文档库 最新最全的文档下载
当前位置:文档库 › ICEM CFD实例教程

ICEM CFD实例教程

ICEM CFD实例教程
ICEM CFD实例教程

ansys.icemcfd教程

ANSYS.ICEM-CFD中文教程 ICEM CFD 工程 Tutorials目录中每个工程是一个次级子目录。每个工程的目录下有下列子目录:import, parts, domains, mesh, 和transfer。他们分不代表: ?import/: 要导入到ICEMCFD中的集合模型交换文件,比如igs,STL 等; ? parts/: CAD模型 ? domains/: 非结构六面体网格文件(hex.unstruct), 结构六面体网格分区文件(domain.n), 非结构四面体网格文件(cut_domain.1)

?mesh/: 边界条件文件 (family_boco, boco),结构网格的拓扑定义文件(family_topo, topo_mulcad_out), 和Tetin几何文件(tetin1). ?transfer/: 求解器输入文件(star.elem), 用于Mom3d.的分析数据 mesh目录中Tetin文件代表将要划分网格的几何体。包含B-spline曲面定义和曲线信息,以及分组定义 Replay 文件是六面体网格划分的分块的脚本 鼠标和键盘操作 鼠标或键盘操作功能 鼠标左键点击和拖动旋转模型 鼠标中键点击和拖动平移模型 鼠标右键点击和上下拖动缩放模型 鼠标右键点击和左右拖动绕屏幕Z轴旋转模型

第二章ICEM CFD Mesh Editor界面 The Mesh Editor, 创建修改网格的集成环境,包含三个窗口? The ICEM CFD 主窗口 ?显示窗口 ? The ICEM CFD 消息窗口

主窗口 主窗口中除了图形显示区域,外,还有6个radio按钮:File, Geometry, Meshing, Edit Mesh and Output. The File Menu The File menu 包含 ? Open, Save, Save as, Close, Quit, Project dir, Tetin file, Domain file, B.C file, Import geo, Export geo, Options,

ICEMCFD网格划分入门基础

WorkBench ICEM CFD 网格划分入门 111AnsysWB里集成了一个非常重要的工具:ICEM CFD。 它是一个建模、划分网格的集成工具,功能非常强大。我也只是蜻蜓点水的用了几次,感觉确实非常棒,以前遇到复杂的模型,用过几个划分网格的工具。但这是我觉得最方便和最具效率的。 网格划分很大程度上影响着后续的仿真分析——相信各位都有所体会。而ICEM CFD特别长于划分六面体网格,相信无论是结构或流体(当然铁别是流体),都会得益于它的威力。 ICEM CFD建模的能力不敢恭维,但划分网格确实有其独到之处。教程开始前,作一个简单的原理介绍,方面没有使用过ICEM CFD的朋友理解主要的任务: 111如下图: 1:白色的物体是我们需要划分网格的,但是它非常不规则。 2:这时候你一定想:怎么这个不规则呢,要是它是一个方方正正的形状多好(例如红色的那个形状)01 111于是有了这样一种思想: 1:对于异型,我们用一种规则形状去描述它。 2:或者说:如果目标形状非常复杂,我们就用很多规则的,简单的形状单元合成在一起,去描述它。 之后,将网格划分的设置,做到规则形状上。 最后,这些规则,通过最初的“描述”关系,自动的“映射”到原先的复杂形状上——问题就得到了解决!!! ICEM CFD正是使用了这种思想。 如下是一个三通管,在ProE里做得

02 在ProE里面直接启动WB 进入WB后,选择如下图: 03 111如下: 1:代表工作空间里的实体 2:代表某实体的子实体,可以控制它们的开关状态3:控制显示的地方

