文档库 最新最全的文档下载
当前位置:文档库 › 并联MOSFET的漏电流动态仿真

并联MOSFET的漏电流动态仿真

并联MOSFET的漏电流动态仿真
并联MOSFET的漏电流动态仿真

并联MOSFET的漏电流动态共享

[2008.8.1]

作者:C e s a r e B o c c h i o l a,I n t e r n a t i o n a l R e c t i f i e r P a v i a L L C

并联HEXFET MOSFET中的动态电流共享问题多年前就已解决。关于MOSFET导通和断开现象,以及并联MOSFET 作为其特性和外部布局功能的运转,相关资料都已详细说明。

然而,这些研究提供的只是用于静态共享的闭合分析程式,而对于动态共享则建议使用半定量/图解分析程式。此外,这些程式包括一些近似值,不容易使用,并且未考虑所有参数值离散的影响。正确利用现代计算机辅助分析可以开发更加全面的和用户易操作的仿真工具。

本文将介绍Matlab/Simulink模型,该模型允许模拟N个并联MOSFET的动态运转情况,在标准电脑上运行,并将结温方面的(一些)参数变化纳入考虑范围。

模型特性

该模型得到普遍采用——尽管其最初开发目的是用于分析低压汽车应用逆变器支路,而在此情况下若干个MOSFET并联运行,用于增加逆变器的电流容量(如图1所示)。

假定负载电流不变(因此由电流电源表示),当高L/R负荷(比如发动机的相位)是由以远高于L/R时间常量的切换频率运行的M相逆变器驱动时,通常会出现这种情况。起点是MOSFET模型,还有源电感和漏极电感。当考虑到现代逆变器时,Ls的作用可能与Ld的作用同样重要,特别是在使用SMD技术时。事实上,尽管源电感主要是由设备自身支配,并且不能低于特定值(通常是每设备5-10nH),但是Ld原则上可根据适当的用户安排“随意”减少。

因此,在该模型中,Ld的影响忽略不计。我们使用一组等式对MOSFET进行建模,方法如下:

等式1:

等式1bis:

等式1:

等式3:

等式4:

等式5:

等式1和1bis分别描述了作用区和欧姆区的传统MOSFET模型。等式2考虑了密勒效应。因为Ld忽略不计,所以模拟Vds动态(见等式5),其方法是假定使用总负载电流减去所有漏极电流的总和来对高端和低端Coss(MOSFET的输出电容)进行充电/放电(因此为2xNxCoss),这里的N是指并联MOSFET的数目。

等式3是MOSFET栅极动态Kirchoff等式。Rg表示外部栅电阻,Rgi表示MOSFET内部栅电阻。为了简化起见,我们使用集合参数方法。最后,等式4考虑了温度的阈值电压变化。

图2上半部分显示了完整的MOSFET模型(除等式5之外),而下半部分则显示了整个系统模型。在图1中,模型不代表整个逆变器支路,而只是MOSFET的“低端”或“高端”并联。这是合乎情理的,因为将要检测的是并联MOSFET 之间的动态共享,而非检测整个逆变器支路的模拟状况。支路中MOSFET的“其它”并联行为稍后将在本文讨论。

图2左上结构图显示,当外部R_C网络从MOSFET的栅极去除栅极驱动器耦合以降低变换速度并改进EMI时的栅极驱动器设计。图中显示了多个MOSFET。除MOSFET1之外,所有MOSFET彼此完全相等端。

而MOSFET1的参数与其它MOSFET不同。左边的结构图系列表示等式5。负载电流在接通瞬间动态调整为Vds功能,以便将同一支路中的MOSFET并联体二极管恢复纳入考虑范畴,而这一支路正被断开。该示意图的底部显示了动态功率耗散和“功率耗散共享”计算。目前,该模型不能解释排放到源点和排放到栅极电压的内在MOSFET电容的动态变化。

应用实例

该模型用于模拟三相无电刷发动机驱动逆变器中彼此并联的七个IRF2807Z的动态共享。总电流(Iload)为300A,直流电压为48V-56V。模拟的栅极电压波形与测量的波形完全一致,不同之处只是“平稳状态”区域的持续时间,该时间在模拟期间稍短,这是由于当前模型在准确表示Cxss动态变化方面的局限性所致。我们需要考虑三部分,其中阈值电压和导通阻抗RDS(因此Gf位于欧姆区域内)分配已在最后测试中测量。得益于栅极氧化层厚度的生成工艺控制,预计IR Trench MOSFET中的内部电容生产扩散可以忽略不计。另一方面,阈值电压和gfs中的扩散不能忽略。

需要考虑下列Cxss值:

Ciss = 3270pF

Coss = 440pF(在0-60V Vds范围内的等效电容)

