文档库 最新最全的文档下载
当前位置:文档库 › 软弱围岩隧道爆破技术设计探讨

软弱围岩隧道爆破技术设计探讨

软弱围岩隧道爆破技术设计探讨
软弱围岩隧道爆破技术设计探讨

软弱围岩隧道爆破技术设计探讨

摘要:文章主要介绍了济邵高速公路新林隧道程地质和水文地质条件,探讨了在软弱围岩地段隧道爆破施工技术,分析了光面爆破设计及安全施工对策,并对钻爆法的设计施工组织为同类工程提供参考。

关键词:软弱围岩;隧道爆破;设计;施工技术

1工程概况

新林隧道位于王屋山区,隧道为分离式隧道,全长670 m。隧道位于王屋乡新林小学附近,属侵蚀剥蚀底山丘陵区(Ⅱ)。隧道轴线通过处最高海拔约578 m,最大相对高差约55 m。山体走向呈南北向。新林隧道区内岩石节理裂隙普遍发育,隧道区围岩主要发育产状为90°∠88°、60°∠85°、200°∠28°、183°∠40°的四组节理,节理以平直为主,多闭合,节理密度2~5条/m,局部密集可达7条/m。隧道区段内岩石为砂岩、粉砂质泥岩,抗风化能力较弱。进洞口段自然坡向东倾,地形坡度200~400,为斜坡地形,表面残坡积层较薄,部分缺失,岩性为亚粘土,属V级围岩,下伏基岩为三叠系二马营组砂岩、粉砂质泥岩,强风化层厚约 1.5 m,围岩稳定性差,BQ<250,属于Ⅴ级围岩。

本隧道穿过砂岩强风化、弱风化层,埋置浅,地下水不发育,主要为基岩裂隙水,水量较贫乏。

2软弱围岩隧道爆破开挖方案确定

在开挖过程中应根据围岩类别(或级别)选用合理的爆破参数和掏槽形式、爆破材料、起爆方式、装药结构及堵塞材料,尽量减小爆破对围岩和邻近洞室的扰动和破坏,严格控制超欠挖和爆破震动速度,充分保护围岩的自承能力。前一洞室爆破对相邻洞室爆破震动速度的影响应控制在5 cm/s之内。

3钻爆设计

隧道软弱围岩(断层)专项施工方案

石山隧道进口软弱围岩(断层)专项施工方案 一、编制依据 1、xxx合同段工程施工总承包招标文件及设计文件、两阶段施工图设计等; 2、国家、交通部现行的公路工程建设施工规范、设计规范、验收标准、安全规范等; 3、国家及福建省相关法律、法规及条例等; 4、现场踏勘收集到的地形、地质、气象和其它地区性条件等资料; 5、近年来高速公路等类似施工经验、施工工法、科技成果; 6、福建省高速公路标准化建设指南和施工要点; 7、我单位拥有的国家级、部级工法、科技成果和长期从事高等级公路建设所积累的丰富施工经验。 二、工程概况 1、工程概况 我部承建的石山隧道0.5座,为分离式双洞隧道,隧道全长855.8m,为长隧道,左洞长854.1m,右洞长857.5m。隧道进出口均位于平面曲线内,进口左右线曲线半径分别为R左=3000m和R右=2850m;隧道纵坡坡率/坡长:左洞为0.7%/854.1m,右洞0.7%/857.5m;隧道进口设计桩号:左洞为ZK63+572,右洞为YK63+565;进口设计高程:左洞为586.69m,右洞为586.64m。。 2、地形、地貌 隧址区属剥蚀低山地貌,隧道轴线大致呈南北走向,地形呈波状起伏,起伏较大,隧道最大埋深约为160m,地表植被较发育,覆盖层较薄。进口侧山坡自然坡度25~30°,出口侧山坡自然坡度35~40°。 3、地层岩性 本隧址场区表层多为第四系残坡积土,一般厚度3-6m,冲沟底部及陡坎略薄些,下伏侏罗系南园组(J3n)凝灰熔岩及其风化层。

隧道洞身围岩为侏罗系南园组(J3n)的凝灰熔岩,属较硬-坚硬岩,岩体一般较完整,对隧道洞身围岩的稳定较有利,据地质调绘及钻孔揭露隧道区主要发育有3条裂隙带及断裂构造带,对隧道围岩不利,影响隧道围岩级别,隧道开挖时,围岩稳定性较差,易产生塌方掉块,应加强支护和监测措施,各段的具体评价见隧道纵断面图。 拟建隧道最大埋深约160m,深部围岩主要为微风化凝灰熔岩,节理裂隙发育较少-较发育,较有利于地应力的释放和调整,但钻孔中未见有岩芯饼化等高应力作用现象,综合临近泉三高速公路等工程经验分析,本隧道在隧洞区内出现高地应力的可能性不大。 隧址区未见有矿体分布,不会产生瓦斯等有害气体。但施工中粉尘可能较大,施工中应注意粉尘污染监测工作,并做好通风工作。 4、地质构造及地震动参数 根据《厦门至沙县高速公路(安溪至沙县)泉州段线路工程地震安全性评价》,线路地震设防烈度属于6度区,测区内50年超越概率10%的平均土质条件下峰值加速度为0.05g,中硬土场地动反应谱特征周期为0.45s,区域地质相对稳定,建议抗震设计按《公路工程抗震设计规范》(JTJ004-89)规范执行。 5、水文地质条件 隧道位于当地侵蚀基准面之上,山坡坡体起伏较大,隧道地表水系不发育,仅部分冲沟底部见有小水流。隧址区四周地形较陡,一般坡度25-35°,地形切割较强烈,降雨后地表水沿坡排泄迅速,无有利地表水蓄积之地形。 地下水按埋藏条件及赋存介质不同主要有:①基岩风化网状裂隙水:赋存于碎块状强风化岩~中风化岩层的网状裂隙中。隧道区岩性为侏罗系南园组(J3n)凝灰熔岩,碎块状强风化岩层裂隙较发育,富水性及导水性相对较强,接受大气降水的补给,厚度相对较小,勘察期间水量较贫乏,对洞身围岩及开挖影响较小,主要对隧道进、出口及浅埋段围岩的施工有影响。②基岩裂隙水:洞身围岩主要为微风化凝灰熔岩,主要受节理裂隙等控制,受大气降水的补给和基岩风化裂隙水的补给,向山体附近的沟谷中排泄,富水性一般较差,节理密集带相对较富水,但本隧道3条节理带宽度小,故地下水贫乏。

