文档库 最新最全的文档下载
当前位置:文档库 › 正一钾钠氢银和铵根 正二钙镁铜亚铁汞钡锌 正三铝铁 正四硅 氟氯溴碘负一价加上硝酸

正一钾钠氢银和铵根 正二钙镁铜亚铁汞钡锌 正三铝铁 正四硅 氟氯溴碘负一价加上硝酸

正一钾钠氢银和铵根  正二钙镁铜亚铁汞钡锌  正三铝铁  正四硅  氟氯溴碘负一价加上硝酸
正一钾钠氢银和铵根  正二钙镁铜亚铁汞钡锌  正三铝铁  正四硅  氟氯溴碘负一价加上硝酸

正一钾钠氢银和铵根正二钙镁铜亚铁汞钡锌正三铝铁正四硅氟氯溴碘负一价加上硝酸(根)氢氧根碳酸硫酸负二价加上氧硫别落下金正非负单质零,化学总价也为零。(金属元素显正价,非金属元素显负价。在单质分子里,元素的化合价为0.在化合物里正负化合价的代数和为0——九年级上册化学书P83)氢钠钾银正一价,钙钡镁锌正二价,一二铜,二三铁,二四六硫二四碳三铝四硅三五磷,变价还有锰氯氮。一价氯氢钾钠银,二价氧钡钙镁锌,三铝四硅五氮磷,二三铁,二四碳,二四六硫价齐全。铜汞二价最常见,化合价要记清,莫忘单质价为零!

一价氢锂钾钠银,二价氧镁钙钡锌,铜汞一二铁二三,碳锡铅在二四寻,

硫为负二正四六,负三到五氮和磷,卤素负一、一、三、五、七,三价记住硼、铝、金。化合价一:

一价氟氯溴碘氢,还有金属钾钠银。二价氧钡钙镁锌,铝三硅四都固定。

氯氮变价要注意,一二铜汞一三金。二四碳铅二三铁,二四六硫三五磷。

常见元素的主要化合价二:

氟氯溴碘负一价;正一氢银与钾钠。氧的负二先记清;正二镁钙钡和锌。

正三是铝正四硅;下面再把变价归。全部金属是正价;一二铜来二三铁。

锰正二四与六七;碳的二四要牢记。非金属负主正不齐;氯的负一正一五七。

氮磷负三与正五;不同磷三氮二四。硫有负二正四六;边记边用就会熟。

化合价口诀二

1价氢氯钠钾银,2.4.6硫都齐全。2价氧钙钡镁锌,铜汞2价最常见,

3铝4硅5价磷,氢为正1氧负2。2,3铁, 2,4碳,正负总价和为零

常见元素的化合价(正价):

一价钾钠氢与银,二价钙镁钡与锌,三价金属元素铝;一五七变价氯,

二四五氮硫四六,三五有磷二四碳;一二铜,二三铁,二四六七锰特别。

化合价口诀二

一价氢氯钾钠银;二价氧钙钡镁锌,三铝四硅五氮磷;二三铁,二四碳,

二四六硫都齐全;铜以二价最常见。

常见元素的主要化合价:

氟氯溴碘负一价;正一氢银与钾钠。氧的负二先记清;正二镁钙钡和锌。

正三是铝正四硅;下面再把变价归。全部金属是正价;一二铜来二三铁。

锰正二四与六七;碳的二四要牢记。非金属负主正不齐;氯的负一正一五七。

氮磷负三与正五;不同磷三氮二四。硫有负二正四六;边记边用就会熟。

常见元素化合价顺口溜(一):钾钠氢银正一价,钙镁锌钡正二价;氟氯溴碘负一价,通常氧是负二价;铜正一正二铝正三,铁有正二和正三;碳有正二和正四,硫有负二正四和正六。常见根价口诀:一价铵根硝酸根;氢卤酸根氢氧根。高锰酸根氯酸根;高氯酸根醋酸根。二价硫酸碳酸根;氢硫酸根锰酸根。暂记铵根为正价;负三有个磷酸根。

从废旧锌锰电池中回收锌和锰的工艺研究

NON-FERROUS METALS RECYCLING AND UTILIZA TION,2006-7 19 从废旧锌锰电池中回收锌和锰的工艺研究 江苏科技大学材料学院化学与环境实验室 高玉华 摘 要:废旧锌锰干电池经过剖开、焙烧处理,去除汞和碳粉,再用硫酸浸取,滤液采用沉淀法分离锌和锰。锌和锰的回收率分别为94.5%和93.6%。 关键词:废旧锌锰电池;锌;锰;回收 Study on manufacture manganese and zinc using waste Zn-Mn batter GAO Yu-hua (School of Materials Science and Eng.,Jiangsu University of Scienec and Technology,Zhenjiang Jiangsu212003,China)Abstuact:Zn—M n Waste Battery is disposed by separation and incineration,remove Hg element andcarbon element.The picking with sulphuric acid is second process.With sediment zinc and Manganese areseparated in the filtrate.The recovery of zinc Is 94.5%.The recovery of manganese is 93.6%. Keywords:Zn-Mn Waste Battery;zinc;manganese;recovery我国是干电池的生产和消费大国,年产量达150亿只,居世界第一位,占世界总量的1/3左右[1],其中70%是锌锰干电池。以每年生产100亿只干电池计算,全年将要消耗15.6万吨锌,22.6万吨氧化锰,2 080 吨铜,2.7万吨氯化锌,7.9万吨氯化铵,4.3万吨碳棒[2],相当于三四个大冶炼厂的年产锌、锰量。目前国内外都很重视对废干电池资源化的研究[3、4] ,废旧锌锰干电池尚无较好的处理方法[5],用固化法处理废干电池[6]填埋后的废锌锰干电池中的锌、锰等有用物质不能回收,也不利于土地资源的开发与利用[7]。作者对废旧锌锰干电池中锌锰回收工艺进行了探索,找到了锌、锰回收的工艺条件。 一、实验部分 实验仪器 电池破解设备、马弗炉、1 000W电炉、AA370原子吸收分光光度计、雷磁25酸度计、汞回收装置等。 实验药品 硫酸、硫化钠、氨水等。 实验方法 用自制的电池破解设备将废锌锰干电池剖开,使碳棒、金属帽、锌皮、铁片、碳包得到分离。将碳包中内含物置于瓷坩埚内,送入马弗炉在750℃焙烧1h ( 烟气排放处设回收汞装置 ), 作者简介:高玉华(1964—),男,高级工程师,化学与环境实验室主任,从事固体废弃物处理方面的科研教学工作。 Science&Technology  科技园地