Crss = 230pF

阈值电压温度系数从数据表中获得,约为-9mV/°C。

在三个部分中阈值电压和gfs的最坏情况如图3所示。这些是在25°C时的值。在该模型中,必须考虑阈值电压(Tji)和gfs(Tji),此处的Tji是平均稳态结温。

另一个要考虑的问题是,是否需要同时考虑阈值电压和gfs最坏情况都蔓延的问题。通过仔细检查三部分的数据,就可发现这两个参数之间不存在特别关联。因此,最坏情况分析应考虑最低阈值电压/最高gfs和最高阈值电压/最低gfs的组合。

图4显示了当采用最坏情况条件时的仿真结果。

图4中,“powunb”表示动态功率耗散不均衡,适用于特定切换频率。该参数是通过将Vds(t)和Id(t)相加,然后用结果乘以Fsw得到的。因此,在仿真期结束时一定要读取它的值。

在本例中,M1平均会比其他MOSFET多消耗112W。考虑其Rthjc(0.9°C/W),这意味着大约相差100°C。这一差别本身就使M1远远胜过Tjmax。此外,Tj的增加反过来将使阈值电压Vth1减少大约0.9V,从而进一步加剧不均衡的情况。通过利用Tj减少gfs,可部分抵消这一影响:

a) RDS(on)随着Tj增加。这实际上减少了欧姆区的同等Gf。

b) 如数据表所示,线性范围内的Gf也随着Tj的增加而减少。

因为模型不允许合时仿真多个切换循环,因此不能强调温度失控问题的发生。所幸的是,可用另一种更加快捷的方式来检查失控的发生。

任意?Ploss都可产生一个?Tj,它依次产生-?Vth和-?gfs。反过来,-?Vth可产生一个正?P变量,-?gfs可产生一个负?P。因此可产生一个反馈环路,其总体相位变化可能是正值,也可能是负值,取决于这两个参数变量(Vth或gfs)中哪个具有主导作用。

总体环路增益是由以下提供:

Gloop = (kVth*??Ploss/??Vth+kgm*??Ploss/??gfs)*Rthjc.

通过多次运行模拟可获得部分衍生值,每次把一个参数的值改为新值是由前一次仿真计算的温度变化决定的。

除了预测关于设备参数扩展方面设计临界点之外,该模型还可成功用于指出其他临界点,例如由于布局导致的额外源寄生电感,或者非最优化的栅极驱动级设计。

众所周知,实际上,我们可日益提高接通和断开速度以及改善动态共享。该模型可迅速检验切换速度对动态电流共享的影响。

结束语

本文介绍了用于仿真并联MOSFET的漏源电流动态共享的模型。该模型尽管非常简单,并且提出了一定程度的近似法,但当若干个MOSFET并联放置时,该模型可用于快速识别可能发生的紧急状况,特别是在逆变器应用中。该模型已成功用于解决多项重大应用问题,其中包括由于非优化设计而产生的MOSFET严重损害问题。

参考资料:

1. International Rectifier AN941: Paralleling HEXFET Power MOSFETs

2. International Rectifier AN947: Understanding HEXFET Switching Performance

3. International Rectifier AN1001: A More Realistic Characterization of Power MOSFET Output Capacitance Coss

4. J.B.Forsythe: “Paralleling of Power MOSFETs”; IEEE-IAS Conference Record, October 1981.

Captions:

图1. Matlab/Simulink模型允许模拟N个并联MOSFET的动态行为。

图2. 上半部分显示了完整的MOSFET模型,下半部分则显示整个系统模型。

图3. 三部分阈值电压和导通阻抗最坏情况蔓延。

图4. 显示当采用了最坏情况条件时的仿真结果。

降压直流斩波电路

电力电子技术课程设计题目:降压直流斩波电路 院(系): 专业班级: 学号: 学生: 指导教师: 起止时间:

摘要 直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流电变流电路和间接直流电变流电路。直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节常采用变压器实现输入输出间的隔离,因此也称带隔离的直流-直流变流电路或直-交-直电路。 直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。 关键字:直流斩波,降压斩波 第1章电路总体设计方案 1.1 设计课题任务 设计一个直流降压斩波电路。 1.2 功能要求说明 将24V直流电压降压输出并且平均电压可调,围为0-24V。 1.3 设计总体方案和设计原理 降压斩波电路的原理图以及工作波形如图1.1所示。该电路使用一个全控型器件V,图中为IGBT。为在V关断时给负载中电感电流提供通道,设置了续流二极管VD。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。

图1.1 降压斩波电路原理图 如图1.2中V 的栅极电压u GE 波形所示,在t=0时刻驱动V 导通,电源E 向负载供电,负载电压u o =E ,负载电流i o 按指数上升。 当t=t 1时刻,控制V 关断,负载电流经二极管VD 续流,负载电压u o 近似为零负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常是串联的电感L 值较大。 至一个周期T 结束,在驱动V 导通,重复上一周期的过程。当工作处于稳态时,负载电流在一个周期的初值和终值相等,如图1.2所示。负载电压平均值为 E E T E U α==+=on off on on t t t t o 式1.1 式中,t on 为V 处于通态的时间;t off 为V 处于断态的时间;T 为开关周期;α为导通占空比。 由式1.1可知,输出到负载的电压平均值U o 最大为E ,减小占空比α,U o 随之减小。因此将该电路称为降压斩波电路。也称buck 变换器。 负载电流平均值为 R E U I m o o -=

升压斩波电路设计..

