相压力升高,整个卸车过程不需要对储罐泄压,可以直接进行卸车操作。 该方式的优点是速度快,时间短,自动化程度高,无需对站内储罐泄压,不消耗LNG液体;缺点是工艺流程复杂,管道连接繁琐,需要消耗电能。 ②自增压卸车方式 LNG液体通过LNG槽车增压口进入增压气化器,气化后返回LNG 槽车,提高LNG槽车的气相压力。将LNG储罐的压力降至O.4 MPa以下,LNG液体经过LNG槽车的卸液口充人到LNG储罐。自增压卸车的动力源是LNG槽车与LNG储罐之间的压力差,由于LNG槽车的设计压力为0.8 MPa,储罐的气相操作压力不能低于0.4MPa,故最大压力差仅有O.4 MPa。如果自增压卸车与潜液泵卸车采用相同内径的管道,自增压卸车方式的流速要低于潜液泵卸车方式,卸车时间长。随着LNG槽车内液体的减少,要不断对LNG槽车气相空间进行增压,如果卸车时储罐气相空间压力较高,还需要对储罐进行泄压,以增大LNG 槽车与LNG储罐之间的压力差。给LNG槽车增压需要消耗一定量的LNG液体。 自增压卸车方式与潜液泵卸车方式相比,优点是流程简单,管道连接简单,无能耗;缺点是自动化程度低,放散气体多,随着LNG储罐内液体不断增多需要不断泄压,以保持足够的压力差。 潜液泵卸车与自增压卸车结合

液化天然气工艺过程

液化天然气工艺过程 来源: 百川资讯更新时间:2011-12-05 14:14 【打印】【收藏】 关键字: 液化天然气工艺过程 摘要: 天然气的主要成分是甲烷,在常温下,无法仅靠加压将其液化。 天然气的主要成分是甲烷,在常温下,无法仅靠加压将其液化。需要采用液化天然气工艺,将天然气最终在温度为-160?、压力为0。5MPa左右的条件下液化成为LNG。液化天然气工艺其密度为标准状态下甲烷的600多倍,体积能量密度为汽油的72%,十分有利于输送和储存。 天然气液化由天然气净化和天然气冷凝液化两部分组成,天然气液化有着不同的制冷液化天然气工艺过程,但天然气冷凝液化的过程都是相同的,湿天然气首先要经过预处理,以除去二氧化碳、硫化氢、水、硫醇等,液化天然气工艺经过预处理的天然气在冷却到一个中间温度后,除去重组份,以免在低温下固化,脱除重组份的天然气(主要为甲烷、乙烷组份)再进一步冷却到大约-160?,变为液化天然气进入储罐。然后装车外运至下游用户。 随着我国"西气东输"、"北气南调"、"海气上岸"、"进口LNG"等工程的实施,将有力地促进天然气的开发和利用。目前,液化天然气(LNG)在我国已经成为一门新兴工业,正在迅猛发展。液化天然气工艺除了用来解决运输和储存问题外,还广泛地用于天然气使用时的调峰装置上。 液化天然气装置的类型与液化工艺 中国建材网发布时间:2007/12/11 点击数:2639 富友携手爱家?惠——福州红星美凯龙总裁签售会 12月11日东鹏陶瓷抄底年终盛宴最