黄铜中铜、锌含量的测定

黄铜中铜、锌含量的测定(络合滴定法) (一)、实验目的 1.掌握络合滴定法测量铜、锌的原理 2.掌握黄铜的溶解方法 3.学习查阅参考书刊,综合参考资料及设计实验 (二)实验原理 试样以硝酸(或HCl+H 2O 2)溶解。用 1:1NH 3.H 2O 调至 pH8-9,沉淀分离Fe 3+、Al 3+、Mn 2+、Pb 2+、Sn 4+、Cr 3+、Bi 3+ 等干扰离子,Cu 2+、Zn 2+、则以络氨离子形式存在于溶液中,过滤。取两等份滤液,将一份滤液调至微酸性,用 Na 2S 2O 3(或硫脲)掩蔽 Cu 2+,在 pH5.5 HAc-NaAc 的缓冲溶液中,XO (二甲酚橙)作指示剂,用标准 EDTA

直接络合滴定Zn2+.而在另一等份滤液中,于pH5.5.加热至70-80摄氏度,加入10mL 乙醇,以PAN(-(2-吡啶偶氮)-2-萘酚)为指示剂用标准EDTA 直接滴定Cu2+、Zn2+总含量.差减可得Cu2+。 (三)、实验步骤 1.0.01mol·L-1EDTA标准溶液的配置 用洁净的500mL烧杯称取配制 300mL0.01mol·L-1EDTA标准溶液所需的EDTA二钠盐固体,在烧杯中加水、温热溶解、冷却后转移入试剂瓶中,摇匀。 2.Ca2+标准溶液的配制 准确称取100mL0.01mol·L-1 Ca2+所需的CaCO3(0.1001±0.0002g)于150mL烧杯中。先用少量水润湿,盖上表面皿,从烧杯嘴滴加5mL6mol·L-1HCl溶液使CaCO3全部溶解(注意:5mLHCl不用加完,溶解完全后,再补

加1~2滴HCl即可)。加水使溶液总量约50mL,微沸几分钟以除去CO2。冷却后用少量水冲洗表面皿,定量地转移到100mL容量瓶中,用水稀释至刻度,摇匀。 3.在pH 10 时以CaCO3为基准物质标定 0.01mol·L-1EDTA标准溶液 吸取10.00mLCa2+标准溶液于锥形瓶 中,加1滴0.05%甲基红,用(1+2) NH3·H2O溶液中和至溶液由红色变浅 黄色。加入20mL水和3mLMg2+-EDTA, 再加5mLpH 10的缓冲溶液和4滴络黑T 指示剂。立即用0.01mol·L-1EDTA标准 溶液滴定至由酒红色变纯蓝色即为终 点。平行标定三份,计算EDTA溶液的 准确浓度。 4. 试样的溶解 准确称取0.3g黄铜试样于150mL烧杯中,

黄铜中铜锌含量的测定

(一)、实验目的: 1.掌握用络合滴定法测定铜、锌的原理。 2.掌握黄铜的溶解方法。 (二)、实验原理: 二甲酚橙是紫色结晶,易溶于水,它有6级酸式解离。其中H6In至H2In4-都是黄色,HIn5-至In6-是红色。在pH=5~6时,二甲酚橙主要以H2In4-形式存在。H2In4-的酸碱解离平衡如下: H2In4-H2In4- pKa=6.3 H++HIn5-pKa=6.3 H++HIn5- H2In4- pKa=6.3 H++HIn5- 黄黄红红黄红 由此可知,pH>6.3时,它呈现红色;pH<6.3时,呈现黄色;pH=p Ka=6.3时,呈现中间颜色。二甲酚橙与金属离子形成的配合物都是红紫色,因此它只适用于在pH<6的酸性溶液中。 二甲酚橙可用于许多金属离子的直接滴定,如ZrO2+(pH<1),Bi3+(pH=1~2),Th4+(pH=2.5~3.5)等,终点由红紫色转变为亮黄色,变色敏锐。Al3+、Fe3+、Ni2+、Ti4+和pH为5~6时的Th4+对二甲酚橙有封闭作用,可用NH4F掩蔽Al3+、Ti4+,抗坏血酸掩蔽Fe3+,邻二氮菲掩蔽Ni2+,乙酰丙酮掩蔽Th4+、Al3+等,以消除封闭现象; 二甲酚橙通常配成2g·L-1 的水溶液,大约稳定2~3周。 PAN与Cu2+的显色反应非常灵敏,Cu-PAN指示剂是CuY和PAN的混合液,将此液加到被测金属离子M的试液中时发生如下置换反应: pH=10~12在PAN中加入适量的CuY,可以发生如下反应 CuY(蓝色)+PAN(黄色)+M = MY + Cu-PAN (黄绿色)(紫红色) Cu-PAN是一种间接指示剂,加入的EDTA与Cu2+定量络合后,稍过量的滴定剂就会夺取Cu-PAN 中的Cu2+,而使PAN游离出来。 Cu-PAN+Y= CuY +PAN 表明滴定达终点 (紫红色)(黄绿色) (三)、实验步骤: 1.0.01mol·L-1EDTA标准溶液的配置 用洁净的500mL烧杯称取配制300mL0.01mol·L-1EDTA标准溶液所需的EDTA二钠盐固体,在烧杯中加水、温热溶解、冷却后转移入试剂瓶中,摇匀。 2.Ca2+标准溶液的配制 准确称取100mL0.01mol·L-1 Ca2+所需的CaCO3(0.1001±0.0002g)于150mL烧杯中。先用少量水润湿,盖上表面皿,从烧杯嘴滴加5mL6mol·L-1HCl溶液使CaCO3全部溶解(注意:5mLHCl 不用加完,溶解完全后,再补加1~2滴HCl即可)。加水使溶液总量约50mL,微沸几分钟以除去CO2。冷却后用少量水冲洗表面皿,定量地转移到100mL容量瓶中,用水稀释至刻度,摇匀。 3.在pH 10 时以CaCO3为基准物质标定0.01mol·L-1EDTA标准溶液 吸取10.00mLCa2+标准溶液于锥形瓶中,加1滴0.05%甲基红,用(1+2)NH3·H2O溶液中和