04 下面需要创建一个Body实体 这个实体代表了真实的物体。这个真实的物体的外形由我们导入的外形来定义。 ——我们导入的外形并不是真实的实体。这个概念要清楚。 但是今后基本上不会对这个真实的实体作什么操作。这种处理方式主要是为工作空间内有多个物体的时候准备的。 05 1:点击“创建Body” 2、3:点选这两个点 4:于是创建出一个叫“Body”的实体 操作中,左键选择,中键确认,右键完成并退出——类似的操作方法很多地方用到,要多练习,今后

手机天线测试

浅谈实践中的手机天线测试 随着移动通信的飞速发展和应用,中国的手机行业也不断发展壮大,当然中国的手机用户也在迅猛增长。而手机的射频器件中,手机天线是无源器件,手机天线作为手机上面唯一的一个“量身定做”的器件,它的特殊性和重要性必然要求其研发过程对天线性能的测试要求非常严格,这样才能确保手机的正常用。 现在就简单的介绍一下手机天线的研发过程中的几种常见的手机天线测试方法: 1、微波暗室(Anechonic chamber) 波暗室又叫无反射室、吸波暗室简称暗室。微波暗室由电磁屏蔽室、滤波与隔离、接地装置、通风波导、室内配电系统、监控系统、吸波材料等部分组成。它是以吸波材料作为衬面的屏蔽房间,它可以吸收射到六个壁上的大部分电磁能量较好的模拟空间自由条件。暗室是天线设计公司都需要建造的测试设备,因为对于手机天线的测试比较精确而且比较系统,其测试指标可以用来衡量一个手机天线的性能的好与坏。主要是天线公司使用,但其造价昂贵。 2、TEM CELL测试 用TEM CELL测试天线有源指标,因为微波暗室和天线测试系统造价比较昂贵,一般要百万以上,一般的手机设计和研发公司没有这种设备,而用TEM CELL(也较三角锥)来代替测试。和微波暗室的测试目的一样,TEM CELL也是一个模拟理想空间的天线测试环境,金属箱能够提供足够的屏蔽功能来消除外部干扰对天线的影响,而内部的吸波材料也能吸收入射波,减小反射波。TEM CELL不能对天线进行无源测试,只能对有源指标进行测试。由于空间限制,TEM CELL的吸波材料比较薄,而对于劈状吸波材料,是通过劈尖间的多次反射增加对入射波进行吸收,因此微波暗室里的吸波材料都比较厚,而TEM CELL的吸波材料都不购厚,因此对入射波的吸收都不是很充分,因此会导致测试的结果不精确。 另外,TEM CELL的高度也不够,这也是TEM CELL不能进行定量测试的一个原因。根据天线辐射的远场测试分析,对于EGSM/DCS频段的手机天线,被测手机与天线的距离至少大于1米;因此,我们可以看几乎所有的2D暗室都是远大于这个距离。而TEM CELL比这个距离小一些,所以这也是TEM CELL相对于微波暗室来讲测量不准的一个原因。 所以,TEM CELL只能对天线做定性的分析而不能做定量的分析。在实验室可以定性分析几种样机的差异,比较其性能的优劣,但不能作为准确的标准值来衡量天线的性能,只能通过与其他的“金鸡”(Golden sample ) 对比,大致来判断手机天线的性能。TEM CELL一般只找最佳方值,使测试结果对手机摆放的位置比较敏感。

ICEM CFD教程

ICEM CFD教程 四面体网格 ?对于复杂外形,ICEM CFD Tetra具有如下优点: ?根据用户事先规定一些关键的点和曲线基于8叉树算法的网格生成,生成速度快,大约为1500 cells/second ?无需表面的三角形划分,直接生成体网格 ?四面体网格能够合并到混合网格中,并实施平滑操作 ?单独区域的粗化和细化 ?ICEM CFD的CAD(CATIA V4, UG, ProE, IGES, and ParaSolid, etc)接口,保留有CAD几何模型的参数化描述,网格可以在修改过的几何模型上重新生成 这是生成的燃烧室四面体网格,共有660万网格,生成时间约为50分钟 ?八叉树算法 Tetra网格生成是基于如下的空间划分算法:这种算法需要的区域保证必要的网格密度,但是为了快速计算尽量采用大的单元。 1.在几何模型的曲线和表面上规定网格尺寸 2.构造一个初始单元来包围整个几何模型 3.单元被不断细分来达到最大网格尺寸(每个维的尺寸按照1/2分割,对于三维就是 1/8)

