文档库 最新最全的文档下载
当前位置:文档库 › 专题二函数概念&基本初等函数-2.2函数的基本性质-高三数学一轮复习讲义

专题二函数概念&基本初等函数-2.2函数的基本性质-高三数学一轮复习讲义

专题二函数概念&基本初等函数-2.2函数的基本性质-高三数学一轮复习讲义
专题二函数概念&基本初等函数-2.2函数的基本性质-高三数学一轮复习讲义

专题2-2 函数的基本性质

单调性与最值

内容

函数的单调性、最大(小)值及其几何意义

知识点

1、单调函数

2、单调区间

函数f(x)在区间D上为增(减)函数,那么函数在D上具有单调性,

即D是f(x)的一个单调区间

3、函数最值

易错点

1、“单调区间是A”与“在区间B上单调”:A是“最大”的单调区间,B是A的一个子集;如:y=x2,单调增区间[0,+∞),而在(5,+∞)上单调增

2、不同区间(不连续)的单调性相同,区间不能写成并集形式。如:1 x

例1 函数定义域R且为增函数的是( )

A y=e-x

B y=x3

C y=ln x

D y=|x|【答案】B

【分析】

【详解】

【考核】函数的图像、单调性、定义域

例2 函数

1,0

()0,0

1,0

x

f x x

x

>

?

?

==

?

?-<

?

,2

()(1)

g x x f x

=-的递减区间( )

A[0,+∞) B [0,1) C (-∞,1) D (-1,1)【答案】B

【分析】数形结合 【详解】

【考核】分段函数、单调区间

例3 函数2

()24f x x x =-++,则当(0,3]x ∈时()f x 的最大值( ) A 4

B 1

C 3

D 5

【答案】 D 【分析】 【详解】

【考核】函数最值

例4 函数2

2()log (32)f x x x =-+的递减区间( )

A (-∞,1)

B (2,+∞)

C (-∞,32 )

D (3

2

,+∞) 【答案】 A

【分析】确定2

()32g x x x =-+的单调性,2()log f x x =的单调性,判断复合函数单调性

【详解】1、3(,)2

()3(,)2g x ?-∞↓????+∞↑??,外层函数真数为+:()0(,1)(2,)g x >?-∞+∞或,而

2()log f x x =在定义域内↑,∴(,1)-∞↓(2,)+∞↑【结合函数图像】

【考核】复合函数的单调性

例5 已知奇函数()f x 在R 上是增函数,()()g x xf x =。若2(log 5.1)a g =-,

0.8

(2)b g =,(3)c g =,则a 、b 、c 的大小( )

A a b c <<

B c b a <<

C b a c <<

D b c a <<

【答案】 C

【分析】判断log 25.1、20.8 、3的大小关系,根据f(x )的性质得到g(x )的性质判断a 、b 、

c

大小

【详解】∵ 20.8 < 2=log 24 < log 25.1 < 3=log 28

而()()()()()g x x f x x f x xf x g x -=--=--==即()g x 为偶函数

∴ a=22(log 5.1)(log 5.1)g g -=

()f x 奇函数且R 上单调增:0,()0x f x >>,且'()0f x >

x > 0,'()()'()0g x f x xf x =+>

∴ x > 0,()g x ↑:g(20.8) < g(log 25.1) < g(3)

【考核】奇偶性、单调性比较函数值大小

训练:函数2

()f x x mx n =++,且(2)f x +是偶函数,57(1),(),()22

f f f 大小比较( )

A 75()(1)()

22f f f <<

B 75(1)()()2

2f f f <<

C 57()(1)()

2

2f f f <<

D 75()()(1)22

f f f <<

【注意】(2)f x +是偶函数:(2)(2)f x f x +=-+

例6 若函数6,2

()3log ,2

a x x f x x x -+≤?=?+>?(a > 0且a ≠ 1)的值域是[4,+∞),则实数a 的取值范围

_______

【答案】 1 < a ≤ 2

【分析】只需要保证x > 2时,3+log a x ≥ 4恒成立

【详解】3+log a x ≥ 4恒成立,log a x 在x > 2单调增

∴ a >1有x ≥ a 恒成立 综上:1 < a ≤ 2

【考核】单调性求参数范围

训练 函数12

log ,2()23,2

x x x f x a a x ≥??=??- 0且a ≠1)的值域R ,则实数a 的取值范围_____

训练 函数()1x

f x x

=

-( ) A (-∞,1)∪(1,+∞)是增函数 B (-∞,1)∪(1,+∞)是减函数 C (-∞,1)和(1,+∞)是增函数 D (-∞,1)和(1,+∞)是减函数