电力电子技术课程设计报告题目:升压斩波电路设计 学院: 专业: 学号: 姓名: 指导教师: 完成日期:

升压斩波电路设计(一) 设计任务书

(二)设计说明书 目录一matlab仿真原理 1 升压斩波电路工作原理 1.1主电路工作原理 1.2 IGBT驱动电路选择 2 仿真实验 2.1仿真模型 2.2仿真实验结果及分析 2.3仿真实验结论 2.4 最优参数选择 二硬件实验 2.1 硬件电路 2.1.1整流电路 2.1.2斩波信号产生电路 2.1.3斩波电路 2.1.4总原理图 2.1.5元器件列表 2.2 PCB印刷电路板 2.3 制造输出——final 三课程设计总结 参考文献

摘要 本设计是基于SG3525芯片为核心控制的PWM升压斩波电路(Boost chopper).设计由Matlab仿真和Protel两大部分构成。Matlab主要是理论分析,借助其强大的数学计算和仿真功能可也很直观的看到PWM控制输出电压的曲线图。通过设置参数分析输出与电路参数和控制量的关系,最后进行了GUI编程,利用图形可视化界面的直观易懂的特点,使设计摒弃了繁琐难懂的单一波形和控制方式,从而具有友好界面,非常方便的就可进行控制参数输入,和输出图像显示。第二部分是电路板,它可以通过BluePrint、Kicad 、Protel等软件设计完成,其中Protel原理图设计系统以其分层次的设计环境,强大的元件及元件库的组织功能,方便易用的连线工具,强大的编辑功能设计检验,与印制电路板设计系统的紧密连接,自定义原理图模板高质量的输出等等优点,和丰富的设计法则,易用的编辑环境,轻松的交互性手动布线,简便的封装形式的编辑及组织,高智能的基于形状的自定布线功能,万无一失的设计检验等印制电路板设计系统的优点,使其在我们学生选用PCB电路板设计软件中占了绝大部分比重。本设计也采用Protel设计原理图,和进行PCB板布线。它是本设计从理论到实际制作的必进途径,通过设定相应的规则,足以满足设计所要求的规定。 关键字升压斩波; SG3525;SIMULINK ; PWM;Protel

直流升压斩波电路课程设计

湖南工学院 课程设计说明书 课题名称:直流升压斩波电路的设计专业名称:自动化 学生班级:自本0903班 学生姓名:曾盛 学生学号: 09401040322 指导教师:桂友超

电力电子技术课程设计任务书 一、设计任务和要求 (1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。 (2)掌握基本电路的数据分析、处理;描绘波形并加以判断。 (3)能正确设计电路,画出线路图,分析电路原理。 (4)广泛收集相关资料。 (5)独立思考,刻苦专研,严禁抄袭。 (6)按时完成课程设计任务,认真、正确的书写课程设计报告。 二、设计内容 (1)明确设计任务,对所要设计地任务进行具体分析,充分了解系统性能,指标要求。 (2)制定设计方案。 (3)迸行具体设计:单元电路的设计;参数计算;器件选择;绘制电路原理图。 (4)撰写课程设计报告(说明书):课程设计报告是对设计全过程的系统总结。 三、技术指标 斩波电路输出电压为340±5V,直流升压斩波电路输入电压为直流流24V~60V,输出功率为100W。

绪论 ........................................................... - 1 - 第1章直流升压斩波电路的设计思想 .............................. - 3 - 1.1直流升压斩波电路原理..................................... - 3 - 1.2参数计算................................................. - 4 - 第2章直流升压斩波电路驱动电路设计 ............................ - 5 - 第3章直流升压斩波电路保护电路设计 ............................ - 6 - 3.1过电流保护电路........................................... - 6 - 3.2过电压保护电路........................................... - 6 - 第4章直流升压斩波电路总电路的设计 ............................ - 7 - 第5章直流升压斩波电路仿真 .................................... - 8 - 5.1仿真模型的选择........................................... - 8 - 5.2仿真结果及分析........................................... - 8 - 第6章设计总结 ............................................... - 10 - 参考文献 ...................................................... - 11 - 附录:元件清单 ................................................ - 12 -

升压斩波电路设计

湖南工程学院 课程设计任务书 课程名称电力电子技术 题目升压斩波电源设计 专业班级电气工及其自动化 学生姓名王振林学号 0505 指导老师颜渐德 审批谢卫才 任务书下达日期 2010 年 5 月 17 日设计完成日期 2010 年 5 月 28 日