4.均一化网格来消除悬挂网格现象 5.构造出最初的最大尺寸单元网格来包围整个模型 6.节点调整以匹配几何模型形状 7.剔除材料外的单元 8.进一步细分单元以满足规定的网格尺寸要求 9.通过节点的合并、移动、交换和删除进行网格平滑,节点大小位于最大和最 小网格尺寸之间

? 非结构化网格的一般步骤 1. 输入几何或者网格 所有几何实体,包括曲线、表面和点都放在part 中。通过part 用户可以迅速打开/关掉所有实体,用不同颜色区分,分配网格,应用不同的边界条件。几何被收录到通用几何文件.tin 中,.tin 文件可以被ANSYS ICEM CFD’s 所有模块 1.1输入几何体Import Geometry ? 第三方接口文件:ParaSolid 、STEP 、IGES 、DWG 、GEMS 、ACIS … ? 直接接口:Catia 、Unigraphics 、Pro/E 、SolidWorks 、I-deas… 几 何变化网格可以直接随之变化

ICEM 基础教程

第一章介绍 ICEM CFD 工程 Tutorials目录中每个工程是一个次级子目录。每个工程的目录下有下列子目录:import, parts, domains, mesh, 和transfer。他们分别代表: ? import/: 要导入到ICEMCFD中的集合模型交换文件,比如igs,STL等; ? parts/: CAD模型 ? domains/: 非结构六面体网格文件(hex.unstruct), 结构六面体网格分区文件(domain.n), 非结构四面体网格文件(cut_domain.1) ? mesh/: 边界条件文件(family_boco, boco),结构网格的拓扑定义文件(family_topo, topo_mulcad_out), 和Tetin几何文件(tetin1). ? transfer/: 求解器输入文件(star.elem), 用于Mom3d.的分析数据 mesh目录中Tetin文件代表将要划分网格的几何体。包含B-spline曲面定义和曲线信息,以及分组定义 Replay 文件是六面体网格划分的分块的脚本 鼠标和键盘操作

第二章ICEM CFD Mesh Editor界面 The Mesh Editor, 创建修改网格的集成环境,包含三个窗口 ? The ICEM CFD 主窗口 ? 显示窗口 ? The ICEM CFD 消息窗口 主窗口 主窗口中除了图形显示区域,外,还有6个radio按钮:File, Geometry, Meshing, Edit Mesh and Output. The File Menu The File menu 包含 ? Open, Save, Save as, Close, Quit, Project dir, Tetin file, Domain file, B.C file, Import geo, Export geo, Options, Utilities, Scripting, Annotations, Import mesh, DDN part.