总结

1、单调性判断及区间求法

(1) 定义法:设元、做差、变形、符号判断、结论 (2) 图像法:图像的升降情况

(3) 导数法:导函数在对应区间的符号

(4) 基本初等函数和差形式:增+增=增,增-减=增,减+减=减,减-增=减 (5) 复合函数:各层减函数的个数为偶数--增函数,各层减函数的个数为奇

数--减函数

2、单调性处理相关问题

(1) 比较函数值大小:构造函数--由函数性质将自变量值转化到同一单调区

间--比较大小【自变量值要在定义域内】 (2) 求参数范围或值:参数作为已知--函数图像(单调性)--确定单调区间--与

已知单调区间比较

(3) 不等式问题:同一函数下,不同函数值对应的自变量值大小比较【保证

自变量在同一单调区间内】

奇偶性

内容

结合实际函数,理解函数奇偶性的含义 知识点

1、奇函数()f x 在原点处有意义,则(0)0f =

2、偶函数()f x ,则()(||)f x f x =

3、,()0x D f x ∈=且D 关于原点对称的非空数集,既是奇又是偶函数

4、两个对称区间上:奇函数单调性相同,偶函数单调性相反 易错点

1、奇偶性判断时,先要判断定义域区间是否关于原点对称

2、分段函数奇偶性:不要将局部奇偶性看成函数的奇偶性

例1 函数()f x 在(-2,2)上为奇函数,当(0,2)x ∈时,()21x

f x =-则21(lo

g )3

f 的值( )

A -2

B -23

C 7

D

3

2 -1

【答案】 A

【分析】()()f x f x -=-,而2

1

2log 03

-<<,应用奇函数定义把自变量值转化到已知区间 【详解】22211(log )(log )(log 3)33

f f f =--=-,20lo

g 32<<

∴ 2log 3

2(log 3)2

1312f =-=-=,即221

(log )(log 3)23

f f =-=-

【考核】奇函数定义

例2 函数()f x =的奇偶性______

【答案】 偶函数 【分析】奇偶性定义验证

【详解】()()f x f x -===

【考核】奇偶性定义

例3 ()f x 是奇函数,2

(0,),()2x f x x x ∈+∞=-+,若(,0)x ∈-∞,则()f x =_____ 【答案】 x 2+2x

【分析】利用()()f x f x -=得到对称区间解析式

【详解】令(,0)x ∈-∞,22

()()2()2f x x x x x -=--+-=--

2()()2f x f x x x =--=+

【考核】奇函数定义求对称区间解析式

例4 函数3()ln(1)x

f x e ax =++为偶函数,则a=______

【答案】 -3

2

【分析】利用()()f x f x -=得到方程

【详解】3()

3ln(1)()ln(1)x x e

a x e ax -++-=++

23a =-,3

2

a =-

【考核】偶函数定义求参数

训练 函数2

(1)()

()x x a f x x ++=

为奇函数,则a=______

例5 以下函数中,在定义域内既是奇函数又是增函数的是( ) A y=1x

B y=lg 1+x 1-x

C y=tan x

D y=2x

【答案】 B

【分析】1、定义域是否关于原点对称,图像是否对称;2、数形结合判断增减性

【详解】1、定义域都是对称的;2、A 、B 、C 都是奇函数,D 非奇非偶;3、如下图知:只有B 在定义域内单调增,而A 、C 在特定区间内有单调性,整个定义域中不具有单调性

【考核】奇偶性、单调性

训练 判断函数()(f x x =- 总结

1、判断奇偶性方法

(1) 定义法

① 定义域是否关于原点对称 ② ()f x 与()f x -的关系 (2) 图像法

① 关于原点对称,奇函数 ② 关于y 轴对称,偶函数

(3) 性质:奇+奇=奇,偶+偶=偶;奇×奇=偶,偶×偶=偶,奇×偶=奇 2、奇偶性求解析式

待求区间的自变量转化到已知区间,利用奇偶性求解析式或构造方程,得到

()f x 的解析式 3、奇偶性求参数

待定系数法:根据()()0f x f x -±=得到方程,求出参数

周期性

内容

1、函数周期性、最小正周期

2、判断、应用简单函数的周期性 知识点

1、函数()y f x =,0T ?≠,x I ?∈,都有()()f T x f x +=,则()y f x =为

周期函数,且T 为函数的周期

2、周期函数()y f x =所有周期中的最小正数,叫做()f x 的最小正周期

例1 函数23,0

()(2),0

x x x f x f x x ?-≥=?+

【答案】 2

【分析】利用周期性将自变量转化到已知解析式的区间内 【详解】0,()(2)x f x f x <=+知:

(9)(1)(1)2f f f -=-==

【考核】利用周期性转化自变量的区间

例2 ()f x 在R 上周期为2的函数,在[-1,1]上1,10()2,011

ax x f x bx x x +-≤

=+?≤≤?+?,a 、b ∈R ,若

13

()()22

f f =,则a+3b=_____ 【答案】 -10

【分析】利用周期性得到方程组 【详解】在R 上有()(2)f x f x =+

131()()()222(1)(1)f f f f f ?==-???-=??4

1332

112b a b a ?+=-+????-+=+???24a b =??

=-?

【考核】周期性求参数

例 3 ()f x 在R 上的奇函数,(1)f x +是偶函数,当(2,4)x ∈,()|3|f x x =-,则

(1)(2)(3)(4)f f f f +++=______

【答案】 0

【分析】奇偶性得到函数的周期,应用周期求值

【详解】()()(1)(1)f x f x f x f x -=-??

+=-?可得:()()

()(2)

f x f x f x f x -=-??=-?

()(2)(2)f x f x f x =-=--两边x 同时减2,(2)(4)f x f x -=--

∴()(4)f x f x =+即T=4

(1)(1)(3)f f f =--=- (2)(2)(2)f f f =--=-

奇函数在R 上,(4)(0)0f f ==

【考核】结合奇偶性、周期性求值

训练 ()f x 在R 上的偶函数,若对于0x ≥,都有(2)()f x f x +=,且当[0,2)x ∈时

2()log (1)f x x =+,则(2019)(2020)f f -+=______

总结:

1、()()f T x f x +=(T ≠0)成立,函数为周期函数,经常结合其它函数性质出现

2、周期性:局部性质得到函数整体性质;T 是周期则kT 也是周期(k ∈Z 且k ≠0)

3、归纳

(1) ()()()f x a f x b a b +=+≠,则||a b -是()f x 的一个周期

(2) ()()f x a f x +=-,1

()()

f x a f x +=±

,则2|a |是()f x 的一个周期 (3) ()f x 关于x=a 、x=b 对称,则()f x 为周期函数且2|a -b |是它的一个周期 (4) ()f x 关于(a ,0)、(b ,0)对称,则()f x 为周期函数且2|a -b |是它的一个周期 (5) ()f x 关于(a ,0)、x=b 对称,则()f x 为周期函数且4|a -b |是它的一个周期

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

函数的概念和性质

专题讲座 高中数学“函数的概念与性质”教学研究 李梁北京市西城区教育研修学院 函数就是中学数学中的重点内容,它就是描述变量之间依赖关系的重要数学模型、 本专题内容由四部分构成:关于函数内容的深层理解;函数概念与性质的教学建议;学 生学习中常见的错误分析与解决策略;学生学习目标检测分析、 研究函数问题通常有两条主线:一就是对函数性质作一般性的研究,二就是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数、研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等、 一、关于函数内容的深层理解 (一)函数概念的发展史简述 数学史角度:早期函数概念(Descartes,1596—1650引入坐标系创立解析几 何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716引入 常量、变量、参变量等概念;Euler引入函数符号,并称变量的函数就是一个解析表达式[代数角度];Dirichlet,1805—1859提出就是与之间的一种对应的观点[对应关系角度] ;Hausdorff在《集合论纲要》中用“序偶”来定义函数[集合论角度]、 Dirichlet:认为怎样去建立与之间的关系无关紧要,她拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数、”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义)、 Veblen,1880-1960用“集合”与“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量就是数”的限制,变量可以就是数,也可以就是其它对象、 (二)初高中函数概念的区别与联系 1.初中函数概念:

二次函数综合题经典习题(含答案及基本讲解)

二次函数综合题训练题型集合 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y+ =与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间 的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由. 2、如图2,已知二次函数24 y ax x c =-+的图像经过点A和点B.(1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离 E B A C P 图1 O x y D x y O 3 -9 -1 -1 A B 图2