2012年家居卫浴经销商将面临四大挑战法恩莎蝉联金马桶奖作品推荐卫浴座椅低4折 创意灵感一触即发创意浴缸设计,让你的卫浴间别具一格摘要:论述了液化天然气装置的类型,分析了天然气液化工艺的特点,展望了液化天然气在我国的应用。关键词:液化天然气;城市燃气调峰;液化 Types of LNG Equipment and Liquefaction Technologies ZHU Wen-lan (Lanzhou Gas and Chemical Industry Group Co(,Lanzhou 730030,China) Abstract:The types of LNG equipment are discussed,the characteristics of NG liquefaction technologies are analyzed,and the application of LNG in China is prospected( Key words:liquefied natural gas;city gas peak- shaving;liquefaction 我国的能源消费总量占全世界能源消费总量的11.1,,属世界第二位。在能源消费结构中,我国天然气比例最低,只是全球平均水平的7.2,,在我国能源消费总量中天然气仅占2.8,,远低于世界水平。因此,加快开发利用天然气,提高天然气在能源消费结构中的比例,优化能源结构,保护环境,对我国社会经济可持续发展具有极其重要的意义。液化天然气(LNG)用作城市燃气调峰和车用燃料,在发达国家被广泛采用,也将成为我国大 中城市促进城市清洁能源应用、发展城市燃气事业的途径之一。 1 液化天然气的发展 由于在深冷前经过进一步净化,LNG比管道天然气和压缩天然气更洁净;LNG常压储存,比压缩天然气更为安全;LNG体积小,更适合长途运输,而且更适合于城市燃气调峰和作为车用燃料。这些特性和优点使LNG应用得到了广泛的发展,越来

焦炉煤气制液化天然气(LNG)项目工艺流程

焦炉煤气制液化天然气(LNG)项目工艺流程一、焦炉气预处理 从焦化厂来的焦炉气含有多种杂质组份,特别是苯和蔡的含量较高,约为3000 mg / Nm;和300mg / Nm,该组份将对下游的净化分离工序造成危害,需要进行脱除。 采用吸附法脱除苯、蔡和焦油。即在较低压力和温度下用吸附剂吸附苯、蔡和焦油等重质组份,之后在高温、低压下解吸再生,构成吸附剂的吸附与再生循环,达到连续分离气体的目的。这样,可以保护后续的催化剂,又避免了蔡在升压后结晶堵塞管道和冷却器等设备。 二、氢气提纯 当前工业上比较广泛应用的氢气分离技术有变压吸附和膜分离 两种。 由于变压吸附技术投资少、运行费用低、产品纯度高、操作简单、灵活、环境污染小、原料气源适应范围宽,因此,进入70年代后,这项技术被广泛应用于石油化工、冶金、轻工及环保等领域。变压吸附分离过程操作简单,自动化程度高,设备不需要特殊材料等优点。吸附分离技术最广泛的应用是工业气体的分离提纯,氢气在吸附剂上的吸附能力远远低于CH2,N2,CO和CO2等常见的其他组分,所以变压吸附技术被广泛应用于氢气的提纯和回收领域。为了使得产品氢气具有较高的纯度,选用变压吸附技术进行氢气的提纯。

三、甲烷化反应 甲烷化反应是指气体CO和CO2在催化剂作用下,与氢气发生反应,生成甲烷的强放热化学反应。 甲烷化反应属于催化加氢反应。其反应方程为: 通常工业生成中的甲烷化反应有两种: 一种是用于合成氨及制氢装置中,在催化剂作用下将合成气中少量碳氧化物(一般CO + CO2<0. 7 %)与氢反应生成水和惰性的甲烷,以削除碳氧化物对后续工序催化剂的影响。 用于上述甲烷化反应的催化剂和工艺主要是用于脱除合成气中残留的少量碳氧化物(CO和CO2),自1902年发明了用于催化甲烷化反应的镍基催化剂以来,化肥生产中用于甲烷化的催化剂和工艺绝大多数围绕这类催化剂进行研究。 另一种是人工合成天然气工艺中的甲烷化,其原料气中的碳氧化物((CO + CO2)浓度较高。 以煤制合成气(高CO含量)为原料的合成天然气(甲烷化)研究始于20世纪40年代,在经历了上世纪70年代的石油危机后,人们又

LNG气化站液化天然气化站工艺流程图

LNG加气站工艺流程图 如图所示,LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设臵的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。

LNG液化天然气化站安全运行管理 LNG就是液化天然气(Liquefied Natural Gas)的简称,主要成分是甲烷。先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。 LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。 一、LNG气化站主要设备的特性 ①LNG场站的工艺特点为“低温储存、常温使用”。储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。 ②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。 ③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震,耐台风和满足设计要求,达到最大的气化流量。

相关文档