浅埋软弱围岩隧道变形控制

浅埋软弱围岩隧道变形控制 摘要:本文以宁安铁路钟鸣2#隧道为例,重点阐述在浅埋软弱围岩隧道施工,通过各种技术措施对围岩变形进行控制的方法。 关键词:隧道,浅埋,软弱围岩,变形控制 abstract: this article to ning an railway chiming 2 # tunnel as an example, focuses on the shallow buried tunnel in weak rock construction, through various technical measures to control surrounding rock deformation method. key words: tunnel, shallow buried and weak surrounding rock, deformation control. 中图分类号:u452.1+2 文献标识码:a文章编号:2095-2104(2013)引言 在高铁建设过程中,出现了越来越多的地质条件复杂,浅埋软弱围岩的高风险隧道。由于这些浅埋地层的埋藏比较浅,大多是强风化破碎的围岩,地质条件变化较大,围岩应力分布复杂,且开挖断面大,造成了隧道施工过程中,施工难度增大,初支变形复杂和隧道整体稳定难以控制的情况,隐含着很多坍塌等安全隐患。本文以钟鸣2#隧道为研究对象,阐述在浅埋软弱围岩隧道施工过程中如何采取对策减小初支变形,确保施工安全的方法。 1 工程概况 钟鸣2#隧道位于宁安铁路铜陵境内,双线全长798m,施工里程为dk140+830~dk141+628。隧道穿越地层主要为含砾粉质黏土及泥质

浅谈隧道软弱围岩快速施工技术

浅谈隧道软弱围岩快速施工技术 中铁十一局四公司袁中华 摘要:本文通过对琯头岭隧道进口软弱围岩的施工,总结了软弱围岩快速施工经验。 关键词:隧道软弱围岩施工技术 软弱围岩的施工特别是在地质条件复杂的隧道,往往会给整个工程的工期带来较大影响,甚至影响着工程的质量及施工安全,现总结琯头岭隧道软弱围岩的施工经验,供其他同类地质条件隧道参考 一、工程概况 1、基本情况: 温福客运专线琯头岭隧道为全线重点工程,隧道全长4103米,我部施工进口段1435米,其中568米为Ⅴ级围岩全风化土,468米为Ⅳ级强风化凝灰岩且局部夹带全风化土,软弱围岩占施工段的72.2%, 2、工程地质情况 隧道穿越剥蚀低山~丘陵区,紧邻海积平原,山体植被发育,主要地层为上侏罗统南园组火山岩。浅灰色流纹质晶屑凝灰熔岩、流纹质晶屑凝灰岩及凝灰岩, 施工段内有四个断层带贯穿其中,在断层沟谷及其附近,岩体破碎、节理裂隙及劈理发育,断层破碎带及节理裂隙、劈理富水性好,地下水主要为构造裂隙水,接受大气降水及地表水的下渗补给,水量丰富。本区内地表水系发育,规模较大的冲沟均有地下水出露,并形

成小溪。 二、施工方法 一)、洞口段施工 由于洞口段围岩覆盖层薄、且为全风化的土,开挖后不能形成自然拱,易造成坍塌。开挖前对边仰坡进行修整,挂网喷锚加固,并对围岩采用20米超前管棚注浆预支护。 二)、正洞段施工 1、Ⅴ级围岩全风化土段施工 开挖方法采用三台阶预留核心法,中下台阶分左右侧并错开开挖,仰拱及时跟进形成闭合环,三台阶采用超短台阶。开挖机械采用挖掘机,对局部利用风镐及人工进行修整。为保证机械开挖的最大功效,及考虑到施工安全,对设计的三台阶尺寸进行调整,适当的增加上中台阶的高度,使挖掘机操作方便。 施工中严格遵循短进尺、禁爆破、快支护、勤量测、紧衬砌、早闭合。 a、开挖Ⅰ部:Ⅰ部是整个施工循环最为关键的部位,直接影响到下序工程是否能正常进行。施工掘进前务必严格做好超前小导管支护,每次进尺根据围岩情况及地下水情况而定,一般开挖一榀到两榀拱架长度(80cm—160cm)。设计采用4.5m的φ42超前小导管预支护,3.2米(四榀拱架)施作一环,考虑到4.5米的小导管施工外插角不易控制,施工至搭接位置时, 漂移距离大,预支护效果差,且引起超挖量大,且工程用的无缝钢管长度一般为6m,在材料的加工上浪费很大,

软弱围岩隧道

软弱围岩隧道 随着我国铁路路网的完善,建设标准的提高,特别是高速铁路和客运专线的大量修建,隧道建设规模和技术水平也踏上了一个新的台阶;然而,软弱围岩隧道坍方、作业人员伤亡等事故却时有发生,隧道建设的安全现状无法与当前的形势相适应。从设计源头上解决当前软弱围岩隧道建设过程中存在的问题,是非常必要和及时的。 我国是世界铁路隧道大国。据统计,截止目前,我国铁路隧道通车运营长度已达到6000公里,在建隧道约6600公里,规划设计长度约7600公里,预计到2020年,我国铁路隧道总长将达2万公里左右,位居世界第一。 我院承担的任务主要集中在西南山区,地形、地质条件复杂,一方面,隧道多;另一方面,隧道通过软弱围岩地段长,如:全长462km的成兰线,隧道长度就达到322km,隧线比70%,Ⅳ、Ⅴ级围岩的比重75%,且多为千枚岩、板岩等软弱围岩地层。 这些都从客观上增大了隧道设计在安全方面的风险。半个多世纪来,我院在西南山区铁路隧道的建设中,既积累了一定的经验,也有不少教训和体会,根据会议安排,下面我就软弱围岩隧道工程设计方面做简要汇报,不妥之处,敬请领导批评指正。一、软弱围岩主要工程地质特点 软弱围岩一般是指岩质软弱、承载力低、节理裂隙发育、结构破碎的围岩,工程地质特点有:

(1)岩体破碎松散、粘结力差:一般为土层、岩体全风化层、挤压破碎带等构成的围岩,由于结构破碎松散,岩体间的粘结力差,开挖洞室后,仅靠颗粒间的摩擦效应和微弱胶结作用成拱,这类岩体极不稳定,尤其是在浅埋地段容易发生坍塌冒顶。 (2)围岩强度低、遇水易软化:一般以页岩、泥岩、片岩、炭质岩、千枚岩等为代表的软质岩地层,由于其强度低、稳定性差,开挖暴露后易风化、遇水易软化,尤其是深埋地段受高应力影响容易发生塑性变形,造成洞室内挤。 (3)岩体结构面软弱、易滑塌:主要是存在于受结构面切割影响严重的块状岩体中,由于结构面的粘结强度较低,开挖后周边岩体极易沿结构面产生松弛、滑移和坠落等变形破坏现象。