P B A C O x y Q 图3 3、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式. (2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式; ② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 7、(07海南中考)如图7,直线43 4 +- =x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B . (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒 2 3 个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C → A 的路线运动, 当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S . ①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由; ②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = . C A M y B O x C A M y B O x C A M y B O x

一次函数概念图像及性质

一次函数概念、图像及性质 【教学目标】 1. 了解认识一次函数定义、图像,并能根据函数解析式画出图像 2. 理解一次函数的截距概念,会根据直线的表达式指出它在y 轴上的截距 3. 理解、掌握一次函数性质,熟悉图像所经过的象限及y 随x 变化而变化的情况 4. 能运用一次函数的图像及性质解综合型问题 【教学重难点】 1. 根据一次函数的图像确定解析式 2. 掌握一次函数性质,并能灵活运用于解题 3. 能结合一次函数知识点灵活求解综合型问题 【教学内容】 ★ 知识梳理 一、概念 定义:解析式形如)0( ≠+=k b kx y 的函数叫做一次函数 二、图像 一次函数的图象满足:(1)形状是一条直线;(2)始终经过(0 , b )和(k b - , 0)两点 三、截距 定义:直线)0( ≠+=k b kx y 与y 轴的交点坐标是) , 0 (b ,截距是b 四、性质 1. 一次函数)0( ≠+=k b kx y ,当0>k 时,函数值y 随自变量x 的值增大而增大;当0k ,且0>b 时,直线)0( ≠+=k b kx y 经过第一、二、三象限 (2)当0>k ,且0b 时,直线)0( ≠+=k b kx y 经过第一、二、四象限 (4)当0

一、概念 例1. 下列关于x 的函数中,是一次函数的是( ) (A )1)1(32+-=x y (B )x x y 1+ = (C )x y 3-= (D )x y 5-= 例2. 下列各式中,y 与x 成正比例关系的是 ;成一次函数关系的是 (1)x y 43= (2)x y 2 2-= (3)x y 29-= (4)x y 4= (5)52=+xy (6)765=+y x 例3. 下列说法中,不正确的是( ) (A )一次函数不一定是正比例函数 (B )不是一次函数就一定不是正比例函数 (C )正比例函数是特殊的一次函数 (D )不是正比例函数不一定不是一次函数 例4. 下列说法不正确的是( ) (A )在32--=x y 中,y 是x 的正比例函数 (B )在x y 21-=中,y 与x 成正比例 (C )在1=xy 中,y 与x 1成正比例 (D )在圆的面积公式2r S π=中,S 与2r 成正比例 例5. 已知b kx y +=,当3-=x 时,0=y ;当1=x 时,4=y ,求k 、b 的值

函数的概念及性质

函数的概念及性质 概览:概念,表示方法,图象和性质 1. 概念 函数的定义:传统定义(初中的),近代定义。自变量,对应法则,定义域,值域〖两域都是集合,回答时要正确表示。〗 对应法则f 是函数的核心,是对自变量的“操作”,如)(x f 是对x 进行“操作”,而)(2x f 是对2x 进行“操作”,)2(f 是对2进行“操作” 函数的三要素,或两要素:定义域、对应法则 判定两个函数是否相同。〖定义域和值域分别相同的两个函数不一定是同一函数,例x y x y 2,==;又如])1,0[(,2∈==x x y x y 定义域都取〗 区间 定义,名称,符号,几何(数轴)表示 映射 定义,符号,与函数的异同 2. 函数的表示方法 列表法,图象法,解析法 分段函数 定义域、值域、最值 求函数解析式的常用方法:配凑,换元,待定系数,函数方程(消去法) 3. 函数的图象 作图的步骤:定义域,列表,描点,连线〖注意抓住特征点,如边界点,与两轴的交点等;边界点注意空心/实心〗 带有绝对值符号的函数 定义域,分段脱去绝对值,作图 4. 函数的性质 求定义域 分式,偶次根式,对数的真数和底数,复合函数,实际问题中的实际意义。 求值域 由定义域和对应法则决定,故应先考虑定义域。方法:观察分析,例 函数211)(x x f +=;配方;换元;判别式;单调性;数形结合(图象);基本不等式;反求法(反函数法)等。 单调性 对于定义域内的某个区间而言。 单调区间若不含端点,则必须写成开区间,若含端点,则写成闭区间,通常写成开区间也可。 一个函数可能有多个独立的单调区间,应用逗号相隔回答,不用并集,而函数的两域都是整体性的集合,若有必要则要用并集回答。 图象特征:从左到右升/降。 证明步骤:设值,作差,定号,作答。 判断函数单调性的有关规律。 如增加增得增,减加减得减;注意:增乘增未必增,减乘减未必减(还要看各自的函数值是否同正或同负) 奇偶性