铜的测定方法

锌试剂法测定铜含量 1方法提要 本标准方法是将水样中的全铜溶解为离子态,在PH3.5-4.8的条件下与锌试剂反应形蓝色络合物,然后在600nm波长下测定其吸光度。 2试剂 锌试剂溶液 准确称取0.072g锌试剂,加50ml甲醇(或乙醇)温热(50℃以下),完全溶解后用1级试剂水稀释至100mL,注入棕色瓶内。此溶液应贮存在冰箱中。 2.2 50%的乙醇铵溶液 成500g乙醇铵溶于1级试剂水中,移入1L容量瓶稀释至刻度。乙醇铵溶液的除铜方法如下:将100mL乙醇铵溶液注入分液漏斗,加20mL的锌试剂-异戊醇溶液(2mL锌试剂溶液溶于100mL异戊醇),充分摇动,静止5min,分离,弃去带色的醇层。 2.3 1mol/L酒石酸溶液 称15g酒石酸溶液溶于1级试剂水中,移入100mL容量瓶稀释至刻度。 2.4 铜标准溶液 2.4.1 铜贮备溶液(1mL含1mg铜):称0.1金属铜(含铜99.9%以上)于20mL硝铵(1+2)和5mL硫酸(1+2)中,缓慢加热溶解,继续加热蒸发至干涸,冷却后加1级试剂水溶解,移入1L容量瓶稀释至刻度。 2.4.2 铜工作溶液(1mL含1μg铜):吸取铜贮备溶液10mL注入1L容量瓶稀释至刻度。 2.5 浓盐酸(优级纯) 3 仪器 3.1 分光光度计,带有100mm长比色皿。 3.2 本方法所用的器皿,用盐酸溶液(1+4)浸泡过夜,然后用1级试剂水充分洗净。 4 分析步骤 4.1绘制工作曲线 按表1取铜工作溶液注入一组100ml的容量瓶中(也可根据水样中铜的含量制作更小范围的工作曲线),各加浓盐酸8ml,加I级试剂水使体积成为约50ml,摇均。一次各加50%乙酸铵溶液25ml和1mol/L酒石酸溶液2ml,并准确加入锌试剂溶液0.2ml发色,用I级试剂水稀释至刻度,用100mm长比色皿、在波长600mm下测定吸光度,绘制铜含量与吸光度关系曲线。 4.2.1 将取样瓶用温热浓盐酸洗涤,再用I级试剂水充分洗净,然后向取样瓶内加入浓盐酸(每500ml水样加浓盐酸2ml),直接采取水样,取样后将水样摇均。 4.2.2 取200ml水样(铜含量在50μg/L以上时,适当减少取样量,用I级试剂水稀释至约200ml)注入300ml锥形瓶中,加8ml浓盐酸,小心煮沸浓缩至20~40ml。 4.2.3 冷却后全部移入100ml容量瓶中,加25ml乙酸铵溶液和2ml酒石酸溶液,PH值调至3.5~4.8. 4.2.4 准确加入0.2魔力锌试剂溶液发色,用I级试剂水稀释至刻度。以I级试剂水进行相同操作做参比,用100mm长比色皿,在600mm波长下测定吸光度,从工作曲线上查得铜含量a(μg).

黄铜中锌含量的测定 实验报告

实验报告:EDTA的标定(二甲酚橙)及锡铜中锌的测定 Posted on November 26, 2010 by admin EDTA的标定(二甲酚橙)及锡铜中锌的测定 (Calibration of EDTA (xylenol orange) and the determination of tin zinc copper) 实验目的: 1.学习配制Zn2+标准溶液,EDTA标准溶液; 2.学会以六亚甲基四胺-盐酸为缓冲溶液,二甲酚橙为指示剂标定EDTA标准溶液; 3.了解黄铜片的组成,学会铜合金的溶解方法; 干扰离子的掩蔽方法;、 4.掌握铜合金中Zn的测定方法 实验原理: 1.EDTA配置及标定原理: ⑴用EDTA二钠盐配制EDTA标准溶液的原因: EDTA是四元酸,常用H4Y表示,是一种白色晶体粉末,在水中的溶解度很小,室温溶解度为0.02g/100g H2O。因此,实际工作中常用它的二钠盐 Na2H2Y·2H2O, Na2H2Y·2H2O的溶解度稍大,在22℃(295K)时,每100g水中可溶解11.1g. ⑵标定EDTA标准溶液的工作基准试剂,基准试剂的预处理; 实验中以纯金属Zn为工作基准试剂。预处理:称量前一般应先用稀盐酸洗去氧化层,然后用水洗净,烘干。 ⑶滴定用的指示剂是可以选用铬黑T和二甲酚橙,本次实验选用二甲酚橙与后面黄铜中Zn的滴定的指示剂保持一致,减小误差。二甲酚橙有6级酸式解离,其中H6In至H2In4-都是黄色,HIn5-至In6-是红色。

H2In4-=H++ HIn5-(p K a=6.3) 黄色红色 从平衡式可知,pH>6.3指示剂呈现红色;pH<6.3呈现黄色。二甲酚橙与M n+形成的配合物都是红紫色,因此,指示剂只适合在pH<6的酸性溶液中使用。测定Zn2+的适宜酸度为pH=5.5,终点时,溶液从红紫色变为纯黄色。化学计量点时,完成以下反应: MIn + H2Y2-→MY + H2In4- ⑷EDTA浓度计算公式:C(EDTA)= m(Zn)/10M Zn V EDTA 2.黄铜片中Zn测定原理: ⑴黄铜片的溶解:使用1:1的盐酸和30%的H2O2溶解黄铜片 Cu+ H2O2 +2HCl=CuC l2+2H2O ⑵干扰离子的掩蔽:黄铜的主要成分是铜,铅,锡,锌还可能有少量铁铝等杂质。在实验条件下Cu2+、Pb2+、Sn4+、Fe3+、Al3+等离子会干扰锌的测定。 可以用配位掩蔽、沉淀掩蔽、氧化还原掩蔽等方法,选择在适当的pH下,将待测离子之外的其他离子进行化学掩蔽。采用的掩蔽方法如下: Ⅰ。沉淀掩蔽法掩蔽Pb2+ 在微酸性溶液中,加入适量的氯化钡和硫酸钾溶液,使生成硫酸钡沉淀,当Ba2+的量超过Pb2+量10倍以上时,Pb2+即会全部渗入硫酸钡晶格中去,形成硫酸铅钡混晶沉淀,这种沉淀比单纯的硫酸铅沉淀稳定得多。因此,可以有效地掩蔽Pb2+。 Ⅱ。氧化还原、配位掩蔽法掩蔽Cu2+ 在一定酸度(pH=2~6)下,Cu2+被硫脲还原成Cu+: 8Cu2+ + CS(NH2)2 + 5H2O =8Cu+ + CO(NH2)2 + SO42- + 10H+ Cu+再与硫脲形成配合物而被掩蔽。

75铜、锌、镉、铬、锰及镍的原子吸收分光光度法《空气与废气监测分析方法》(第四版增补版)剖析

新项目试验报告 项目名称:铜、锌、镉、锰及镍的原子吸收分光光度法 《空气与废气监测分析方法》(第四版) 项目负责人: 审批日期:

一、项目概述 悬浮颗粒物(SP)中痕量金属(如Pb、Cd、Zn等)是重要的大气污染物之一。这些颗粒中的金属元素多来源于人为污染,主要存在于《2.5um的细小颗粒物中。目前已证实颗粒物中至少有10种痕量金属具有生物毒性,以Cd、As等为代表的无机金属元素及其化合物,不但对人体具有毒害,而且具有致癌作用。在一些城市中Pb、Cd已达有害水平。用大流量采样器或中流量采样器将SP采集在滤料山,样品酸消解处理后,用原子吸收分光光度法作颗粒物各组分分析。 二、检测方法和原理 检测方法:原子吸收分光光度法。 原理:采集在过氯乙烯滤膜上的颗粒物,用硫酸-灰化法消化,制备成样品溶液,然后将溶液引入火焰或石墨炉原子化器内,用标准曲线法或标准加入法测定溶液中各元素的浓度。 除镉外,其他元素均未见到明显的干扰。测定镉时,用碘化钾-甲基异丁基酮进行萃取分离以消除干扰。如用石墨炉测定,则可用氘灯扣除背景,消除干扰。 各元素测定范围见表1(按采样10m3,定容10ml计)。 表1 *经碘化钾-甲基异丁基酮萃取测定。 三、主要仪器和试剂 1.试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂,去离子水或同等纯度的水。 1.1 过氯乙烯滤膜。

1.2 硝酸、盐酸、氢氟酸:优级纯。 1.3 0.7%(V/V)硫酸溶液:用优级纯硫酸配制。 1.4 1%(V/V)硝酸溶液:用优级纯硝酸配制。 1.5 硝酸溶液:0.16mol/L。 1.6 5%(m/V)抗坏血酸溶液:称取 5.0g抗坏血酸,溶解于水中并稀释至100ml。临用时配制。 1.7 甲基异丁酮。 1.8 碘化钾溶液:1.0mol/L。 1.9铜、锌、镉、锰及镍标准贮备液:称取上述金属(99.99%)各0.5000g,分别用(1+1)盐酸溶液5.0ml、硝酸5.0ml溶解,移入500ml容量瓶中,用水稀释至标线,摇匀。上述溶液每毫升含相应元素1.00mg。贮于聚乙烯塑料瓶中,冰箱内保存。 1.10铜、锌、镉、锰及镍标准使用液:临用时,吸取10.00ml标准贮备液于100ml容量瓶中,底价1.0ml硝酸,用水稀释至标线。此溶液没毫升含铜、锌、镉、锰及镍各元素100ug。 2.仪器和设备 2.1 总悬浮颗粒物采样器:大流量采样器或中流量采样器。 2.2 马弗炉。 2.3 铂坩埚或裂解石墨坩埚:20~30ml。 2.4 原子吸收分光光度计:具有火焰、石墨炉原子化器。 四、采样要求和样品预处理技术 同总悬浮颗粒物采样方法。 五、检测步骤 3.1原子吸收分光光度计工作条件 ①火焰原子吸收分光光度法工作条件,见表2

黄铜中铜锌含量测定[1]

黄铜中铜、锌含量的测定(络合滴定法) 一、原理 试样以硝酸(或HCl+H2O2 )溶解。用1:1NH3?H2O 调至pH8~9,沉淀分离Fe3+、Al3+、 Mn2+、Pb2+、Sn4+、Cr3+、Bi3+等干扰离于,Cu2+、Zn2+、则以络氨离子形式存在于溶液中, 过滤。将一等份滤液调至微酸性,用Na2S2O3(或硫脲)掩蔽Cu2+,在pH5.5 HAc-NaAc 的缓 冲溶液中,XO 作指示剂,用标准EDTA 直接络合滴定Cu2+、Zn2+.而在另一等份滤液中,于 pH5.5.加热至70~800C,加入10mL 乙醇,以PAN 为指示剂用标准EDTA 直接滴定Cu2+、 Zn2+合量.差减得Cu2+。Zn2+也可采用KCN 掩蔽,甲醛解蔽法,但KCN 剧毒。 二、试剂 1、HNO3; 4 mo1/L。 2、Na2S2O3 (或硫脲); 10%水溶液。 3、HAc-NaAc 缓冲溶液; 100 克结晶NaAc 溶于500mL 水中,加7mL 冰醋酸,pH≈55。 4、HCI; 2mol/L 5、二甲酚橙(XO); 0.2%水溶液。 6、PAN; 0.1%甲醇溶液。 7、EDTA 标准溶液; 0.02mol/L,用高纯Zn 片标定。(要求学生写出具体标定步骤) 8、乙醇,95%,AR 或CP。 9、过硫酸铵(或H2O2)。 三、分析步骤 准确称取0.3g 黄铜试样于150mL 烧杯中,加10mL 4mol/L HNO3,加热溶解.加

0.5g(NH4)2S2O8,摇匀。小心分次加入10mLNH3?H2O(1+1),再多加15mL 浓氨水.加热微 沸1min.冷却,将沉淀与溶液一起转入250mL 容量瓶中,以水稀至刻度,摇匀.干过滤(滤 纸、漏斗、接滤液的烧杯都应是干的)。 1.Zn 的测定 吸取滤液25.00ml 三份于三个三角锥瓶中,用2mol/L HCI 酸化(留意能否观察到有沉淀 产生后又溶解),此时pH 在1~2(也有控制在pH5~6).加10%Na2S2O3 6mL(或加Na2S2O3 至无色后多加1ml ),摇匀后立即加10mLHAc-NaAc 缓冲液’。加二甲酚橙指示剂4 滴,用 0.02mol/L 标准EDTA 溶液滴定,终点由红紫变亮黄,记下消耗EDTA 的mL 数V1. 2.Cu 的测定 吸取滤液25.00ml三份于三个锥瓶中,用2mol/L HCl 酸化,加入10mLpH5.5 的HAc- NaAe缓冲液,加热至近沸,加10mL 乙醇,加PAN 指示剂8 滴,用EDTA 滴定至深蓝紫变为 草绿色,记下消耗的EDTAmL 数V2.。 四、讨论 1. 掩蔽Cu 需在弱酸性介质中进行。因Na2S2O3遇酸分解而析出S:S2O3 2- + H+→ H2SO3 + S↓,故酸性不能过强,并在加入Na2S2O3摇匀后,随即加入HAc-NaAc 缓冲液就可避免上述反应发生.Na2S2O3掩蔽Cu 的反应如下: 2Cu2+ + 2 S2O3 2- → 2Cu+ + S4O6 2- Cu+过量S2O3 2-络合生成无色可溶性 Cu2(S2O3 )22-络合物,此络合物在pH>7 时不稳定。 2.在pH5.5 时,用XO 作指示剂比用PAN 作指示剂终点变色敏锐。这是因Zn-XO 的条件 稳定常数(lgK'=5.7)比Zn-PAN 的大之故.滴定至终点后几分钟,会由亮黄转为橙红,这 可能是Cu+被慢慢氧化为Cu2+后与XO 络合之故,对滴定无影响。