第六讲 手机天线类型比较和结构射频规则

第六讲手机天线类型比较和结构射频规则 一、各种手机内置天线的特点和演变过程 在常见的手机天线结构中,陶瓷介质天线由于Q值很高,带宽窄,损耗大,并且易受环境的影响而产生频率漂移,因此不推荐作为手机主天线使用,但由于其尺寸小的优势,可以用作对接收灵敏度要求不高的蓝牙天线。PCB板天线也一般仅仅是通过将外置单极子天线通过PCB过孔和PCB走线将辐射体做在PCB板上,并利用介质板的介电常数在一定程度上减小天线尺寸的形式,这种天线也由于介质板的损耗常数而产生一定的损耗,所以在大多数高端机情况下也不推荐使用,仅在少数低端机和工作频点较少的情况下才为节约成本而使用。PCB天线可作外置天线也可作内置天线。 PIFA天线自产生以来,一直到今天都一直是内置天线的主要形式,因为它尺寸较小,可以充分利用PCB板作为接地面,并通过接地片将谐振长度缩小为四分之一波长。但是随着手机小型化和集成度更高的发展要求,原有PIFA天线逐渐显示出一些对结构方面的严格限制。于是有不少业界领先的手机制造商Motorola、Samsung、Sony-Ericsson等公司逐渐改变手机天线的设计风格,改用各种变形的单极子天线设计,这样就减小了结构对天线的依赖性,增加了手机外观的灵活性。比如索爱E908的菱形天线设计,Samsung E708的城墙线(Meander)天线设计,以及Motorola V3中使用的一个金属铜棒作为天线的设计。这些新型的天线设计显示了高超的设计技巧,它们往往不易被天线其他天线厂家和手机厂家模仿,并逐渐发展成手机天线厂家之间和手机厂商之间竞争的一项核心技术。 二、PIFA天线和单极子天线的性能比较 前面我们已经分别对单极子天线和PIFA天线的一般特性进行过分析,下面我们在几种重要的特性方面比较一下两种天线性能的优劣。 1.空间结构要求 两种天线的设计对空间的预留都必须考虑Chu极限定理,但在组成上,PIFA要求必须有一个辐射单元和一个大的接地面,两者互相平行,并且辐射体和接地面之间必须有一个不小的间距。接地面和辐射体都是物理实体,它们必须位于手机上,所以对结构限制较大。采用PIFA天线手机不可能做得很薄。 而采用单极子天线进行设计,则天线仅有一个辐射体而没有地面,因此它对辐射空间的要求就仅仅是天线辐射体周围的空间而没有地面的限制,天线占用的辐射空间可以不在手机体上而在手机周围的外界空间。因此对结构的限制较小。

一篇手机天线设计的经典文章

一篇手机天线设计的经典文章一篇手机天线设计的经典文章 第二类天线天线天线,例如,倒置F 型平面天线天线 天线(PIFA),它装在地线上面。由于这种天线天线使用印刷电路板上面的空间,因而,这类天线天线天线用得最普遍。混合绝缘体天线天线天线就是把绝缘体天线天线天线和PIFA 结合在一起,它和PIFA 一样,装在接地面的上方时,能够工作(图1)。 天线 天线的位置 电讯产业多年来在长条型手机手机手机上的经验告诉我们:最好还是把天线天线天线安装在手机手机手机的顶部。这么做的原因是:如果你的手把天线天线天线挡住时,你发会现手机手机 手机的性能会迅速下降,而如果天线天线天线装在手机手机 手机的顶部,那它几乎就不会被挡住了。 如今,情况已经发生了变化,我们需要用新的思路去设计设计设计新手机手机 手机的外型。通常情况下:现在只有两种类型的手机手机手机——长条型手机手机手机和翻盖型手机手机手机,或者折叠型手机手机手机。最近,又出现了新型的手机手机手机,比如,滑盖型手机手机手机和旋转型手机手机手机。旋转型手机手机 手机的两个部分可以围绕着一个轴转动。所有这种由两个部分组成的手机手机 手机使问题变得更复杂了:他们都必须在打开和合上两种状态下工作,而这种问题不会出现在长条型手机手机手机上。从电气的角度讲,这两种状态是不一样的,这就是说,在这两种状态下,手机手机手机的性能都必须符合要求。 天线天线设计设计设计师一直非常关注天线天线天线周围的元器件。现在的手机手机 手机都做很紧凑,因此,像电池和照相机部分常常紧挨着天线天线天线。相邻的元器件一般在很大程度上是决定产品性能的关键。对于不同的手机手机手机,它们的影响是不一样的,但是,都会严重地降低天线天线天线的性能。结果是,在开发过程的后期,设计设计设计师不得不对部分手机手机手机的零部件重新进行设设计。 天线天线会在任何紧挨着天线天线天线的导体里感应电流。手机 手机里的导体分为两种。第一种是印刷电路板总成,它包括了印刷电路板和它的屏蔽。这些互相连接的导体形成一个大导体,构成一个能改善天线天线 天线性能的地。第二种导体由更小的分立元件组成,他们通过像导线和柔性印刷电路板(FPCB)这些连接件连接到印刷电路板上。应当避免在这些元件上产生激励电流,因为元件或者关联电路会有能量损失。由于在设计设计设计时,往往没有把这些元件或电路考虑进去,因此,能量损失通常都比较大。 连接方法 遵循设计设计 设计指南,可以避免这些元件可能带来的问题。 需要用许多导线的内部连接通常用FPCB 来完成的。例如,FPCB 往往用来连接照相机。当把FPCB 放到天线天线天线附近时,我们就要特别小心,因为FPCB 和天线天线 天线二者之间的耦合,可能会影响天线天线天线的性能。但是,只要对FPCB 或是对天线天线 天线做一个很小的改动,就能够解决这个问题。只要FPCB 的位置固定好,问题也许不大。但是,如果FPCB 没有固定好的话,那么,问题就会很严重。举一个例子,和一个可以自由旋转的照相机的连接时,如果其中的FPCB 可以弯成许多不同的形状,那么,评定其效果的任何实验都是不能重复的。在这种情况下,要在 FPCB 上面做点什么就非常困难。只需要几根导线进行的连接,就像连接到扬声器那样,往往用很简单的方法进行连接,例如,在每个端点焊上弹性触点或金属线。通常情况下,天线天线天线设计设计 设计师更喜欢使