函数概念与性质练习题目大全

函数概念与性质练习题大全 函数定义域 1、函数x x x y +-=)1(的定义域为 A . {}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x 2、函数x x y +-=1的定义域为 A . {}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x 3、若函数)(x f y =的定义域是[]2,0,则函数1 ) 2()(-= x x f x g 的定义域是 A . []1,0 B .[)1,0 C .[)(]4,11,0 D .()1,0 4、函数的定义域为)4323ln(1 )(22+--++-= x x x x x x f A . (][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 - 5、函数)20(3)(≤<=x x f x 的反函数的定义域为 A . ()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,9 6、函数4 1lg )(--=x x x f 的定义域为 A . ()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41, 7、函数2 1lg )(x x f -=的定义域为 A . []1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11, 8、已知函数 x x f -= 11)(的定义域为M ,)1ln() (x x g +=的定义域为N ,则=N M A . {}1->x x B .{}1

二次函数的基本概念的理解与应用

二次函数概念 学习要求 1.熟练掌握二次函数的有关概念. 2.熟练掌握二次函数y =ax 2的性质和图象. 综合、运用、诊断 一、填空题 1.抛物线y =ax 2的顶点是______,对称轴是______.当a >0时,抛物线的开口向______;当a <0时,抛物线的开口向______. 2.抛物线y =ax 2,|a |越大则抛物线的开口就______,|a |越小则抛物线的开口就______. 3.二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内. (1)y =2x 2如图( );(2)22 1x y = 如图( );(3)y =-x 2 如图( ); (4)231x y -=如图( );(5)29 1 x y =如图( );(6)291x y -=如图( ). 4.已知函数,2 3 2x y -=不画图象,回答下列各题. (1)开口方向______;(2)对称轴______;(3)顶点坐标______;(4)当x ≥0时,y 随x 的增大而______; (5)当x ______时,y =0;(6)当x ______时,函数y 的最______值是______. 5.在下列函数中①y =-2x 2;②y =-2x +1;③y =x ;④y =x 2,回答: (1)______的图象是直线,______的图象是抛物线. (2)函数______y 随着x 的增大而增大.函数______y 随着x 的增大而减小. (3)函数______的图象关于y 轴对称.函数______的图象关于原点对称. (4)函数______有最大值为______.函数______有最小值为______. 6.已知函数y =ax 2+bx +c (a ,b ,c 是常数).(1)若它是二次函数,则系数应满足条件______. (2)若它是一次函数,则系数应满足条件______.(3)若它是正比例函数,则系数应满足条件______. 7.已知函数y =(m 2-3m )1 22--m m x 的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______, 对称轴方程为______,开口______. 9.已知函数y =m 2 22+-m m x +(m -2)x . (1)若它是二次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. (2)若它是一次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. 9.已知函数y =m m m x +2,则当m =______时它的图象是抛物线;当m =______时,抛物线的开口向上;当m =______时抛物线的开口向下. 二、选择题 110.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( ) A .y =x (x +1) B .xy =1 C .y =2x 2-2(x +1)2 D .132+=x y 11.在二次函数①y =3x 2;②223 4 ;32x y x y == ③中,图象在同一水平线上的开口大小顺序用题号表示应该为 A .①>②>③ B .①>③>② C .②>③>① D .②>①>③ 12.对于抛物线y =ax 2,下列说法中正确的是( ) A .a 越大,抛物线开口越大 B .a 越小,抛物线开口越大 C .|a |越大,抛物线开口越大 D .|a |越小,抛物线开口越大 13.下列说法中错误的是( ) A .在函数y =-x 2中,当x =0时y 有最大值0

函数概念及其基本性质

第二章函数概念与基本初等函数 I 一. 课标要求:函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重 要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的 三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景. 理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用. 通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 1 10.通过实例,了解幂函数的概念,结合五种具体函数y = x,y= x3,y=x-1,y = x2的图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3.函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法. 4.教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维