摘要 本设计是基于SG3525芯片为核心控制的PWM升压斩波电路(Boost chopper).设计由Matlab仿真和Protel两大部分构成。 Matlab主要是理论分析,借助其强大的数学计算和仿真功能可也很直观的看到PWM控制输出电压的曲线图。通过设置参数分析输出与电路参数和控制量的关系。第二部分是电路板,它可以通过Protel设计完成,其中Protel原理图设计系统以其分层次的设计环境,强大的元件及元件库的组织功能,方便易用的连线工具,强大的编辑功能设计检验,与印制电路板设计系统的紧密连接,自定义原理图模板高质量的输出等等优点,和丰富的设计法则,易用的编辑环境,轻松的交互性手动布线,简便的封装形式的编辑及组织,高智能的基于形状的自定布线功能,万无一失的设计检验等印制电路板设计系统的优点,使其在我们学生选用PCB电路板设计软件中占了绝大部分比重。本设计也采用Protel设计原理图,和进行PCB板布线。它是本设计从理论到实际制作的必进途径,通过设定相应的规则,足以满足设计所要求的规定。 引言 直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT 在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。但以

升压斩波电路课程设计

课程设计说明书 升压直流斩波 院、部:电气与信息工程学院学生姓名:唐浩 指导教师:肖文英职称副教授专业:电气工程及其自动化班级:电气本1205班 完成时间: 2015年5月26日

摘要 斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,包括直接直流电变流电路和间接直流电变流电路。直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可5调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流直流变流电路或直交直电路。直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta 斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。 关键字:直流斩波;升压斩波;变压器

ABSTRACT Current chopper circuit as a fixed voltage or DC into another adjustable voltage DC - DC converter, including direct and indirect DC DC converter circuit converter circuit. Dc converter circuit is also called directly Chopper circuit, its function is to change the dc into another fixed voltage or 5 adjustable voltage direct current (dc), generally refers to the directly to the direct current into another, this kind of circumstance not isolation between the input and output. Indirect dc converter circuit is in the dc converter circuit increases the communication link, usually in the communication link between the input and output is realized by using transformer isolation, therefore also calls the dc dc converter circuit with isolation or rectangular straight circuit. Kinds of dc chopper circuit has a lot of, including six basic chopper circuit: buck chopper circuit, boost chopper circuit, buck chopper circuit, Cuk chopper circuit, Sepic chopper circuit and Zeta Chopper circuit, using a combination of different chopper circuit can conform to the chopper circuit, such as current reversible chopper circuit, bridge type reversible chopper circuit, etc. Using basic chopper circuit on the structure of the same combination, can constitute a heterogeneous multiple chopper circuit. Keywords: dc chopper; boost chopper; transformer

升压式直流斩波电路

升压式直流斩波电路 1.电路的结构与工作原理 1.1电路结构 U L R U0 +- + - 图1 升压式直流斩波电路的电路原理图 1.2 工作原理 假设电路输出端的滤波电容器足够大,以保证输出电压恒定,电感L 的值也很大。 1)当控制开关VT 导通时,电源E 向串联在回路中的电感L 充电储能,电感电压u L 左证右负;而负载电压u 0上正下负,此时在R 于L 之间的续流二极管VD 被反偏,VD 截止。由于电感L 的横流作用,此充电电流基本为恒定值I1.另外,VD 截止时C 向负载R 放电,由于正常工作C 已经被充电,且C 容量很大,所以负载电压基本保持为一恒定值,记为u 0。假设VT 的导通时间为t on ,则此阶段电感L 上的储能可以表示为EI 1t on 2)在控制开关VT 关断时,储能电感L 两端电势极性变成左负右正,续流二极管VD 转为正偏,储能电感L 与电源E 叠加共同向电容C 充电,向负载R 提供能量。如果VT 的关断时间为t off ,则此段时间内电感L 释放的能量可以表示为(U 0-E )I 1t off 。 1.3基本数量关系 a.一个周期内灯光L 储存的能量与释放的能量相等: 即 b.输出电流平均值 11()on o off EI t U E I t =-E t T E t t t U off off off on o =+=

2.建模 在MA TLAB 新建一个Model ,命名为jiangya ,同时模型建立如下图所示: 图 1 升压式直流斩波电路的MATLAB 仿真模型 2.1模型参数设置 a 电源参数,电压100v : b.同步脉冲信号发生器参数 振幅1V ,周期0.001,占空比20% R E R U I β1o o ==

IGBT升降压斩波电路设计

电力电子技术课程设计报告 课题名称IGBT升降压斩波电路设计 专业班级 学号 学生 指导教师 指导教师职称 评分 完成日期:2015年1月13日

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路中同时实现升压和降压,简化了电路结构。而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用围在直流斩波电路中很广泛,对其做研究有很好的使用意义。 本文首先比较了两种具有升降压功能的DC/DC变换电路,具体地分析了两种DC/DC变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC/DC变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。 关键词:直流斩波;升降压; IGBT;全控型

目录 目录 (1) 1 设计任务要求 (2) 1.1 设计任务 2 1.2 设计要求 2 2方案选择 (3) 2.1方案一 3 2.2方案二 4 3 电路设计 (6) 3.1 主电路设计 6 3.2 驱动电路设计 8 3.3保护电路 11 4 仿真控制 (11) 5心得体会 (14) 参考文献 (15) 附录1 程序清单 (16) 附录2 元件清单 (17) 答辩记录 (18)

直流斩波电路设计与仿真.