ICEM CFD 基础教程.pdf

提供版权所有,如有雷同…. 第一章介绍 ICEM CFD 工程 Tutorials目录中每个工程是一个次级子目录。每个工程的目录下有下列子目录:import, parts, domains, mesh, 和transfer。他们分别代表: ? import/: 要导入到ICEMCFD中的集合模型交换文件,比如igs,STL等; ? parts/: CAD模型 ? domains/: 非结构六面体网格文件(hex.unstruct), 结构六面体网格分区文件(domain.n), 非结构四面体网格文件(cut_domain.1) ? mesh/: 边界条件文件(family_boco, boco),结构网格的拓扑定义文件(family_topo, topo_mulcad_out), 和Tetin几何文件(tetin1). ? transfer/: 求解器输入文件(star.elem), 用于Mom3d.的分析数据 mesh目录中Tetin文件代表将要划分网格的几何体。包含B-spline曲面定义和曲线信息,以及分组定义 Replay 文件是六面体网格划分的分块的脚本 鼠标和键盘操作 鼠标或键盘操作功能 鼠标左键点击和拖动旋转模型 鼠标中键点击和拖动平移模型 鼠标右键点击和上下拖动缩放模型 鼠标右键点击和左右拖动绕屏幕Z轴旋转模型 F9 按住F9,然后点击任意鼠标键进行操作的时候进行模型运动 F10 按F10 紧急图象Reset

第二章ICEM CFD Mesh Editor界面 The Mesh Editor, 创建修改网格的集成环境,包含三个窗口 ? The ICEM CFD 主窗口 ? 显示窗口 ? The ICEM CFD 消息窗口 主窗口 主窗口中除了图形显示区域,外,还有6个radio按钮:File, Geometry, Meshing, Edit Mesh and Output. The File Menu The File menu 包含