高中数学函数的概念与性质(T)

函数的概念与性质 【知识要点】 1.函数的概念及函数的三要素 2.怎么判断函数的单调性 3.怎么判断函数的奇偶性 【典型例题】 例1.求下列函数的解析式,并注明定义域. (1)若x x x f 2)1(+=-,求)(x f . (2)若31 )1(44-+=+x x x x f ,求)(x f . 例2.求下列函数的值域. (1))1(1 3 2≥++=x x x y (2)1)(--=x x x f (3)232--=x x y (4)246 (),[1,4]1 x x f x x x ++= ∈+

例3.已知函数f (x )=m (x +x 1)的图象与函数h (x )=41(x +x 1 )+2的图象关于点A (0,1)对称. (1)求m 的值; (2)若g (x )=f (x )+ x a 4在区间(0,2]上为减函数,求实数a 的取值范围. 例4.判断下列函数的奇偶性 (1)334)(2-+-=x x x f (2)x x x x f -+?-=11)1()( 例5.设定义在[-2,2]上的偶函数,)(x f 在区间[0,2]上单调递减,若)()1(m f m f <-,求实为数m 的取值范围。

例6.已知函数f (x )=x + x p +m (p ≠0)是奇函数. (1)求m 的值. (2)当x ∈[1,2]时,求f (x )的最大值和最小值. 例7.(2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值; (2)判断f (x )的奇偶性并证明; (3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.

1.1 函数的概念及其基本性质

第一章 函数 1.1 函数的概念及其基本性质(4课时) 教学要求:理解集合、区间、邻域及映射的概念,理解函数的概念,掌握函数的表示方法,了解函数的基本性质,理解复合函数及分段函数的概念,了解反函数及隐函数的概念,掌握基本初等函数的性质及图形,会建立简单应用问题中的函数关系式。 教学重点难点:重点是理解集合、映射及函数的概念;难点是理解反函数及隐函数的概念。 教学过程: 一、集合及其运算 1、集合概念 (1) 什么是集合? 所谓集合是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素. (2) 集合的表示法 a 列举法:就是把集合的元素一一列举出来表示.由元素n a a a ,,21组成的集合A,可表示成 A={n a a a ,,21} b 描述法:若集合M 是由具有某种性质P 的元素x 的全体所组成,就可表示成 }|{P x x M 具有性质= (3) 集合元素的三大特性:确定性、互异性、无序性. (4) 元素与集合,集合与集合之间的关系:属于、包含、子集、真子集、空集. 2、集合的运算 (1) 并集 {| }A B x x A x B ?=∈∈或;(2) 交集 {| } A B x x A x B ?=∈∈且 (3) 差集 \{| }A B x x A x B =∈?但 (4) 全集与补集(或余集) 全集用I 表示,称A I \为A 的补集记作C A . 即 \{| }C A I A x x I x A ==∈?但 集合的并、交、补满足下列法则: (1) 交换律:A B B A ?=?,A B B A ?=? (2) 结合律:)()(C B A C B A ??=??,)()(C B A C B A ??=?? (3) 分配律:)()()(C B C A C B A ???=??, )()()(C B C A C B A ???=?? (4) 对偶律:C C C B A B A ?=?)(,C C C B A B A ?=?)( (5)幂等律:A A A ?=A A A ?=;(6)吸收律:A A ?Φ=A A ?Φ= 两个集合的直积或笛卡儿乘积 {(,)| }A B x y x A y B ?=∈∈ 且 二、区间与邻域 1、映射与领域 区间:开区间 ),(b a 、闭区间 ],[b a 、半开半闭区间],(b a ,),[b a 、有限,无限区间. 邻域:)(a U 或}|{),(δδδ+<<-=a x a x a U a :邻域的中心,δ:邻域的半径 去心邻域: }||0|{),(δδ<-<=a x x a U 左δ邻域),(a a δ-、右δ邻域),(δ-a a . 2、映射概念 定义 设,A B 是两个非空集合,如果存在一个法则f ,使得对A 中的每一个元素x .按法则f ,在B 中有唯一确定的元素y 与之对应,则称f 为从A 到B 的映射,记作 f B →:A 或,f y x A →∈:x| 其中,并y 称为元素x 的像,记作)(x f ,即 )(x f y =,而x 称为元素y 的一个原像。 映射f 的定义域:f D A =,映射f 的值域:(){()|}f R f A f x x A ==∈