EDTA的标定(二甲酚橙)及锡铜中锌的测定-讲解

EDTA的标定(二甲酚橙)及锡铜中锌的测定 一.实验目的 1.学习配制Zn2+标准溶液,EDTA标准溶液; 2.学会以六亚甲基四胺-盐酸为缓冲溶液,二甲酚橙为指示剂标定EDTA标准溶液; 3.了解黄铜片的组成,学会铜合金的溶解方法; 干扰离子的掩蔽方法;、 4.掌握铜合金中Zn的测定方法 二.实验原理: 1.EDTA配置及标定原理: ⑴用EDTA二钠盐配制EDTA标准溶液的原因: EDTA是四元酸,常用H 4 Y表示,是一种白色晶体粉末,在水中的溶解度很小,室 温溶解度为0.02g/100g H 2 O。因此,实际工作中常用它的二钠盐 Na 2H 2 Y·2H 2 O, Na 2 H 2 Y·2H 2 O的溶解度稍大,在22℃(295K)时,每100g水中 可溶解11.1g. ⑵标定EDTA标准溶液的工作基准试剂,基准试剂的预处理; 实验中以纯金属Zn为工作基准试剂。预处理:称量前一般应先用稀盐酸洗去氧化层,然后用水洗净,烘干。 ⑶滴定用的指示剂是可以选用铬黑T和二甲酚橙,本次实验选用二甲酚橙与后面黄铜中Zn的滴定的指示剂保持一致,减小误差。二甲酚橙有6级酸式解离,其 中H 6In至H 2 In4-都是黄色,HIn5-至In6-是红色。 H 2 In4-=H++ HIn5-(p K a=6.3) 黄色红色 从平衡式可知,pH>6.3指示剂呈现红色;pH<6.3呈现黄色。二甲酚橙与M n+形成的配合物都是红紫色,因此,指示剂只适合在pH<6的酸性溶液中使用。 测定Zn2+的适宜酸度为pH=5.5,终点时,溶液从红紫色变为纯黄色。化学计量点时,完成以下反应: MIn + H 2Y2-→ MY + H 2 In4- ⑷ EDTA浓度计算公式:C(EDTA)= m (Zn)/10M Zn V EDTA 2.黄铜片中Zn测定原理:

甘氨酸铁铜锰锌含量测定方法

甘氨酸铁含量的测定 1 试剂和溶液 1.1 稀盐酸:2+3溶液; 1.2 正二氮杂菲试液(邻菲罗啉):以700mg硫酸亚铁溶于100ml水中作溶剂,配成含邻菲罗啉15mg/ml溶液; 1.3 硫酸高铈:0.1mol/L的标准溶液; 1.4 硫酸试液:1+9 溶液; 1.5 磷酸试液:1+9 溶液。 2 测定方法 称取0.8g试样(准称至0.0002g)于250ml三角瓶中,加入盐酸溶液25ml溶解。加100ml 水,6ml硫酸和2ml磷酸,再加指示剂5滴,用硫酸高铈标准溶液滴定至绿色,同时做空白校正。 3 结果计算 甘氨酸铁中铁的百分含量按下式计算: 0.05585×C·(V–V0) ×100 m 式中:C——硫酸高铈标准溶液的摩尔浓度mol/L; V——样品消耗硫酸高铈标准液体积ml; V0——空白试验消耗硫酸高铈标准液体积ml; 0.05585——每毫摩尔铁的质量克数; m——试样质量g。

1 原理 锰离子与乙二胺四乙酸二钠(EDTA-2Na )生成络合物(EDTA-Mn )比镁离子与EDTA-2Na 生成络合物(EDTA-Mg )稳定。将试样用水溶解,在PH 大于6时,于试验溶液中加入过量的EDTA-2Na ,与锰离子络合。在PH 大于10时,用镁标准溶液滴定过量的EDTA-2Na ,指示剂铬黑T 在终点时由蓝色转为紫红色。 2 试剂 2.1 抗坏血酸; 2.2 酒石酸; 2.3 氨-氯化铵缓冲液(PH=10); 2.3 1:1稀氨水试液; 2.4 铬黑T 指示剂(5g/L ); 2.5 乙二胺四乙酸二钠约为0.1mol/L ; 2.6 硫酸镁标准溶液0.1mol/L ; 3 操作方法 称取0.3g 试样,称准至0.0002g ,置于250ml 三角瓶中,加100ml 水溶解,再加0.5g 抗坏血酸,溶解后,再加1g 酒石酸,加5ml 稀氨水试液;准确加入25.00ml 乙二胺四乙酸二钠溶液,加热至60-70℃,冷却,再加10ml 氨-氯化铵缓冲溶液,5滴铬黑T 指示剂,摇匀,用硫酸镁标准溶液滴定,试验液由蓝色转为紫红色为终点。 4 结果计算 甘氨酸锰中锰的百分含量按下式计算 式中: C ——硫酸镁标准溶液的浓度 mol/L ; V0——空白试验所消耗的硫酸镁标准溶液的体积 ml ; V ——试样液消耗硫酸镁标准溶液的体积 ml ; 0.05494——每毫摩尔锰的质量克数; m ——试样质量 g ; 0.05494×C·(V0—V) m ×100

原子吸收法测定发样中铜锌的含量(精)

原子吸收法测定样品中的锌和铜 摘要:本实验采用了原子吸收光谱法测定发样中的锌和铜的含量。此实验用了火焰原子吸收法对锌和铜的含量作了检测,该方法受共存元素干扰少、简单、灵敏度高、快速、准确。实验表明,锌所测得的含量为414.2569 ug/g;铜所测得的含量为5.7896ug/g。铜所测得的数据比锌的较好。 关键词:锌;铜;发样;原子吸收光谱法 前言综述 随着ICP-AES 和ICP-MS 的问世,一向以分析灵敏度高、干扰少、操作简便与价格低廉著称的原子吸收光谱仪器面临新的挑战。但是人类一直在探索中取得进展。原子吸收技术的发展,推动了原子吸收仪器的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。 近年来,原子吸收光谱仪器的光源、分光系统与光电检测元件三个重要部件都取得了很大发展。例如:二极管激光器的优良特性,从各个不同方面大幅度改进了原子吸收光谱仪器的分析性能,二极管激光器的辐射光的方向性强,亮度高,空间相干性好,使得其辐射光在较长的距离内都能保持为较窄的光束,不发生明显的发散。此外,原子吸收光谱仪器高分辨分光系统也有很大的发展前景。同时,也有很多部件优化了一起结构。如:微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。色谱-原子吸收联用,也备受关注,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重要的用途,是一个很有前途的发展方向。原子吸收光度法是一种灵敏度极高的测定方法,广泛地用来进行超微量的元素分析。但是测定中也要避免污染物造成的影响和被测元素的损失。