手机新型天线介绍

未来手机天线的简述 ---------GPS,BT,WLAN 一, G PS 天线 1,GPS简单介绍 GPS=Global Positioning System 全球定位系统 该系统是由美国国防部于1973年组织研制,主要为军事导航与定位服务的系统。历经20年,耗资300亿美元,于1993年建设成功。 最初是用于军事,后来也开放给民用了(精度2.93—29.3米),不过精度却仍然是军用的1/10(军用的精度0.293—2.93米),目前市面售的GPS接收机在空旷地带一般都能达到10米左右。 2,GPS天线 简单介绍一下“极化”的概念——天线的极化方向,就是指天线辐射时形成的电场强度方向。 极化方式有两类:一种是线极化,一种是圆极化。线极化方式又分为水平极化和垂直极化;圆极化方式又分左旋圆极化和右旋圆极化。 我国国内卫星天线一般是采用线极化,而美国GPS卫星采用圆极化方式。其中:上行链路采用左旋圆极化(LHCP),下行链路采用右旋圆极化(RHCP)。于是如果我们做手机GPS接收器的话,势必需要采用右旋圆极化(RHCP)的接收天线才行。如果采用PIFA类线极化天线来接收RHCP卫星信号,根据极化损失原理,会造成3dbm(一半)的极化损失。

GPS可选天线包括:有源/无源陶瓷型PATCH天线,无源PIFA天线,贴片 3,PATCH陶瓷天线介绍 据上面表格可以看出,主流推荐的GPS天线形式中,首推PATCH片式陶瓷天线。下面图中是常见天线样板:

GPS 无源天线: Patch GPS 无源天线: Chip&Bulk GPS 有源天线: Patch GPS 有源天线: Chip&Bulk SDAR天线: Passive SDAR天线: Active 3.1 电路部分: 带低噪放和滤波器的有源天线接收到信号后,经过后级的滤波放大,匹配后进入到GPS 基带部分进行解码等处理。 3.2 天线部分: 天线选用3V左右供电的有源天线,一般我们选用天线的参数为增益27db左右,噪声系数1.5dB左右。 注意:手机GPS陶瓷天线常见的规格为12*12,13*13,15*15,陶瓷面积越大,增益越好。有源天线较之无源天线体积要大一些(底下带PCB板),但内置天线放大电路,在同轴馈线中已经包括3V供电,有源天线其实就是普通的陶瓷无源天线加上一个低噪声的LNA及滤波器。

ICEM CFD 基础教程

有redhong731@https://www.wendangku.net/doc/2a15776086.html,提供版权所有,如有雷同…. 第一章介绍 ICEM CFD 工程 Tutorials目录中每个工程是一个次级子目录。每个工程的目录下有下列子目录:import, parts, domains, mesh, 和transfer。他们分别代表: ? import/: 要导入到ICEMCFD中的集合模型交换文件,比如igs,STL等; ? parts/: CAD模型 ? domains/: 非结构六面体网格文件(hex.unstruct), 结构六面体网格分区文件(domain.n), 非结构四面体网格文件(cut_domain.1) ? mesh/: 边界条件文件(family_boco, boco),结构网格的拓扑定义文件(family_topo, topo_mulcad_out), 和Tetin几何文件(tetin1). ? transfer/: 求解器输入文件(star.elem), 用于Mom3d.的分析数据 mesh目录中Tetin文件代表将要划分网格的几何体。包含B-spline曲面定义和曲线信息,以及分组定义 Replay 文件是六面体网格划分的分块的脚本 鼠标和键盘操作

第二章ICEM CFD Mesh Editor界面 The Mesh Editor, 创建修改网格的集成环境,包含三个窗口 ? The ICEM CFD 主窗口 ? 显示窗口 ? The ICEM CFD 消息窗口 主窗口 主窗口中除了图形显示区域,外,还有6个radio按钮:File, Geometry, Meshing, Edit Mesh and Output. The File Menu The File menu 包含