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制(参考模板)

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施 工控制 具体介绍铁路双线隧道浅埋偏压软弱围岩的施工工 摘要:本文结合金温铁路麻芝川隧道工程实例,艺和施工控制,为浅埋偏压软弱围岩隧道洞口的施工提供了很好的借鉴。 关键词:铁路隧道浅埋偏压软弱围岩施工控制 1 前言随着我国高速铁路发展规模日益扩大,地质条件日趋复杂,标准化的要求不断提高,铁路隧道施工技术要求也就越来越高。一般情况下隧道洞口位置的地质情况较差,主要不良地质表现为顺层偏压、覆盖层薄、土质松散、边坡失稳,围岩体结构承载力差,若处理不当易发生塌方、冒顶、边仰坡塌滑风险事件。麻芝川隧道是金温铁路的重点工程之一,进口地段就属这类情况。 2 工程概况 2.1 概述麻芝川隧道进口段位于浙江省温州市泽雅镇。隧道起迄里程为 DK168+673~DK171+515,全长 2842m。隧道全部位于左偏曲线上,纵坡为单面下坡,坡率为 4.0‰。按新奥法设计,采用复合式衬砌。 2.2 工程地质麻芝川隧道地处剥蚀丘陵区,地形起伏,植被茂盛,山体自然坡度 25~45°,局部可见基岩裸露。进出口均有混凝土或沥青路面的乡村公路通达。隧道区地层分布较简单,基岩多有出露。地表出露第四系人工填土层 Qml、第四系残坡积层 Qel+dl,下伏侏罗系上统西山头组 J3x 流纹质玻屑凝灰岩。地下水为松散岩类孔隙水和火山碎石屑岩

类基岩裂隙水。区内地表流水活跃,地下水不发育,影响隧道的地下水主要为构造裂隙水。隧道区地处副热带季风气候区,气候温和,雨量充沛,四季分明。雨量充沛,年降雨量达 1723.0 毫米,4~9 月最集中。化学环境作用等级为 H2,地震动峰值加速度为 0.05g,地震动反应谱特征周期为 0.35s。隧道进口进口工程特点

隧道软弱围岩和断裂带施工安全措施方案(word版)

隧道软弱围岩和断裂带施工安 全措施方案 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:___________________ 日期:___________________

隧道软弱围岩和断裂带施工安全措施方案 温馨提示:该文件为本公司员工进行生产和各项管理工作共同的技术依据,通过对具体的工作环节进行规范、约束,以确保生产、管理活动的正常、有序、优质进行。 本文档可根据实际情况进行修改和使用。 一、工程概况 大尖坡隧道位于云南省保山市龙江乡境内, 穿越高黎贡山高中山区, 地 形复杂, 沟壑纵横, 斜坡陡峻, 地质作用以构造剥蚀、风化侵蚀为主, 左右幅处于相同地貌单元。隧道为分离式隧道, 左幅起止桩号为ZK4+243~ZK5+178,全长935m, 出口端位于R=1300米的右转圆曲线上, 进口端位于直线上, 纵坡为 -1.7%, 最大埋深149.1米, 隧道出口端横坡为+2%, 进口端横坡为-2%;右幅起止里程为K4+247~K5+128, 全长881m, 隧道进口端位于R=1750米的右转圆曲线上, 出口端位于直线上, 纵坡为-1.7%, 最大埋深143.4米, 隧道进出口横坡均为-2%。岩性为片岩、变粒岩、片麻岩、泥岩, 风化程度高, 多为强风化, 局部夹全风化透晶体, 强风化层片岩岩芯多呈碎石~角砾状、砂土状, 局部构造发育, 风化强烈, 岩体极破碎。大部分为Ⅴ级围岩, 有两条断裂带在洞身左幅K4+365、右幅K4+406、左幅K4+830、右幅K4+840通过, 均为次级断裂。隧道多处地下水丰富, 隧道围岩为软质岩, 遇水易软化崩解, 形成软弱结构面, 降低岩体的层间结合力, 因此软弱围岩及断裂带段隧道施工安全是本合同段控制重点之一。 二、安全保障措施 1、制度措施保障 (1)认真贯彻执行党和国家的安全生产方针、政策, 严格执行公路有关

隧道软弱围岩安全快速施工的基本原则及施工方法探讨

隧道软弱围岩安全快速施工的基本原则及施工方法探讨 摘要:本文首先阐述了隧道软弱围岩安全快速施工的意义,然后探讨了隧道软弱围岩安全快速施工的基本原则,最后研究了隧道软弱围岩安全快速施工的方法,具有一定理论价值和实用价值,供大家借鉴参考。 关键词:隧道;软弱围岩;安全快速施工 Abstract: This paper expounds the weak rock tunnel the meaning of rapid construction safety, and then discusses the weak rock tunnel safely and quickly the basic principles of the construction, and finally the weak rock tunnel safe the construction method of fast, has certain theory value and practical value for your reference. Key words: tunnel; weak rock; rapid construction safety 1隧道软弱围岩安全快速施工的意义 隧道安全快速施工对我国铁路建设具有重要意义,尤其是软弱围岩隧道的安全快速施工,其意义尤为重要,主要表现在以下2个方面: 1)工程工期的要求。隧道的建设由于工作面少,作业空间狭窄,施工速度慢,往往成为铁路建设的控制性节点工程。而软弱围岩隧道,由于围岩稳定性差、变形不易控制、容易发生塌方等安全事故,导致其施工工序复杂,施工速度极其缓慢,严重影响和制约着工程的工期。 2)自身稳定性的要求。变形速度快、变形时间长是软弱围岩的基本特性,这也就意味着施工速度越慢时,围岩暴露时间越长,隧道发生的变形越大,所需的加固措施也变得越强。因此,软弱围岩隧道的施工很容易陷入如图1所示的恶性循环。 图1软弱围岩隧道施工易出现的恶性循环 Fig.1 A vicious circle of the construction of weak surrounding rock tunnel 2隧道软弱围岩安全快速施工的基本原则 “预支护、快挖、快支、快闭合”是软弱围岩隧道安全快速施工的基本原则。 1)预支护是在开挖前,针对开挖后预计的变形实态,事前采取的控制变形的对策,预支护的目的是控制掌子面前方先行位移和挤出位移。