黄铜中锌的测定

锌的测定 一、硫氰酸盐萃取分离—EDTA滴定法 锌离子与硫氰酸盐在稀盐酸介质中形成络阴离子,可用4—甲基戊酮—[2](简称MIBK)萃取。只要酸度及硫氰酸盐的浓度选择恰当,一次萃取就可达到定量分离。较好的条件为每100毫升溶液中含盐酸不超过5毫升,和保持4%的硫氰酸盐浓度。在此条件下和锌离子一起被萃取的元素有三价铁、二价铜、一价银及少量二价镉。三价铝、二价锰、二价镍都不被萃取。三价铁离子可用氟化物掩蔽,二价铜、一价银用硫脲掩蔽。这样,锌的分离可达到较好的选择性。进入有机相的锌,用PH5.5的六次甲基四胺缓冲溶液返萃取(即返回到水相),这时二价镉仍留在有机相。在水相中加入少量掩蔽剂使残留的少量铁、铝、铜等元素掩蔽后即可用EDTA溶液滴定二价锌离子。 1、试剂 硫脲溶液:50克/升 氟化铵溶液:200克/升,盛于塑料瓶中 硫氰酸铵溶液:500克/升 缓冲溶液(PH5.5):称取六次甲基四胺100克,溶于水中,加入浓盐酸20毫升, 加水至500毫升 二甲酚橙指示剂:2克/升 EDTA标准溶液:0.02000M 洗液:取硫氰酸铵溶液10毫升,加浓盐酸2毫升,加水至100毫升 2、操作步骤 称取试样0.1000克,置于100毫升锥形瓶中,加入盐酸(1+1)5毫升及过氧化氢1-2毫升,微热待试样溶解后煮沸,使多余的过氧化氢分解,冷却。将溶液移入分液漏斗中,加入氟化铵溶液10毫升,硫脲溶液50毫升,加水至约70毫升,加入硫氰酸铵溶液10毫升,加入MIBK20毫升,振摇1-2分钟,静置分层,弃去水相,于有机相中加入洗液15毫升,氟化铵溶液5毫升,振摇1分钟,分层后弃去水相。将有机相放入于250毫升烧杯中,用水50毫升冲洗分液漏斗,洗液并入烧杯中,加入PH5.5缓冲溶液20毫升,剧烈搅拌1分钟,加入氟化铵溶液5毫升,硫脲5毫升,XO指示剂3-4滴,用EDTA标准溶液(0.02000M)

(完整word版)土壤质量 铜、锌的测定 火焰原子吸收分光光度法

火焰原子吸收分光光度法测定土壤中的铜和锌 一、实验目的: 1.掌握原子吸收分光光度法的基本原理 2.了解原子吸收分光光度计的主要结构及操作方法 3.学会土样的消解及重金属的测定方法。 二、仪器和仪器: 1.仪器:100 mL容量瓶、移液管、玻璃棒、聚四氟乙烯坩埚、电热板 novAA 400原子吸收分光光度计、铜-空心阴极灯、锌-空心阴极灯 2.试剂: (1)盐酸,优级纯; (2)硝酸,优级纯; (3)去离子水;(4)氢氟酸,ρ=1.49g/ml; (6)高氯酸,ρ=1.68 g/ml。 (7)硝酸镧水溶液:称取3g硝酸镧(La(NO3)·6H2O)溶于42ml水中。(没用吧,应去掉) (8)2%(v/v)硝酸溶液:移取20 ml浓硝酸(优级纯)于980 ml去离子水中。 (9)国际标准样品-锌-单元素标准溶液,1000 ug/mL。 (10)国家标准样品-铜-单元素标准溶液,1000 ug/mL。 (11)铜、锌混合标准使用液:分别移取10ml铜和4ml锌单元素标准溶液于 25 mL容量瓶中,用2%的稀硝酸稀至刻度,配制铜、锌混合标准工作液,使 铜、锌浓度分别为100 ug/ml、40 ug/ml,待用。 四、实验原理: 采用盐酸-硝酸-高氯酸全分解的方法,彻底破坏土壤的矿物晶格,使试样中的待测元素全部进入试液中。然后,将土壤消解液喷入空气-乙炔火焰中。在火焰的高温下,铜、锌化合物离解为基态原子,该基态原子蒸汽对相应的空心阴极灯发生的特征谱线产生选择性吸收。在选择的最佳测定条件下,测定铜、锌的吸光度。 五、操作方法: 1.土壤样品的处理:

将采集的土壤样品(一般不少于500g)倒在塑料薄膜上,晒至半干状态,将土块压碎,除去残根、杂物,铺成薄层,经常翻动,在阴凉处使其慢慢风干。然后用有机玻璃棒或木棒将风干土样碾碎,过2 mm尼龙筛,去掉2 mm以上的砂砾和植物残体。将上述风干细土反复按四分法弃取,最后约留下100 g土样,进一步用研钵磨细,通过100目尼龙筛,装于瓶中(注意在制备过程中不要被沾污)。取20~30 g土样,在105℃下烘4~5 h,恒重。 2.土样的消解: 准确称取0.2—0.5g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入10ml浓盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩3ml左右时,取下稍冷,然后加入5ml浓硝酸,5ml氢氟酸,3ml高氯酸,加盖后于电热板上中温加热。1h后,开盖,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚,当加热至冒浓厚白烟时,加盖,使黑色有机碳化合物分解。待坩埚壁上的黑色有机物消失后,开盖赶高氯酸白烟并蒸至内容物呈粘稠状。视消解情况可再加入3ml浓硝酸,3ml氢氟酸,1ml高氯酸,重复上述消解过程。当白烟再次基本冒尽且坩埚内容物呈粘稠状时,取下稍冷,用水冲洗坩埚盖和内壁,并加入1ml 2%硝酸溶液温热溶解残渣。然后将溶液转移至50ml容量瓶中,冷却后用2%硝酸定容至标线,摇匀,待测。 由于土壤种类较多,所以有机质差异较大,在消解时,要注意观察,各种酸的用量可视消解情况酌情增减。土壤消解液应呈白色或淡黄色(含铁量高的土壤),没有明显的沉积物存在。 注意:电热板温度不宜太高,否则会使聚四氟乙烯坩埚变形。 3.测定步骤: (1)仪器操作条件的设置(计算机操作) 在工作站上设置分析条件参数:如波长(Cu为324.8 nm,Zn为213.9 nm)、狭缝(Zn 1.2 nm、Cu 0.2 nm)、空心阴极灯工作电流(Zn 10 mA、Cu 3 mA)、燃烧头高度(6 mm)、气体压力(乙炔为0.1-0.15 Mpa,空气为0.5 MPa),标样个数(4个)、读数次数(各3次)等等。 (2)绘制工作曲线(铜锌标液浓度及样品含量按这次测定结果记录和处理)在5根50 ml比色管中,从第二个起分别加入铜、锌混合标准工作液0.5 ml,1 ml,2 ml,3 ml,以 2% 的稀硝酸定容至刻度线,摇匀,此时加入的铜标液浓