电力电子技术课程设计报告 姓名: 学号: 班级: 指导老师: 专业: 设计时间:

目录 1.降压斩波电路 (6) 一.直流斩波电路工作原理及输出输入关系 (12) 二.D c/D C变换器的设计 (18) 三.测试结果 (19) 四.直流斩波电路的建模与仿真 (29) 五.课设体会与总结 (30) 六.参考文献 (31)

摘要 介绍了一种新颖的具有升降压功能的DC /DC 变换器的设计与实现,具体地分析了该DC /DC 变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC /DC 变换器控制系统的原理和实现,最后给出了测试结果 关键词:DC /DC 变换器,降压斩波,升压斩波,储能电感,直流开关电源,PWM ;直流脉宽调速 一.降压斩波电路 1.1 降压斩波原理: R E U I E E T t t t E t U M on off on on -= ==+=000α 式中on t 为V 处于通态的时间;off t 为V 处于断态的时间;T 为开关周期;α为导通占空比,简称占空比火导通比。 根据对输出电压平均值进行调制的方式不同,斩波电路有三种控制方式: 1) 保持开关周期T 不变,调节开关导通时间on t 不变,称为PWM 。 2) 3) on t i E M

1.2 工作原理 1)t=0时刻驱动V导通,电源E向负载供电,负载电压u o=E,负载电流i o 按指数曲线上升 2)t=t1时刻控制V关断,负载电流经二极管VD续流,负载电压u o近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小通常使串接的电感L值较大 ●基于“分段线性”的思想,对降压斩波电路进行解析 ●从能量传递关系出发进行的推导 ●由于L为无穷大,故负载电流维持为I o不变

IGBT降压斩波电路设计

目录 摘要 (1) 1前言 (1) 2方案确定 (2) 3主电路设计 (2) 3.1 主电路方案 (2) 3.2 工作原理 (3) 3.3参数分析 (4) 4控制电路设计 (5) 4.1 控制电路方案选择 (5) 4.2 工作原理 (6) 4.3 控制芯片介绍 (7) 5驱动电路设计 (9) 5.1 驱动电路方案选择 (9) 5.2工作原理 (10) 6保护电路设计 (11) 6.1 过压保护电路 (11) 6.1.1主电路器件保护 (11) 6.1.2负载过压保护 (12) 6.2 过流保护电路 (13) 7系统仿真及结论 (14) 7.1 仿真软件的介绍 (14) 7.2仿真电路及其仿真结果 (14) 心得体会 (16) 参考文献 (17) 致谢 (18)

IGBT降压斩波电路设计 摘要:直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流电变流电路和间接直流电变流电路。直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流-直流变流电路或直-交-直电路。直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路。Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。 关键字:IGBT 直流斩波降压斩波 1前言 随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。 开关电源分为AC/DC和DC/DC,其中DC/DC变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。 IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。

IGBT升降压斩波电路设计

I G B T升降压斩波电路设 计 Written by Peter at 2021 in January

电力电子技术课程设计报告课题名称IGBT升降压斩波电路设计 专业班级 学号 学生姓名 指导教师 指导教师职称 评分 完成日期:2015年1月13日 摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路中同时实现升压和降压,简化了电路结构。而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用范围在直流斩波电路中很广泛,对其做研究有很好的使用意义。 本文首先比较了两种具有升降压功能的DC/DC变换电路,具体地分析了两种DC/DC变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC/DC 变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。

关键词:直流斩波;升降压; IGBT;全控型

目录 1 设计任务要求设计任务 IGBT升降压斩波电路设计(纯电阻负载) 设计条件:(1)输入直流电压,Ud=50V; (2)输出功率:300W (3)开关频率5KHZ

(4)占空比10%-50% (5) 输出电压脉率:小于10% 设计要求 1,分析题目要求,提出2-3种实现方案,比较并确定主电路结构和控制结构方案; 2,设计主电路原理图,触发电路原理图,并设置必要的保护电路; 3,参数计算,选择主电路及保护电路元件参数 4,利用仿真软件MATLAB等进行电路优化; 5,最好可以建模并仿真完成相关的设计电路。 2方案选择 方案一 该DC/DC变换器为前后级串联结构,前级是由1T、3T、1D、2D、L、C、1R、2R构成降压变换电路,后级是由2T、2D、L、C构成升压变换电路,其中2D、L、C均出现在前、后级变电路中。采用PWM 方式控制两个主开关管3T、2T存在一定的困难,因为它们的控制端不共地。为了实现两路控制信号共地,也只能选用功率晶体管。为此增加辅助开关管1T,且3T由NPN型改为PNP型,显然1T、2T是共地的,1T、3T是同步开关的,这就实现了两路控制信号的共地。这样,原本通过控制3T、2T来控制电路的工作状态,现在是通过1T、2T来控制,1T称为降压斩波辅助开关,2T称为升压斩波主开关、3T称为降压斩波电路。其电路图如图所示: 图2-1原理图