4G智能手机天线

4G智能手机天线给设计人员的挑战 2010年全球移动数据消费量增长了2.6倍。这是移动数据使用量连续三年接近3倍的增幅。到2015年,全球移动数据业务量有望增长到2010年的26倍。导致这种戏剧性增长的关键因素之一是智能手机(smartphone),具有语音通话功能和数据通信功能,易用性与个人电脑接近的便携终端的总称。和平板电脑的快速普及。全球移动数据用户希望他们的设备在全球任何地方都能高速联网。 这种期望给网络和设 备性能带来了巨大的负担。在 移动数据设备中,天线是“接 触”网络的唯一部件,优化天 线性能变得越来越重要。然 而,智能手机和平板电脑中的 4G>天线设计所面临的挑战十 分艰巨。尽管应对这些挑战有 多种可行的解决方案,但每一 种都会有潜在的性能折衷。 有许多因素会影响手 持移动通信设备的天线性能。 虽然这些因素是相关的,但通 常可以分成三大类:天线尺寸、多副天线之间的互耦以及设备使用模型。天线尺寸天线尺寸取决于三个要素:工作带宽、工作频率和辐射效率。今天的带宽要求越来越高,其推动力来自美国的FCC 频率分配和全球范围内的运营商漫游协议;不同地区使用不同的频段。“带宽和天线尺寸是直接相关的”且“效率和天线尺寸是直接相关的”--这通常意味着,更大尺寸的天线可以提供更大的带宽和更高的效率。除了带宽外,天线尺寸还取决于工作频率。在北美地区,运营商Verizon Wireless和A T&T Mobility选择推广的LTE是英文Long Term Evolution的缩写。LTE也被通俗的称为3.9G,具有100Mbps的数据下载能力,被视作从3G 向4G演进的主流技术。"产品工作在700M赫兹频段,这在几年前是FCC UHF-TV再分配频段的一部分。这些新的频段(17,704-746MHz和13,746-786MHz)比北美使用的传统蜂窝频段(5,824-894MHz)要低。这个变化是巨大的,因为频率越低,波长越长,因而需要更长的天线才能保持辐射效率不变。为了保证辐射效率,天线尺寸必须做大。然而,设备系统设计人员还需要增加更大的显示器和更多的功能,因此可用的天线长度和整个体积受到极大限制,从而降低了天线带宽和效率。 天线间互耦更新的高速无线协议要求使用MIMO(多入多出)天线。MIMO要求多根天线(通常是两根)同时工作在相同频率。因此,话机设备上需要放置多根天线,这些天线要同时工作且相互不能有影响。当两根或更多天线位置靠得很近时,就会产生一种被称为互耦的现象。 举例说明,移动平台上紧邻放置两根天线。从天线1辐射出来的一部分能量将被天线2截获,截获到的能量将在天线2的终端中损耗掉,无法得到利用,这可以用系统功率附加效率(PAE)的损耗来表示。根据互换性原理,这种效应在发送和接收模式中是相同的。耦合幅度反比于天线的分隔距离。对于手机实现而言,MIMO和分集应用中工作在相同频段的天线之间的距离可以是1/10波长或以下。例如,750MHz时的自由空间波长是400mm。当间隔很小时,比如远小于一个波长,则耦合程度会很高。天线之间耦合的能量是无用的,只会降低数据吞吐量和电池寿命。

手机天线基本常识

一问:天线对周围环境要求有哪些? 答:天线附近放置带有金属材料等物体时,不仅缩小了天线的实际使用空间,导致带宽的下降,而且增加了损耗电阻,造成辐射效率降低,从而导致天线性能的急剧恶化。所以设计好一个好的天线需注意: a. 天线与电池的最小距离为10mm; b.天线应远离以下金属物体,保持6mm以上间距,并要求金属物体能尽量的接地或预留电路,比如马达,speak、receive等较大金属; c. 天线投影区的塑料盖内侧和后侧最好不使用有金属成分的喷漆,或者使用金属含量最少的喷漆; d.手机内的软排线应与天线保持6毫米距离。排线不能过长,最好能在排线的两面凃上屏蔽层; e.带TP的机子,在天线的投影区范围内TP不可有走线;(后方带图说明) f.天线下方尽量减少元件,特别是较高的元件。天线下放置元件的面积最多不超过30%,最高元器件与天线的间距最少要确保为2mm; g.从射频测试口到天线馈点的引线的阻抗保持在50 欧姆; 以上这些都是针对一些比较常用具体的东西,并无法将所有的东西包括进去,设计的时候得奔着下面两个规律去: 1、远离会向外辐射高频电磁波的器件。(例如:电机,电源模组、传输高频信号的排线) 2、远离会吸收电磁波的物体或器件。(独立的金属、各种排线、金属涂层、金属壳等)