软弱围岩隧道安全施工技术

软弱围岩隧道安全施工技术 摘要:介绍软弱围岩对隧道施工的影响,结合工程实践,详细 地介绍了隧道安全施工控制的方法和措施,阐述了施工方法的特点、施工工艺等,对类似隧道施工有一定的参考价值。 关键词:软弱;隧道;施工 abstract: the weak surrounding rock of tunnel construction, engineering practice, and detailed description of the tunnel construction safety control methods and measures, described the characteristics of the construction methods, construction techniques, etc., similar to the tunneling of some reference value. key words: weak; tunnel; construction 中图分类号:文献标识码:a 文章编号:2095-2104(2012) 1.前言 软弱围岩由于其本身的地质特性,一般力学指标低,岩性松散、承载力差,压缩性高,遇到有岩隙水的作用时,就容易引起隧道施工时产生较大的沉降变形,造成安全隐患。同时,工后沉降过大也会对运营使用和处理带来很大的困难。所以,在软弱围岩地段时,需要特别注意隧道施工方法的选择和正确的处理措施。软弱围岩隧道的施工方法,主要有台阶法和双侧壁导坑法、crd法、环形开挖 留核心土法等。双侧壁导坑法和crd法限制了大型施工机械的使用,降低了工效;工序多,相互干扰大,施工进度缓慢,且临时施工支

隧道软弱围岩浅埋段地表加固技术研究

隧道软弱围岩浅埋段地表加固技术研究 摘要坪岗二号隧道地表邻近水库区浅埋段,涌水量大,围岩为砂土状强风化花岗岩,大部分已风化成土状,泡水易崩解,岩体自稳性级差,防止浅埋段洞内用水和坍塌是该段隧道施工的关键所在,采用浅埋段地表注浆加固技术可以有效地起到围岩加固、止水的效果,进而保证该浅埋段顺利通过。本文结合工程实例,隧道软弱围岩浅埋段地表加固技术做一些研究和探讨。 关键词隧道软弱围岩;浅埋段;地表加固技术 1 工程概况 坪岗2#隧道为分离式双洞,左右线相距约20m,左线ZK67+330~+370及ZK67+420~+460段(总长80m)为山间沟谷;右线ZK67+320~+445段(125m)为山间沟谷,地表邻近水库区,隧道建筑净空为8.75m×6.92m,最大开挖断面面积为111.07m2。左线ZK67+320~+380(60m)、ZK67+410~+470(60m)和右线YK67+310~+455(145m)为Ⅵ级围岩浅埋段,围岩为全风化花岗岩,风化剧烈,大部分已风化成土状,泡水易崩解,层厚7.4~17.9m,隧道洞身主要穿过此地层;隧底基岩为砂土状强风化花岗岩和碎块状强风化花岗岩,砂土状强风化花岗岩为砂土夹少量碎块,裂隙发育,呈碎石土状。地下水在沟谷段主要以砂层中的孔隙水为主,水量集中在沟谷,受地表降水补给的影响大,溝谷内有洪水或季度性水流经过。围岩饱水性差,遇水后的自稳能力会大幅降低,如不对浅埋围岩进行处理,墙腰易开裂,隧道开挖中极易发生塌方、突水、突泥[1]。 2 地表注浆加固方案 在Ⅵ级围岩浅埋隧道开挖前,采用三重管高压旋喷桩从地表加固洞身围岩,加固地层主要为全风化花岗岩,旋喷至路面深度。沿洞轴线两侧布置15~16列旋喷孔,横向布置范围为16.5m,桩孔列间距为a=0.9m(横向间距),排间距为b=0.8m(纵向间距),梅花形布置。旋喷扩散半径R=0.5m,成桩直径大于1.0m,咬合大于10cm。从地表钻进至衬砌外轮廓线处,置换土体成孔,再旋喷水泥浆液,提升喷头旋喷形成桩体,桩体长度为3~4m,拱部外侧桩体长度为3m,边墙外侧桩体为4m,旋喷桩组合固结形成混凝土应力环。旋喷钻机是通过高压水、高压气对土体进行切割成孔,高压喷入水泥浆置换土体或部分土体空间,旋喷形成固结体,达到改良地层和围岩的目的。旋喷浆液水泥用量为400km/m(初喷100kg/m,复喷300kg/m),水灰比选用0.8:1,成桩无侧限抗压强度大于1.5MPa。 3 旋喷桩施工工艺介绍 3.1 施工准备 (1)修建临时生活设施,平整场地,接通施工用水、用电,设置回浆池。检查机器运转情况并做好各易损件的储备工作。

软弱围岩施工方法

软弱围岩施工方法 乌鞘岭隧道的软弱围岩以Ⅴ、Ⅵ级围岩为主,主要集中在四条断层破碎带位置和进洞位置处,断层物质主要由断层泥砾及碎裂岩组成,松散破碎,风化严重,地下水在局部地段较丰富;进口段350m为黏质黄土,后530m围岩为N2泥质砂岩,埋深浅,地下水较贫乏。就该隧整体地质情况来看,软弱围岩占全隧长度的40%,为堆积体,坡面孤石较多,并且存在偏压现象。为有效地保证正洞周边围岩和边坡稳定,防止施工中出现边仰坡坍塌和孤石下滑,确保施工万无一失,对进洞段进行特殊交底,请现场值班人员、各工班遵照执行。 一边仰坡开挖及防护 1边仰坡开挖前应组织人员将坡面危石及杂草清除干净,并在开挖轮廓以外用轨排防护,避免危石溜坍; 2做好边仰坡外侧的截排水工作,防止雨水或泥石流冲刷坡面; 3正洞开挖轮廓线以外必须进行坡面防护,坡面防护参数:C20喷射砼厚度,10cm;22mm锚杆长度 3.0m,间距 1.0x1.0m;8mm钢筋网格尺寸20x20cm,根据坡面情况,可先用细钢丝网防护后再铺设钢筋网; 二超前支护 1正洞进洞位置或当探明前方围岩破碎时,应及时采取超前支护; 2超前支护方法采用超前小导管内插钢筋方案,超前小导管采用外径42MM,壁厚3.5MM无缝钢管,长3M,全部为花管,为便于打入,前段做成尖锥型,管壁每隔15CM交错梅花形钻眼,眼径8MM;超前小导管间距为:

纵向2.0M,搭接长度不小于1.0M,环向0.3M,进洞位置内外两环,环间距0.3M,梅花形布置,钢管外插角约50,(见图一)为加强小导管刚度,在小导管内插22mm螺纹钢。(见图二) 原地面 超前小导管 ° 仰坡(喷砼护面) 正洞 图一超前小导管布置图 单位:cm,比例:示意 Φ22钢筋 Φ42小导管 图二小导管钢管与钢筋关系图 3注浆浆液采用水泥—水玻璃浆液,水泥浆与水玻璃浆液比例为1:0.5,水泥浆水灰比为1:1,水玻璃浓度35Be0,注浆压力0.5~1.0MPa; 4注浆过程中随时观察,发现串浆现象时,应采取间歇式注浆或调整水泥浆与水玻璃浆液比例,确保注浆效果; 5注浆后观察注浆效果,如发现漏注或有空洞,应及时补注或用砼补喷,保证结构总体均匀。 三洞身开挖