直流升降压斩波电路

课程设计说明书 直流升降压斩波电路的设计 院、部:电气与信息工程学院 学生姓名: 指导教师:肖文英职称副教授 专业:电气工程及其自动化 班级: 完成时间:

摘要 20世纪80年代以来,信息电子技术和电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型的电力电子器件,典型代表有门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极晶体管。利用全控型器件可以组成变流器。直流-直流变换器就是其中一种,它广泛应用于通信交换机、计算机以及手机等电子设备的开关电源。直流—直流变流电路(DC-DC Converter)的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。直接直流变流电路也称斩波电路(DC Chopper),它的功能是将直流电变为另一固定电压或可调电压的直流电。本文着重介绍直流升降压斩波电路的原理和基于MATLAB的Simulink的直流升降压斩波电路的仿真。 关键词:直流—直流变流电路;升降压斩波;Simulink;仿真

ABSTRACT Since the 1980s, electronic information technology and power electronics technology development on the basis of their relative combine to produce a generation of high-frequency, full-controlled power electronic devices, there is a typical representative of gate-turn-off thyristor, power transistors, power field effect transistor and an insulated gate bipolar transistor. The use of full-controlled device may be composed of the converter. DC - DC converter is one of them, it is widely used in telecommunications switches, computers and mobile phones and other electronic devices switching power supply. DC - DC converter circuit (DC-DC Converter) function is to direct current voltage into another fixed or adjustable DC voltage, direct-current converter circuit including direct and indirect DC converter circuit. Direct DC converter circuit is also known as a chopper circuit (DC Chopper), its function is to direct current voltage into another fixed or adjustable DC voltage. This article focuses on the DC-down chopper circuit principle and based on MATLAB Simulink DC buck converter circuit simulation. Key words:DC-DC converter circuit; Lift pressure chopper; Simulink; Simulation

降压斩波电路__课程设计

辽宁工业大学 电力电子技术课程设计(论文)题目:降压直流斩波电路实验装置 院(系):新能源学院 专业班级:电气131班 学号: 学生姓名: 指导教师:(签字) 起止时间:2011-12-26至2011-01-6

课程设计(论文)任务及评语 院(系):新能源学院教研室:电气 目录 第1章绪论 (4)

1.1 降压直流斩波电路的基本概念 (5) 1.2 降压直流斩波电路的发展 (5) 第2章降压直流斩波斩波电路设计 2.1 降压斩波电路工作原理 (7) 2.1.1降压斩波电路(Buck Chopper) (7) 2.1.2 IGBT驱动电路选择 (8) 2.2 整流电路 (8) 2.3 斩波信号产生电路 (9) 2.3.1由分立元件组成的驱动电路 (9) 2.3.2集成驱动电路 (10) (2)电路原理图及工作原理简介 (11) 2.4 最优参数选择 (13) 2.4.1 整流电路部分 (13) 2.4.2 斩波主电路部分 (13) 2.5 生成总的电路图 (15) 2.5.1 总原理图 (15) 2.5.2 此电路的主要功能 (16) 2.6 保护电路 (16) 2.6.1 整流桥电路部分 (16) 2.6.2 驱动电路部分 (17) 第3章课程设计总结 (18) 参考文献 (18)

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 TDC-1型学习机是为了配合高等工科院校及高等专科技术学校的“电力电子”或“半导体变流技术”等课程中的直流斩波电路实验并根据当今电力电子技术的发展方向及应用而设计的新型实验装置。该学习机面板上画有原理图。各测试点均装有测试探头可以钩住的端子。测试电压及波形十分方便。使学生在实验课中安全、方便、直观地观察到各种电压、电流的波形及数据。学生实验可以更加深入了解直流斩波电路的工作原理及其典型的应用电 . 关键词:直流;电力电子;变换电路;

(完整版)升降压斩波课程设计.doc

《电力电子技术》课程设计说明书直流升降压斩波电路的设计与仿真 院、部:电气与信息工程学院 学生姓名: 指导教师:职称讲师 专业:电气工程及其自动化 班级: 学号: 完成时间:2016 年 6 月