锰锌铁氧体的选择

关于电感值的工程变通计算和测试法 西安无线电二厂高季荪(西安710016) 1引言 在开发电子镇流器和电子节能灯电感镇流器及电感式节能灯中,常常遇到镇流电感及滤波电感值的计算问题。 但是电感值的计算程式比较繁琐,并且在缺乏必要的磁材参数测量仪器的情况下,要严格按程式计算也是困难的,如果有设计仿真软件当然就容易了。 2传统的程式设计 例如:要设计40W电子镇流器,电路需要L=1.6mH的电感,试计算磁芯大小、绕线匝数、磁路气隙长度。 首先,计算磁芯截面积,确定磁芯尺寸。 为此,可由式(1)计算出磁芯面积乘积Ap Ap=(392L×Ip×D2)/ΔBm(1) 式中:Ap——磁芯面积乘积cm4 L——要求的电感值H Ip——镇流线圈通过的电流峰值A ΔBm——脉冲磁感应增量T D——镇流线圈导线直径cm 根据磁芯面积乘积Ap的计算值在设计手册中选择标准规格磁芯或自行设计磁芯尺寸。在此ΔBm一般取饱和磁感强度的1/2~2/3,即:ΔBm=()Bs。 Bs在一般磁材手册中都是给定的,可以查找出来,所以,一般说,由式(1)计算磁芯尺寸,并不是难事,难在磁材本身参数的分散性,同一炉磁芯的参数差别有时会很大,手册中给出的Bs—H曲线和参数是统计平均值,所以依据式(1)算出的尺寸,还要在实际使用中反复检验修正。 磁芯尺寸确定以后,计算空气隙(对EI型磁芯就是夹多厚的垫片,对于环型铁芯就是开多宽的间隙)一般是按式(2)计算: lg= (2) 式中:lg——磁芯气隙长度cm

L——所需的电感值H Ip——线圈中通过的电流峰值A ΔBm——脉冲磁感应增量T Sp——磁芯截面积cm2 一般地说,根据式(2)计算气隙大小,也不会太困难。困难仍在于ΔBm值,仅是厂家的统计平均值,对于同一规格的磁芯,不同厂家也是不同的,所以,依据式(2)算出的lg,仅是个大概值,还须在实际中去反复修正,也就是再试凑。 磁芯尺寸确定了,气隙长度也确定了,就可以确定需绕多少匝,才能达到所需的电感值L。 根据L=4μ·N2×10-9×A(3) 可得N= (4) 式中:N——为所需的绕组匝数 A——磁芯的几何形状参数 要根据式(4)算出匝数,关键是要知道导磁率μ为多少,从厂家给的磁材手册上查,μ值也只是个范围。例如R2K磁芯,其初始导磁率实际上是在1800~2600之间,具体值得靠测量。测量磁参数的仪器,一般工厂是不具备的,于是要根据式(4)计算匝数就比较困难。尤其是在有气隙的条件下,导磁率比无气隙时下降了多少也是未知数。所以依据式(4)计算就更困难。一般是先假设μ,进行计算,算出匝数N,试绕好后测量L能否达到设计值,通常很难达到,则再另设μ值,再计算,这样反复试凑下去,直到接近预定的L值结束。 以上就是根据已知电感量L,求磁芯尺寸,气隙及绕组匝数的通用方法。 如果,设计一种镇流器只计算一个电感值L,采用这种试凑计算也就算了,现在要面对市场,需要种种规格的镇流电感,再这样试凑,不仅时间上拖延了新品的开发进度,试制材料上也浪费很多。当然如果有电感值计算仿真软件,就另当别论。 3变通算法 根据前面计算出的磁芯尺寸、气隙长度,先绕制一匝数为No的电感,其实测电感值为Lo,则有 Lo=4μNo2×10-9×A(5) 令式(3)式(5)相除并整理后得: N==No(6) 式中:L——为要求的电感值

原子吸收法测定样品中的锌和铜实验报告

原子吸收法测定样品中的锌和铜 () 摘要:本实验采用了原子吸收光谱法测定发样中的锌和铜的含量,方法简单、快速、准确、灵敏度高。此实验用了火焰原子吸收法以及石墨炉原子吸收法对锌喝铜的含量作了检测。实验表明,锌所测得的含量为232.4442 ug/g;铜所测得的含量为10.0127 ug/g。铜所测得的线型数据比锌的较好。 关键词:锌;铜;发样;原子吸收光谱法 前言 随着原子吸收技术的发展,推动了原子吸收仪器[1]的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。联用技术[2](色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重要的用途,是一个很有前途的发展方向。原子吸收光度法是一种灵敏度极高的测定方法,广泛地用来进行超微量的元素分析。在这种情况下,试剂、溶剂、实验容器甚至实验室环境中的污染物都会严重地影响测得的结果。实际上,由于人们注意了这个问题,文献中所报道的多种元素在各种试样中的含量曾做过数量级的修正,这正是因为早期的实验中人们把测定中污染物造成的影响也算到试样中的含量中去所造成的。因此在原子吸收光度测定中取样要特别注意代表性,特别要防止主要来自水、容器、试剂和大气的污染;同时要避免被测元素的损失。 在火焰原子吸收法中,分析方法的灵敏度、准确度、干扰情况和分析过程是否简便快速等,除与所用的仪器有关外,在很大程度上取决于实验条件。因此最佳实验条件的选择是个重要问题,仪器工作条件,实验内容与操作步骤等方面进行了选择,先将其它因素固定在一水平上逐一改变所研究因素的条件,然后测定某一标准溶液的吸光度,选取吸光度大且稳定性好的条件作该因素的最佳工作条件。 在石墨炉原子吸收法中,使用石墨炉原子化器,则可以直接分析固体样品,采用程序升温,可以分别控制试样干燥、灰化和原子化过程,使易挥发的或易热解的基质在原子化阶段之前除去。石墨炉的维护在石墨炉膛部分,因为里面是加热高温-低温冷却,一个循环过程,同时里面还有还原性强的石墨产生积碳同时还有不同的待测物质灰化时产生的烟雾,都会在炉膛或者是在炉膛光路上的透镜上附近凝结。如果长时间不清理,炉膛底部的光控温镜可能会因为积碳的干扰,失去控温能力,直接导致石墨管烧断。灰化物在透镜上面凝结,挡住了部分光路,额外增加了负高压,积碳在加热和塞曼的震动时,有可能会随着震动,这样也变相增加了仪器的噪声。一般建议在每次更换石墨管时清洗一次石墨炉膛。