(人教版)北京市必修第一册第三单元《函数概念与性质》测试题(答案解析)

一、选择题 1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2- B .ln 2 C .0 D .1 2.已知定义域为R 的函数()f x 在[)2,+∞单调递减,且(4)()0f x f x -+=,则使得不等式( ) 2 (1)0f x x f x +++<成立的实数x 的取值范围是( ) A .31x -<< B .1x <-或3x > C .3x <-或1x > D .1x ≠- 3.已知0.3 1()2 a =, 12 log 0.3b =, 0.30.3c =,则a b c ,,的大小关系是( ) A .a b c << B .c a b << C .a c b << D .b c a << 4.函数2()1sin 12x f x x ?? =- ?+?? 的图象大致形状为( ). A . B . C . D . 5.奇函数()f x 在(0)+∞, 内单调递减且(2)0f =,则不等式(1)()0x f x +<的解集为( ) A .() ()(),21,02,-∞--+∞ B .() ()2,12,--+∞ C .()(),22,-∞-+∞ D .()()(),21,00,2-∞-- 6.已知函数()() 22 6 5m m m f x x -=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠, 满足 ()()1212 0f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( ) A .恒大于0 B .恒小于0 C .等于0 D .无法判断 7.已知函数(1)f x +为偶函数,()f x 在区间[1,)+∞上单调递增,则满足不等式 (21)(3)f x f x ->的x 的解集是( )

最全函数概念及基本性质知识点总结及经典例题

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f

高一函数的概念与性质

函数概念与性质 一、选择题(每小题5分,共50分) 1、下列哪组中的两个函数是同一函数 (A )2y =与y x = (B )3y =与y x = (C )y =2y = (D )y =2 x y x = 2、下列集合A 到集合B 的对应f 是映射的是 (A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; (B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方; (C ),,A Z B Q f ==:A 中的数取倒数; (D ),,A R B R f +==:A 中的数取绝对值; 3、已知函数11)(22-+ -=x x x f 的定义域是( ) (A )[-1,1] (B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=-- (C ))(x f ·)(x f -≤0 (D )1) ()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在),(b a 上是

(A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、若函数()(()0)f x f x ≠为奇函数,则必有 (A )()()0f x f x ?-> (B )()()0f x f x ?-< (C )()()f x f x <- (D )()()f x f x >- 8、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3) (C )f(π)

上海上海大学附属中学实验学校必修第一册第三单元《函数概念与性质》检测卷(有答案解析)

一、选择题 1.已知定义域为R 的函数()f x 在[)2,+∞单调递减,且(4)()0f x f x -+=,则使得不等式( ) 2 (1)0f x x f x +++<成立的实数x 的取值范围是( ) A .31x -<< B .1x <-或3x > C .3x <-或1x > D .1x ≠- 2.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆 O (O 为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.则下列函数中一定是“优美函数”的为( ) A .1()f x x x =+ B .1()f x x x =- C .( ) 2 2()ln 1f x x x =+ + D .() 2 ()ln 1f x x x =++ 3.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ?∈,12x x ≠,都有 ()()1212 0f x f x x x ->-,则有( ) A .()()()192120211978f f f =< B .()()()192119782021f f f << C .()()()192120211978f f f << D .()()()202119781921f f f << 4.函数2()1sin 12x f x x ?? =- ?+?? 的图象大致形状为( ). A . B . C . D .

5.已知函数(1)f x +是偶函数,当121x x <<时,()()()21210f x f x x x ??-->??恒成立,设1,(2),(3)2a f b f c f ?? =-== ??? ,则,,a b c 的大小关系为( ) A .b a c << B .c b a << C .b c a << D .a b c << 6.对于实数a 和b ,定义运算“*”:,, ,. b a b a b a a b ≤?*=? >?设()f x x =, ()224g x x x =--+,则()()()M x f x g x =*的最小值为( ) A .0 B .1 C .2 D .3 7.下列函数中,是奇函数且在()0,∞+上单调递增的是( ) A .y = B .2log y x = C .1y x x =+ D .5y x = 8.已知()f x 为奇函数,且当0x >时,()2f x x =-,则1 ()2 f -的值为( ) A .52 - B .32 - C . 32 D . 52 9.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意 1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( ) A .(,3]-∞- B .[3,)+∞ C .(,3][3,) -∞-+∞ D .(,3)(3,)-∞-?+∞ 10.已知() 2 ()ln ,(,)f x x ax b x a b R =++?∈,当0x >时()0f x ≥,则实数a 的取值范 围为( ) A .20a -≤< B .1a ≥- C .10a -<≤ D .01a <≤ 11.函数()f x =是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 12.设函数()f x 的定义域为D ,如果对任意的x D ∈,存在y D ∈,使得()()f x f y =-成立,则称函数()f x 为“呆呆函数”,下列为“呆呆函数”的是( ) A .2sin cos cos y x x x =+ B .2x y = C .ln x y x e =+ D .22y x x =- 13.下列各组函数表示同一函数的是( ) A .()f x = 2 ()f x = B .,0(),0 x x f x x x ≥?=? -