软弱围岩隧道台阶法五步开挖施工工法(参考模板)

软弱围岩隧道台阶法五步开挖施工工法 1、前言 隧道通过软弱围岩地段时,由于围岩的整体强度低,自稳能力差,隧道开挖后自稳时间短,甚至没有自稳时间,隧道开挖后拱顶及局部应力集中过大易出现坍塌冒顶,隧道结构极易失稳,给施工带来极大的困难。我局在恩施凤凰山隧道施工过程中,结合施工能力和现场实际地质条件,依据新奥法原理改进施工方案,采用上下台阶预留核心土分五步进行开挖支护,拱部和边墙分别采用组合模板台车衬砌。该施工工艺具有以下特点:1、减少了对周边围岩的扰动,且台阶之间可平行穿插作业;2、开挖面稳定,作业较为安全;3、机械利用率高,施工周期短。通过四川凉山州官地水电站对外交通公路E标段煤炭沟隧道、杭瑞高速鸡口山隧道等软弱围岩隧道的施工,总结了成功的经验,取得了良好的经济效益的社会效益,并形成本工法。 2、工法特点 2.0.1将监控量测技术、数据处理和信息反馈技术应用于施工,动态调整施工方法和支护,确保施工安全; 2.0.2运用上下台阶预留核心土法进行开挖支护,拱部边墙先施做系统锚杆注浆,分部封闭成环,初期支护为网、锚、喷加型钢钢架,二次衬砌为钢筋混凝土结构; 2.0.3采用五步开挖作业简便,无需使用特殊施工机械,容易推广应用; 2.0.4边墙与拱部采用一套组合模板台车,具有费用低、效率高、

混凝土外观质量好的优点。 3、适用范围 3.1.1本工法适用于新奥法指导施工的较大跨度软弱围岩隧道。 3.1.2本工法适用于各种埋深Ⅳ-Ⅴ级围岩公路隧道和类似跨度与其他级别围岩的隧道工程。 4、工艺原理 4.0.1采用上下台阶预留核心土法施工较大跨度的隧道,其机理是将洞室断面分为上部环形拱部、上部核心土、下部弧形拱部、下部核心土以及仰拱,由于上下部有核心土支挡着开挖面,而且能及时施做拱部初期支护,开挖工作面稳定性好,施工安全有保障。上下台阶预留核心土法施工示意图:见图4.1。 上下台阶预留核心土施工示意图图一 1 11 2 3上弧形导坑开挖及支护 上核心土开挖及支护 下弧形导坑开挖及支护下核心土开挖 仰拱开挖及支护 3 4 5 超前小导管 隧道掘进方向 1 2 3 4 5 图4.1

公路隧道软弱围岩开挖

控制爆破技术在公路隧道软弱围岩开挖中的应用 姜永源 (福建省第一公路工程公司泉州:362000) 摘要:本文从控制隧道掘进爆破产生的震动效应以减轻爆破震动对软弱围岩的扰动出发,介绍软弱围岩钻爆法施工的爆破设计方法和爆破参数的选定以及在实际施工中推广使用的情况。 关键词:公路隧道、软弱围岩、控制爆破。 一、引言 公路隧道修建中每座隧道或多或少会遇到软弱围岩,而软弱围岩严重影响着隧道的施工进度、施工安全及营运安全,并能产生病害。把控制爆破技术应用至大断面公路隧道软弱围岩的开挖施工中,对开挖进度、爆破方式进行合理控制,并根据围岩性质的改变和量测的数据及时对爆破数据进行调整,达到减少对围岩的扰动,维护围岩的稳定,确保施工安全,实现大断面掘进,提高隧道施工速度有着极为重要的意义。本文结合南同公路深格隧道工程实例,对隧道施工中软弱围岩开挖爆破进行探讨分析。 二、工程概况: 1、工程概况: 南安至同安公路地处南安市与厦门市同安区两辖区的边缘带,线路从南安市翻越深格山岭进入同安境内,设计将翻越山岭段改为隧道,以此改善线型缩短线路长度。该路段线路长为2.218km,其中隧道长1.713m。隧道为单洞双向行车,建筑限界为净宽10.5m、净高5.0m、纵坡+2.5%,设计荷载汽-20,挂-100。 2、工程地质与水文地质概况: 该路段区域属剥蚀残丘地貌单元,山岭陡峻,山体自然坡度为40~60°,谷底的堆积物为冲积层组成,隧道区段地层组成为中生代燕山早期花岗岩侵入活动的产物,以中粗粒花岗岩为主,呈强风化至弱风化状,多分布于隧道进口端。其次是侏罗纪南园阻凝灰岩和第四纪的沉积物,凝灰岩覆盖于花岗岩上部,呈强风化状,多分布于隧道出口端。隧道区域山体地表水有四条水沟汇成一起由东向

富水软弱围岩隧道施工控制要点

富水软弱围岩隧道施工控制要点 目前,花油山隧道4#斜井工区大里程、5#斜井工区小里程掌子面为第三系饱水状态下全、强风化砂砾岩,局部呈土状,为富水软弱围岩,而且埋深浅、断面大,开挖后围岩变形大、易失稳,造成侵限、塌方。 设计对于不良地质开挖时采取的措施:采用大管棚、小导管、超前锚杆如玻璃纤维锚杆等超前加固支护措施,配合双侧壁导坑、CRD、CD、三台阶七步等分部开挖工法;支护采用强支护,是预防塌方的重要措施,大多采用复合式衬砌,即:初期支护+防水板+模筑衬砌,初期支护采取锚喷、网喷、喷混凝土与钢支撑或格栅钢架相结合的支护方法,通常采用“钢筋网片+钢拱架+锚杆+喷射混凝土”锚喷支护体系。 施工过程中,应用新奥法原理“少扰动、早喷锚、快封闭、勤测量”,加强施工过程的管控,控变防塌,控制要点主要有下几个方面: 一、重视围岩变形量测工作,确保量测数据真实、可靠 控制软弱围岩的变形是确保施工过程安全的关键。有一句俗语“软岩靠量测,硬岩靠预报”,软弱围岩开挖后的变形是徐变,到一定数值才会塌方,有一个过程,就要求隧道开挖后,及时、准确的量测围岩变形量,对于变形量超标的围岩及时采取加固措施,防止塌方。 (一)围岩量测主要作用 围岩量测是在隧道施工阶段,使用专门仪器和工具,对围岩变形情况和支护结构工作状态进行的量测,是保证隧道