电力电子技术课程设计任务书 学院:电气与信息工程系专业:电气工程及其自动化指导教师姓名学生姓名 课题名称直流升压降压斩波电路的设计与仿真 一、技术指标及要求: 1)直流输入电压 100V; 设计内容及任务 设计安排 主要参考资料 2)电阻负载; (R 取学号尾数 X10Ω); 3)控制电路频率 10KHZ ; 4)输出电压纹波系数: 0.2%; 5)仿真出占空比α分别为 0.1,0.2,0.5,0.8 的电感电压、电感电流、开关管电流、二极管电流和输出电压的波形。 起止日期设计内容 2016 年 5 月 25 日确定设计方案 2016 年 5 月 26 日计算相关数据 2016 年 5 月 27 日至 2016 年 6 月 6 日Simulink仿真 2016 年 6 月 7 日至 2016 年 6 月 23 日撰写课程设计说明书 [1] 王兆安、刘进军.电力电子技术(第 5 版).机械工业出版社, 2009 [2] 康华光、陈大钦.电子技术基础模拟部分.高等教育出版社,2002 [3]秋关源、罗先觉.电路(第 5 版).高等教育出版社, 2006 [4]周克宁 . 电力电子技术 . 北京:机械工业出版社, 2004. [5]黄家善 . 电力电子技术 . 北京:机械工业出版社, 2006 [6]王维平 . 现代电力电子技术及应用 . 南京:东南大学出版社, 1999 [7]张明勋主编 , 电力电子设备设计和应用手册 [M]. 北京 : 机械工业出版 社.1992 [8]丁道宏主编 , 电力电子技术 [M]. 北京 : 航空工业出版社 .1992 [9]林渭勋主编 , 电力电子技术基础 [M]. 北京 : 机械工业出版社 .1990

升压斩波电路课程设计报告Word版

《电力电子技术课程设计》报告 设计题目:升压斩波电路的设计 英文题目:The Design of Boost Chopper 院系:电气工程与自动化 年级专业: 2011级电气工程及其自动化 姓名:) ) ) 2014年6月30日 目录 目录 (2) 1. 设计的题目 (3)

1.1引言 (3) 1.2升压斩波电路的应用 (4) 2.设计的任务: (4) 2.1 课程设计要求 (4) 2.2Boost电路技术参数及要求 (4) 3.设计的依据: (5) 3.1总体构思依据 (5) 3.2理论计算依据 (5) 4.设计的内容: (6) 4.1主电路的选择与计算过程 (6) 4.1.1直流斩波电路由直流电源、MOSFET、电感、电容、续流二极管以及负载组 成。具体原理电路图如下: (6) 4.1.2主电路的理论计算: (6) 4.1.3主电路的仿真 (7) 4.1.4主电路的仿真输出波形 (8) 4.2控制电路的选型与计算过程 (8) 4.2.1NE555的引脚图及引脚 (8) 4.2.2 NE555工作原理 (9) 4.2.3控制电路原理图 (9) 4.2.4控制电路理论计算过程 (10) 4.2.5控制电路的仿真与波形输出 (10) 4.3带tlp250光耦合器的驱动电路的选型 (11) 4.3.1 tlp250引脚图及引脚 (11) 4.3.2采用tlp250的原理 (11) 4.4绘制原理图和PCB (12) 4.4.1主电路原理图 (12) 4.4.2主电路PCB图 (13) 4.4.3 555电路图 (13) 4.4.4 光耦tlp250原理图 (13)

IGBT升降压斩波电路设计

电力电子技术课程设计报告课题名称IGBT升降压斩波电路设计 专业班级 学号 学生 指导教师 指导教师职称 评分 完成日期:2015年1月13日

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路中同时实现升压和降压,简化了电路结构。而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用围在直流斩波电路中很广泛,对其做研究有很好的使用意义。 本文首先比较了两种具有升降压功能的DC/DC变换电路,具体地分析了两种DC/DC变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC/DC 变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。 关键词:直流斩波;升降压;IGBT;全控型

目录 目录 (2) 1 设计任务要求 (2) 1.1 设计任务 2 1.2 设计要求 2 2方案选择 (2) 2.1方案一 2 2.2方案二 2 3 电路设计 (2) 3.1 主电路设计 2 3.2 驱动电路设计 2 3.3保护电路 2 4 仿真控制 (2) 5心得体会 (2) 参考文献 (2) 附录1 程序清单 (2) 附录2 元件清单 (2) 答辩记录 (2)

升降压斩波电路与仿真设计

目录 绪论 (3) 一.降压斩波电路 (6) 二.直流斩波电路工作原理及输出输入关系 (12) 三.D c/D C变换器的设计 (18) 四.测试结果 (19) 五.直流斩波电路的建模与仿真 (29) 六.课设体会与总结 (30) 七.参考文献 (31)

绪论 1. 电力电子技术的容 电力电子学,又称功率电子学(Power Electronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。 它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。 电有直流(DC)和交流(AC)两大类。前者有电压幅值和极性的不同,后者除电压幅值和极性外,还有频率和相位的差别。 实际应用中,常常需要在两种电能之间,或对同种电能的一个或多个参数(如电压,电流,频率和功率因数等)进行变换。 变换器共有四种类型:

交流-直流(AC-DC)变换:将交流电转换为直流电。 直流-交流(DC-AC)变换:将直流电转换为交流电。这是与整流相反的变换,也称为逆变。当输出接电网时,称之为有源逆变;当输出接负载时,称之为无源逆变。 交-交(AC-AC)变换,将交流电能的参数(幅值或频率)加以变换。其中:改变交流电压有效值称为交流调压;将工频交流电直接转换成其他频率的交流电,称为交-交变频。直流-直流(DC-DC)变换,将恒定直流变成断续脉冲输出,以改变其平均值。 2. 电力电子技术的发展 在有电力电子器件以前,电能转换是依靠旋转机组来实现的。与这些旋转式的交流机组比较,利用电力电子器件组成的静止的电能变换器,具有体积小、重量轻、无机械噪声和磨损、效率高、易于控制、响应快及使用方便等优点。 1957年第一只晶闸管—也称可控硅(SCR)问世后,因此,自20世纪60年代开始进入了晶闸管时代。 70年代以后,出现了通和断或开和关都能控制的全控型电力电子器件(亦称自关断型器件),如:门极可关断晶闸管(GTO)、双极型功率晶体管(BJT/ GTR)、功率场效应晶体管(P-MOSFET)、绝缘栅双极型晶体管(IGBT)等。 控制电路经历了由分立元件到集成电路的发展阶段。现在已有专为各种控制功能设计的专用集成电路,使变换器的控制电路大为简化。 微处理器和微型计算机的引入,特别是它们的位数成倍增加,运算速度不断提高,功能不断完善,使控制技术发生了根本的变化,使控制不仅依赖硬件电路,而且可

电力电子降压斩波电路课程设计

《电力电子技术》课程设计说明书直流降压斩波电路的设计与仿真 院、部:电气与信息工程学院 学生姓名:刘贝贝 指导教师:胡小娣职称助教 专业:电气工程及其自动化 班级:电气本1305 学号:1330120504 完成时间:2016年6月

湖南工学院《电力电子技术》课程设计课题任务书学院:电气与信息工程学院专业:电气工程及其自动化 指导教师胡小娣学生姓名刘贝贝 课题名称直流降压斩波电路的设计与仿真 内容及任务一、设计任务 设计一个直流降压斩波电路 二、设计内容 1、主电路的设计、原理分析和器件的选择 2、控制电路的设计 3、保护电路的设计 4、利用MATLAB软件对自己的设计进行仿真 5、系统总图为标准的三号CAD图 三、设计要求 1、直流输入电压100V; 2、电阻负载;(R=40Ω); 3、控制电路频率10KHZ 4、输出电压纹波系数:0.2%; 5、仿真出占空比α分别为0.1,0.2,0.5,0.8的电感电压、电感电流、开关管电流、二极管电流和输出电压的波形。 主要参考资料[1] 王兆安.电力电子技术[M].第5版.北京:机械工业出版社,2009.5. [2] 李传琦.电力电子技术计算机仿真实验[M].电子工业出版社.2005 [3] 洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真[M].机械工业出版社.2006 [4] 钟炎平.电力电子电路设计.华中科技大学出版社[M].2010 [5] 李维波.MATLAB在电气工程中的应用[M].北京:中国电力出版社,2006 教研 室意见教研室主任: 年月日

直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 关键字:直流斩波,降压斩波

直流升压斩波电路..

安阳师范学院课程实践报告书 电力电子课程实践 ——直流升压斩波电路 作者 系(院)物理与电气工程学院 专业电气工程及其自动化(专升本)年级 2014级 学号 指导教师 日期 2014

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路.直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 关键词:直流;升压斩波;IGBT

目录 摘要 (1) 1 升压斩波电路 (3) 1.1 升压斩波电路的基本原理 (3) 1.2 斩波电路的控制方式 (4) 2.升压斩波电路的典型应用 (5) 3 结果分析 (9) 4 小结 (10) 参考文献 (11)

1 升压斩波电路 1.1 升压斩波电路的基本原理 升压斩波电路(Boost Chopper)的原理及工作波形如图1-1所示。该电路中也是一个全控型器件。 图1-1直流升压斩波电路原理图 首先假设电路中电感L值很大,电容C值也很大,当可控开关V处于通态时,电源E向电感L充电,充电电流基本恒定为I 1 ,同时电容C上的电压向负载R 供电,因C值很大,基本保持输出电压u o 为恒定值。记为U 。设V处于通态的 时间为t on ,此阶段电感L上积蓄的能量为EI 1 t on 。当V处于断态时,电源E和电 感L同时向电容C充电并向负载提供能量。设V处于断态的时间为t off , 则此期间电感L释放能量为:(U -E)I 1 t off 。当电路工作与稳态时,一个周期T中电感L积蓄能量与释放能量相等,即 EI 1 t on =(U -E)I 1 t off (1-1) 化简得

相关文档