第五讲 函数的基本概念与性质

第五讲 函数的基本概念与性质 函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究. 1.求函数值和函数表达式 对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题. 例1 已知f(x-1)=19x2+55x-44,求f(x). 解法1 令y=x-1,则x=y+1,代入原式有 f(y)=19(y+1)2+55(y+1)-44 =19y2+93y+30, 所以 f(x)=19x2+93x+30. 解法2 f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30. 可. 例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5). 解 由题设 f(-x)=-ax5+bx3-x+5 =-(ax5-bx3+x+5)+10

=-f(x)+10, 所以 f(-5)=-f(5)+10=3. 例4 函数f(x)的定义域是全体实数,并且对任意实数x ,y ,有f(x+y)=f(xy).若f(19)=99,求f(1999). 解 设f(0)=k ,令y=0代入已知条件得 f(x)=f(x+0)=f(x ·0)=f(0)=k , 即对任意实数x ,恒有f(x)=k .所以 f(x)=f(19)=99, 所以f(1999)=99. 2.建立函数关系式 例5 直线l1过点A(0,2),B(2,0),直线l 2:y=mx +b 过点C(1,0),且把△AOB 分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S ,求S 关于m 的函数解析式,并画出图像. 解 因为l 2过点C(1,0),所以m +b=0,即b=-m . 设l 2与y 轴交于点D ,则点D 的坐标为(0,-m),且0<-m ≤2(这是因为点D 在线段OA 上,且不能与O 点重合),即-2≤m <0. 故S 的函数解析式为 例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边

函数的概念与性质

第三章函数 第一单元函数的概念与性质 第一节函数的概念 一、选择题 1.下列对应中是映射的是() A.(1)、(2)、(3)B.(1)、(2)、(5) C.(1)、(3)、(5) D.(1)、(2)、(3)、(5) 2.下面哪一个图形可以作为函数的图象() 3.(2009年茂名模拟)已知f:A→B是从集合A到集合B的一个映射,?是空集,那么

下列结论可以成立的是( ) A .A = B =? B .A =B ≠? C .A 、B 之一为? D .A ≠B 且B 的元素都有原象 4.已知集合M ={}?x ,y ?|x +y =1,映射f :M →N ,在f 作用下点(x ,y )的元素是(2x,2y ),则集合N =( ) 5.现给出下列对应: (1)A ={x |0≤x ≤1},B =R - ,f :x →y =ln x ; (2)A ={x |x ≥0},B =R ,f :x →y =±x ; (3)A ={平面α内的三角形},B ={平面α内的圆},f :三角形→该三角形的内切圆; (4)A ={0,π},B ={0,1},f :x →y =sin x . 其中是从集A 到集B 的映射的个数( ) A .1 B .2 C .3 D .4 二、填空题 6.(2009年珠海一中模拟)已知函数f (x )=x 2-1x 2+1,则f ?2?f ??? ?12=________. 7.设f :A →B 是从集合A 到B 的映射,A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(kx ,y +b ),若B 中元素(6,2)在映射f 下的元素是(3,1),则k ,b 的值分别为________. 8.(2009年东莞模拟)集合A ={a ,b },B ={1,-1,0},那么可建立从A 到B 的映射个数是________.从B 到A 的映射个数是________. 三、解答题 9.已知f 满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,求f (72)的值. 10.集合M ={a ,b ,c },N ={-1,0,1},映射f :M →N 满足f (a )+f (b )+f (c )=0,那么映射f :M →N 的个数是多少?

相关文档
相关文档 最新文档