施工过程中安全性重要的环节。 1.及时提供围岩稳定状态和支护结构安全信息,预见可能发生的险情和事故; 2.验证支护结构效果,是设计支护参数和施工方法结果的反馈,同时为调整支护参数和施工方法提供依据; 3.根据变形数据,经济合理确定不同围岩情况下隧道预留的变形量,防止超欠挖; 4.确定二衬施作时机,水平收敛(拱脚附近7d平均值)小于0.2mm/d,拱部下沉速度小于0.15mm/d,方可施作二衬; 5.积累量测数据,为风险管理分级提供依据; 6.为施工过程的安全和结构长期稳定性评价提供实测数据; 7.监控工程施工对周边环境、临近建筑物安全度的影响。 (二)围岩量测方法 围岩量测主要就是接触式测量和非接触式两种方法,传统原始的接触式测量方法即采用水准仪测拱顶下沉、拉钢尺测水平收敛,对施工干扰大、测量速度慢,目前先进、常用的非接触式方法是全站仪无尺法。要求花油山隧道采用全站仪无尺法进行围岩量测。 全站仪无尺法量测技术:隧道开挖后,及时在基岩埋设观测标,利用固定的工作基点作为参照点,全站仪自由设站连续测设前方观测标相对于固定工作基点的位移变化值,经过计算取得围岩的变形信息。当拱顶下沉、水平收敛速率达

浅埋软弱围岩隧道变形与受力现场监测研究

浅埋软弱围岩隧道变形与受力现场监测研究 发表时间:2019-08-30T11:49:00.463Z 来源:《建筑模拟》2019年第29期作者:李乐乐1,2 闫飞亚1,2 李源禛1,2 [导读] 通过对韶山一号工程隧道进行研究发现隧道围岩总体处于稳定状态,但在上下台阶的开挖施工中,由于受到施工振动的影响,地表会出现一定程度的沉降问题,但在二次衬砌,混凝土强度达到设计要求之后,其沉降会逐渐趋于稳定。 李乐乐1,2 闫飞亚1,2 李源禛1,2 1.武汉港湾工程质量检测有限公司湖北武汉 430040 2.海工结构新材料及维护加固技术湖北省重点实验室湖北武汉 430040 摘要:通过对韶山一号工程隧道进行研究发现隧道围岩总体处于稳定状态,但在上下台阶的开挖施工中,由于受到施工振动的影响,地表会出现一定程度的沉降问题,但在二次衬砌,混凝土强度达到设计要求之后,其沉降会逐渐趋于稳定。而钢支撑的应力值随时间变化曲线经历急剧增大缓慢增大趋于平缓这三个阶段,在拱部承受较大的土压力,为钢支撑的最不利部位;拱顶的压力比拱腰两测点的压力值明显偏大,在浅埋情况下拱顶部位为最不利位置。 关键词:隧道工程;软弱围岩;浅埋;现场监测;变形与受力 1 浅埋软弱围岩隧道现场监控量测技术 1.1 隧道监控量测方法 (1)周边位移监测法,不同的施工方法,运用周边位移监测法时,在对测点进行布置的过程中需要按照不同的位置。 (2)地表下沉监测,在此类隧道施工过程中,避免不了会出现地表下沉情况,因此,为了避免其对施工造成影响,就需要对地表下沉进行监测。 (3)围岩压力量测。在围岩压力量测中,每一级围岩需要选择 3 监测断面,并在其中沿隧道周边埋设三个压力盒,以保证量测的准确性。 2 隧道沉降与变形监测结果 2.1 收敛变形分析 通过对工程中的实际情况进行分析可以发现,在施工的过程中,所产生的水平收敛主要表现在支护强度上。通常情况下,在支护结束之后,由于混凝土还没有达到设计中的强度要求,这个时候就会发生快速的收敛,而当混凝土强度达到要求,支护结构开始发挥作用之后,收敛就不会再继续发生。另外,在施工过程中还发现,如果在开挖过程中所发生的振动比较大,或者是隧道受到山体两侧的压力比较大,所产生的收敛情况就会比较明显,反之,则不会出现明显收敛,也不会发生太大程度变形问题。 2.2 地表下沉分析 在本文所研究的隧道施工中,在开挖工作时,由于受到开挖施工的影响,在掌子面的附近,约7 m左右的范围内,分别出现不均匀沉降的情况。在下台阶开挖的过程中,由于上台阶的洞室地表会受到开挖振动的影响,所以也会出现沉降情况;同时,在整体开挖施工结束之后,在进行二次衬砌时,在混凝土没有达到设计强度之前,也会出现一定的沉降这些在施工中都需要进行针对性控制。另外,在开挖初期阶段,在接近和进人监测断面的时候,地表都会出现一定程度的沉降,而当开挖施工越过监测断面之后,沉降就会逐渐减轻,等到越过断面约 100 m 时,地表沉降基本上就已经固定,不会再继续沉降。 3 隧道受力监测结果 3.1 钢支撑内力计算方法 在对内力进行计算的过程中,首先采用 ZX—210T 表面型钢筋应变计测试钢支撑上下翼缘的应变,然后再利用虎克定律对测点处的应力进行计算,最后根据截面应力分布换算出钢支撑的实际内力。 3.2 结果分析 钢支撑应力值随时间的变化示意图,通过该图能够看出,应力值一共经历了从急剧增大到缓慢增大再到逐渐平稳的过程。第一阶段,为上台阶开挖阶段,该阶段受影响较大,所以应力值变化较快;第二阶段为下台阶开挖阶段,该阶段的应力值扩大速度便逐渐降低了下来;而到了第三阶段,也就是从仰拱施工做到二次衬砌结束,应力值的变化逐渐趋于平稳,并最终稳定。 在本工程中,钢支撑的轴力较大值为297.4kN,分布在隧道拱顶,而拱腰处两测点仅为23.5kN和21.8kN,着说明拱部承受的土压力比较大,在支护过程中应该加强对该部分的控制。另外,通过对钢支撑所承受的弯矩进行分析可发现,其呈对称分布,因此,在对支护进行设计的过程中,一定要确保其拥有足够强的刚度。 4 软弱围岩隧道变形控制技术研究 4.1 控制理念 软弱围岩变形控制理念,主要可归纳为减轻作用在支护结构上的荷载并允许支护结构产生较大变形的方法和为了控制围岩松弛而尽可能早地控制支护变形的方法,即所谓的柔性控制和刚性控制,两者的设计理念是完全不同的。 4.1.1 刚性控制理念 大范围围岩加固:在浅埋地层、地层自重或围岩压力小、地层松软条件下,为减少地面沉降变形或隧道变形,着力改善并加固地层。采用深孔大范围超前注浆或刚性较大的水平旋喷或大管棚超前支护、掌子面超前长锚管加固、提高围岩强度和刚度。 4.1.2 柔性控制理念 该理念是允许围岩变形,但控制围岩产生有害的变形。其结构形式分为多重支护法、可缩式支护法和分阶段综合控制法。它们的基木理念相同,都是容许围岩变形,释放地应力,减低支护压力,同时又能约束围岩松弛和过分变形,保持隧道稳定。但在技术手段上又有各自差异,经济、工期上具有较大差距。 多重支护方法:预留足够允许变形量,在超前锚管或锚杆支护下,开挖后先设置第一层支护,约束围岩的初期变形;而后在距掌子面后方适当位置设置第二层支护,使隧道稳定、从而控制围岩大变形。本方法的概念是允许一次支护发生屈服,设置二次支护后,地压和支护反力应得到平衡。