(作业指导书)土壤质量 铜、锌的测定 火焰原子吸收分光光度法测定 GBT 17138-1997

作业指导书 土壤质量铜、锌的测定火焰原子吸收分光光度法测定 GB/T 17138-1997 一、实验目的: 1.掌握原子吸收分光光度法的基本原理 2.了解原子吸收分光光度计的主要结构及操作方法 3.学会土样的消解及重金属的测定方法。 二、仪器和仪器: 1.仪器:100 mL容量瓶、移液管、玻璃棒、聚四氟乙烯坩埚、电热板novAA 400原子吸收分光光度计、铜-空心阴极灯、锌-空心阴极灯 2.试剂: (1)盐酸,优级纯 (2)硝酸,优级纯; (3)去离子水; (4)氢氟酸,ρ=1.49g/ml; (6)高氯酸,ρ=1.68 g/ml。 (7)硝酸镧水溶液:称取3g硝酸镧(La(NO3)·6H2O)溶于42ml水中。 (8)2%(v/v)硝酸溶液:移取20 ml浓硝酸(优级纯)于980 ml去离子水中。 (9)国际标准样品-铜-单元素标准溶液,1000 mg/L。 (10)国家标准样品-锌-单元素标准溶液,1000 mg/L。 (11)铜、锌混合标准使用液:铜20mg/L,锌120mg/L;用硝酸溶液(2)逐级稀释铜、锌标准储备液(9)(10)待用。 四、实验原理: 采用盐酸-硝酸-高氯酸全分解的方法,彻底破坏土壤的矿物晶格,使试样中的待测元素部进入试液中。然后,将土壤消解液喷入空气-乙炔火焰中。在火焰的高温下,铜、锌化合离解为基态原子,该基态原子蒸汽对相应的空心阴极灯发生的特征谱线产生选择性吸收。在择的最佳测定条件下,测定铜、锌的吸光度。 五、操作方法 1.土壤样品的处理: 将采集的土壤样品(一般不少于500g)倒在塑料薄膜上,晒至半干状态,将土块压碎,去残根、杂物,铺成薄层,经常翻动,在阴凉处使其慢慢风干。然后用有机玻璃棒或木棒将土样碾碎,过2 mm尼龙筛,去掉2 mm以上的砂砾和植物残体。将上述风干细土反复按四法弃取,最后约留下100 g土样,进一步用研钵磨细,通过100目尼龙筛,装于瓶中(注意在制备过程中不要被沾污)。取20~30 g土样,在105℃下烘4~5 h,恒重。 2.土样的消解: 准确称取0.2—0.5g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入10ml浓盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩3ml左右时,取下稍冷,然后加入5ml浓硝酸,5ml氢氟酸,3ml高氯酸,加盖后于电热板上中温加热。1h后,开盖,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚,当加热浓厚白烟时,加盖,使黑色有机碳化合物分解。待坩埚壁上的黑色有机物消失后,开盖赶高酸白烟并蒸至内容物呈粘稠状。视消解情况可再加入3ml浓硝酸,3ml氢氟酸,1ml高氯酸,重复上述

铜、锌、铅、铁各含量测定方法

铜合金分析 1)铜分析 (1) 碘量法 分桥步骤 称取0.2000g试样于高型烧杯中,加5mL HNO3(1+1),加热溶解并蒸发至湿润状,冷却。用水洗涤表皿及杯壁,用氨水(1+1)逐滴中和至恰好生成沉淀。滴加乙酸(1+4)至沉淀溶解并过量5-6滴,加入少量NaF使溶液黄色褪去转为蓝 色。加5mL 200 g/L KI溶液,立即用c(Na2S2O3)为0.05mol/L标准溶液滴定至黄色,加10mL 200 g/L KSCN镕浓、5mL10g/L淀粉溶液,继续滴定至蓝色消失,即为终点。 (2)电解重量法 2)锌 分析步骤称取0.2000g试样子锥形瓶中,加10mL HCl(1+1)、l-2mL H2O2,微热使试样溶解并煮沸,冷却。移入分液漏斗中,加10mL200g/L NH4F溶液(如出现浑浊,补加4mLHCl(1+1))、50mL80g/L硫脲溶液.加水至70mL,加l0mL 500g/L NH4SCN溶液,20mL MIBK,振荡2min。分层后弃去水相,向有机相加l5mL洗涤液、5mL 200g/L NH4F溶液,振荡1min。将有机相移入烧杯中,用50mL水冲洗分液漏斗,洗液并入烧杯中,加20mL缓冲镕液,剧烈搅拌1min,5mL200g/L NH4F溶液,5mL80g/L硫脲溶液,3-5滴XO指示剂,浓度大概为0.1mol/L的EDTA标准溶液滴定至由紫红色变为黄色,即为终点。 试剂需特殊配制的试剂(1)缓冲溶液:100g六亚甲基四胺溶于水中,加20mL HCl,加水至500mL。(2)洗涤浓:取10mL 500g/L NH4SCN溶液,加2mLHCl,加水至100mL。 3)铅 铬酸铅沉淀—硫酸亚铁铵滴定法 分析步骤称取0.5000-1.0000g试样于烧杯中,加5-7mLHNO3(1+1)低温加热溶解并驱除氮的氧化物,冷却。加3mL AgNO3—Sr(NO3)2混合溶液,在不停摇动下加入25.00mL K2Cr2O7标准溶液。15s后加5mL H2SO4-H3PO4混合溶液,3滴5g/L二苯胺磺酸钠指示剂,用浓度为0.02mol/L左右的硫酸亚铁铵标准溶液滴定至溶液紫色怜消失,即为终点。 试剂需特殊配制的试剂:(1) AgNO3—Sr(NO3)2混合溶液:3g AgNO3和10g Sr(NO3)2100ml水中。(2) H2SO4-H3PO4混合溶液:于700mL水中加入150mL H2SO4和150mL H3PO4。(3) K2Cr2O7标准溶液:lL溶液中含170g结晶乙酸钠和55mL乙酸。 4)铁- 分析步骤称取0.2000-0.5000g试样于烧杯中,加入10-15mL HCl,低温加热数分钟,稍冷却,加5mL HNO3,继续加热至完全分解,冷却。加4mLH2SO4(1+1),加热至冒浓白烟,稍冷却,加入l0-15mL HCl,加100mL水,加热使盐类溶解后,加入2-3g NH4Cl,用氨水中和至Fe(OH)3沉淀完全并过量5mL,煮沸。用快速滤纸过滤,用热洗涤液洗涤沉淀。将沉淀用热HCl(1+1)溶解于原烧杯中,滤纸用热水和HCl(1+1)交替洗涤(体积保持150ml),加热近沸。趁热滴加10%SnCl2溶液至溶液黄色恰好退掉,再过量1~2滴,冷却,加入5ml HgCl2,放置片刻至Hg2Cl2

相关文档
相关文档 最新文档