【精品】浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制 具体介绍铁路双线隧道浅埋偏压软弱围岩的施工工 摘要:本文结合金温铁路麻芝川隧道工程实例,艺和施工控制,为浅埋偏压软弱围岩隧道洞口的施工提供了很好的借鉴。 关键词:铁路隧道浅埋偏压软弱围岩施工控制 1前言随着我国高速铁路发展规模日益扩大,地质条件日趋复杂,标准化的要求不断提高,铁路隧道施工技术要求也就越来越高.一般情况下隧道洞口位置的地质情况较差,主要不良地质表现为顺层偏压、覆盖层薄、土质松散、边坡失稳,围岩体结构承载力差,若处理不当易发生塌方、冒顶、边仰坡塌滑风险事件。麻芝川隧道是金温铁路的重点工程之一,进口地段就属这类情况。 2工程概况 2.1概述麻芝川隧道进口段位于浙江省温州市泽雅镇。隧道起迄里程为 DK168+673~DK171+515,全长2842m。隧道全部位于左偏曲线上,纵坡为单面下坡,坡率为4.0‰。按新奥法设计,采用复合式衬砌。 2。2工程地质麻芝川隧道地处剥蚀丘陵区,地形起伏,植被茂盛,山体自然坡度25~45°,局部可见基岩裸露。进出口均有混凝土或沥青路面的乡村公路通达。

隧道区地层分布较简单,基岩多有出露。地表出露第四系人工填土层Qml、第四系残坡积层Qel+dl,下伏侏罗系上统西山头组J3x流纹质玻屑凝灰岩.

地下水为松散岩类孔隙水和火山碎石屑岩类基岩裂隙水.区内地表流水活跃,地下水不发育,影响隧道的地下水主要为构造裂隙水。隧道区地处副热带季风气候区,气候温和,雨量充沛,四季分明.雨量充沛,年降雨量达1723。0毫米,4~9月最集中。化学环境作用等级为H2,地震动峰值加速度为0.05g,地震动反应谱特征周期为0.35s。隧道进口进口工程特点 2。3隧道进口工程特点从现场看,隧道进口进洞条件差,边仰坡的坡度陡峭。进口洞口段处于浅埋偏压严重,位于第四系残积层内。进口段表层为含砾粉质黏土,硬塑,厚0~2.5m,下伏基岩流纹质玻屑凝灰岩,强风化厚1~7。5m,下为弱风化,岩质较硬,裂隙发育,岩体破碎。地下水为基岩裂隙水,不发育。洞口浅埋段全长77m,埋深0~18m。因此,如何根据地形、围岩地质的基本特性,确定合理、快捷的施工方法,顺利穿过偏压、浅埋、破碎段是本隧道施工的关键。麻芝川隧道进口平面布置图见图1所示。图1麻芝川隧道进口平面布置图3施工总体方案隧道明洞采用明挖法施工,暗洞采用新奥法施工,进洞采用套拱进洞。隧道半明半暗部分采用套拱、超前支护等措施减小偏压力.超前支护采用108mm超前管棚注浆支护。明洞采用明挖法施工。暗洞软弱围岩地段坚持“管超前、严注浆、弱爆破、短进尺、强支护、早封闭、勤量测、紧衬砌”的施工原则。暗洞V级围岩采用三台阶四步法开挖。4浅埋偏压破碎段施工方法浅埋偏压破碎段施工方法破碎浅埋偏压隧道进洞施工技术以新奥法原理为依据,通过人工配合机械开挖及控制爆破,减少对岩体的扰动。在进洞前完成洞口段地表处理、超前支护、锚喷钢架支护、二次衬砌受力体系转换.4。1地表处理

软弱围岩隧道施工控制措施

龙源期刊网 https://www.wendangku.net/doc/2915263945.html, 软弱围岩隧道施工控制措施 作者:魏巍 来源:《中国应急管理科学》2018年第09期 摘要:目前我国在经济发展,基础建设等方面取得了很大的成就,尤其在高铁建设中技术、里程数,安全系数方面都是超前;随着我国提出修建五纵三横铁路网,给国人出行最方便,最快捷的方式,高铁的发展也是突飞猛进;在技术日益成熟的修建中,由于我国幅员辽阔,地质条件复杂,隧道施工和设计依然存在不一,在施工建设中的安全系数降低,避免不必要的隐患灾害,确保隧道工程能安全顺利完成,需要在施工中过程管控,不触碰技术红线,起到技术指导施工。 关键字:软弱围岩;坍塌;注浆加固;应力释放 1 软弱围岩施工难点 一般将抗压强度低于30MPa的围岩称为软弱围岩,这种围岩透水性较差,岩体较松散;在外界力的作用下容易发生掉落、垮塌现象,软弱围岩出现在浅埋地段、断层破碎地段等施工难度加大。隧道开挖在初期支护后发生变形,钢架扭曲和混凝土掉落;如果支护结构承受的荷载很大,采用注浆方是松散岩体形成整体;软弱围岩施工本就具有变形大,不稳定特性,在部分地段双侧变形会达到1m多,有些施做后的二次衬砌也会发生开裂和掉块,初期支护施工完后钢架也会发生扭曲、侵線,这就需要把钢架拆除后重新支护,施工的难度加大,安全系数降低。 2 软弱围岩施工采取措施 在软弱围岩施工中掌子面发生坍塌事故较多,最终导致施工人员以及施工机械设备损毁,并影响施工循环时间,是岩体暴露时间过长,无法在短时间内施做初期支护,所以在掌子面开挖过程中和开挖后控制变形和预防坍塌安全技术常见有以下几种: 2.1 加强超前地质预报工作,判明地质情况,采取相应的处治措施。 2.2 根据围岩软弱破碎情况,采用双侧壁导坑法或预留核心土开挖,保证掌子面的稳定;开挖前对掌子面围岩进行初喷封闭,先前施做超前支护并注浆,以确保施工安全。 2.3 施工时严格掌握炮眼数量、深度和装药量,尽量减少爆破对围岩的震动,开挖进尺按照设计参数一榀间距开挖,初期支护喷砼后要及时对初支进行径向注浆并封闭成环,待应力释放根据量测速率进行衬砌施做。 2.4 缩短各施工工序之间的循环时间尽量衔接合理,尽快地使全断面初期支护封闭成环,以使能够承受较大压力,减少支护变形;

浅谈软弱围岩隧道的施工技术

浅谈软弱围岩隧道的施工技术 摘要:科技的进步,生产管理水平的持续上升,对不断提升我国修筑长大软弱 围岩隧道的能力具有十分重要的作用,基于此,文章主要对软岩隧道地质工程特 征进行了分析,然后研究了软岩隧道的详细施工方法,最后剖析了软岩隧道施工 过程中的重点环节的管控措施,仅供参考。 关键词:软弱围岩;隧道;施工技术 前言: 攻克软岩隧道施工的核心及前提是,结合实际工程情况制定出最佳方案。基 于此,文章将结合实际工程情况,对对软岩隧道地质工程特征进行了分析,然后 研究了软岩隧道的详细施工方法,最后剖析了软岩隧道施工过程中的重点环节的 管控措施,仅供参考。 1特征 1.1地质特征分析 第四系全新的坡残积土部分、中更新的坡残积土部分、更新统的坡残积土部分,即软岩。河湖岸、淤积层、溶洞充填物、人工杂填土、及池塘冲积等均为软 岩的范围。通常具备不稳定的特征:内磨擦角小、蠕变、湿陷等。 1.2工程特性阐述 1.2.1通常使用的施工方式是化大为小,分部施工法,主要的原因是软岩自稳 时长较短。基于此,隧道施工程序相对复杂,为了确保工程质量就会相应的降低 施工速度,促使工程进度缓慢,所以造成矛盾不断涌现。 1.2.2软岩还具备易坍塌溜滑等特征,其主要原因是软岩的稳定性相对较差。 大范围牵连性滑动通常极容易出现在洞口段拉槽施工中,所以很难靠近仰坡,难 以进洞。隧道挖掘工程属于洞内作业的一种,在挖掘期间隧道坍塌极可能在局部 力量减弱的情况发生,这增加了作业的难度及施工成本,对作业人员的生命财产 安全造成了极大的威胁。 1.2.3由于软岩通常所处的地带地质变化十分复杂,实地勘察一次性成形是不 可能的,所以勘察人员应结合具体施工需求,拟定出合理的工程施工方案及工程 流程,同时结合实际施工情况进行适当地改进,不要被传统模式所限制, 1.2.4扰动后的软岩,自稳水平会降低,松动圈会持续扩大。将慢慢增加围岩 压力,再次稳定的时长比较长。承受围岩压力的支护及衬砌结构,极容易引发各 种事故及病害,如支护结构变形、衬砌结构开裂等,与此同时还会随着地表下沉,出现失水的环境问题等等。 1.2.5施工风险比较大,所以可能给所有作业人员带来诸多心理负担,所以施 工作业前期,有必要对所有作业人员进行岗前培训,以确保每一位相关人员的业 务素质都有所提升。 2施工方法研究 2.1相关洞口段施工研究 在洞口段施工期间,应注意对附近碎岩的处理,也就是说根据原有的地质条件、地下水位实施喷砼封闭施工及仰坡的锚杆挂网施工,这样才可有效加固地下 水的发育地段。 2.2相关正洞施工研究

浅埋隧道软弱围岩段施工控制技术初探

浅埋隧道软弱围岩段施工控制技术初探 由于地质条件和施工条件的不同,导致软弱浅埋隧道也略有不同,而在隧道施工中最关键的部分便是如何高效率的完成浅埋隧道软弱围岩段施工,除了较为完善的施工方法还要有丰富的经验。由于围岩大变形和支护结构侵限等诸多现象给二次衬砌的实施带来了负面影响,现相关人员积极探索分析隧道围岩变形控制的相关一系列措施。此文观点仅作为施工过程中的一些技术参考。 标签:浅埋;隧道;软弱围岩;变形控制 目前中国在工程设计阶段和可行性研究方面的风险因素分析不全面,因此推测的风险评估等级也不够准确,这对于工程的质量造成了极大的影响,为此要加深对软弱浅埋隧道施工的分析,结合围岩大变形机理,有针对性的进行有效的控制和优化。本文结合某铁道施工地经验,详细介绍了相关治理措施。 1、工程概况 某铁路隧道穿越了被侵蚀的山丘陵区,呈东西延展分布,有些岩体风化现象较为严重,围岩松散破碎。隧道全长6984米,开掘宽度13米,出口为246米,呈Ⅱ类软弱围岩段,埋深大致20多米,地处南亚热带,年平均气温21.7摄氏度,年平均降水量达到了1300毫米,地下水大多为基岩裂隙水,有侵蚀性。 2、软弱围岩的变形机理 2.1机理 围岩大变形即软弱围岩隧道中的常规支护围岩发生塑性破坏,其变形没有被有效地约束,变形量远远超过了规范允许范围之内的变形量,或远超过规范允许变形量的变化趋势,或者是在隧道完成二次衬砌较长时期以后,边墙、拱顶、拱角破裂或隆起等现象隧道地质环境不同会影响围岩发生变形的位置及其破坏程度,最终所导致的影响范围也会不同。对分析和控制隧道围岩来说,围岩变形发生的环境及约束条件,和力学机理都起着不容忽视的作用。 2.2特点及分类 根据不同的环境条件或其他影响因素围岩的变形可以大致分为三种形式,其中受围岩岩性控制的变形包括软弱的泥质页岩、泥灰岩和砂质泥岩等有膨胀性的围岩等等。软弱浅埋隧道的松散围岩形成的压力作用于地下工程支护,在被开挖后围岩重新分布,一些围岩的结构表面会失去强度,成为母岩的分离块,然后在重力作用下发生塌滑,软岩在性变应力较大时会逐渐形成较大的围岩变形。 2.3原因分析

相关文档