上方是2款TP的背面图,看到玻璃边框的那圈米黄色的东西了吗,这些就是TP汇聚的走线。 上图框中的地方汇聚的线路占用的地方很宽,如果这部分地区恰好是预留给天线的位置,那么就会对天线的性能造成非常大的影响。 所以在平板设计之初一定要注意TP的问题,与TP供应商说明好,预留天线的位置不要有线路。 二问:不同频段天线需要多大面积呢? 答:天线的空间和性能: 频段所需空间可能达到的性 能(天线效 率) GSM4频镂空10mm L*W*H=50*7mm*6~8mm Eff≈40%

手机天线的研发过程中的几种常见的手机天线测试方法

手机天线的研发过程中的几种常见的手机天线测试方法 随着移动通信的飞速发展和应用,中国的手机行业也不断发展壮大,当然中国的手机用户也在迅猛增长。而手机的射频器件中,手机天线是无源器件,手机天线作为手机上面唯一的一个“量身定做”的器件,它的特殊性和重要性必然要求其研发过程对天线性能的测试要求非常严格,这样才能确保手机的正常用。现在就简单的介绍一下手机天线的研发过程中的几种常见的手机天线测试方法: 1、微波暗室(Anechonic chamber) 波暗室又叫无反射室、吸波暗室简称暗室。微波暗室由电磁屏蔽室、滤波与隔离、接地装置、通风波导、室内配电系统、监控系统、吸波材料等部分组成。它是以吸波材料作为衬面的屏蔽房间,它可以吸收射到六个壁上的大部分电磁能量较好的模拟空间自由条件。暗室是天线设计公司都需要建造的测试设备,因为对于手机天线的测试比较精确而且比较系统,其测试指标可以用来衡量一个手机天线的性能的好与坏。主要是天线公司使用,但其造价昂贵。 2、TEM CELL测试 用TEM CELL测试天线有源指标,因为微波暗室和天线测试系统造价比较昂贵,一般要百万以上,一般的手机设计和研发公司没有这种设备,而用TEM CELL(也较三角锥)来代替测试。和微波暗室的测试目的一样,TEM CELL也是一个模拟理想空间的天线测试环境,金属箱能够提供足够的屏蔽功能来消除外部干扰对天线的影响,而内部的吸波材料也能吸收入射波,减小反射波。TEM CELL不能对天线进行无源测试,只能对有源指标进行测试。由于空间限制,TEM CELL的吸波材料比较薄,而对于劈状吸波材料,是通过劈尖间的多次反射增加对入射波进行吸收,因此微波暗室里的吸波材料都比较厚,而TEM CELL的吸波材料都不购厚,因此对入射波的吸收都不是很充分,因此会导致测试的结果不精确。另外,TEM CELL的高度也不够,这也是TEM CELL不能进行定量测试的一个原因。根据天线辐射的远场测试分析,对于EGSM/DCS频段的手机天线,被测手机与天线的距离

手机天线分析

第三讲对称振子和接地短鞭天线 一、概述 1.手机通常使用的天线有四种类型: (1)PIFA天线:即平面倒F天线,这种天线的基本组成形式是互相平行的平面辐射单元和接地面,在辐射单元上彼此靠近的位置有一个接地的短 路片和一个馈电片。 (2)单极子变形天线:即类似于外置天线的变形,它只有一个馈电的接触弹片,内部可以有多种几何结构形式。 (3)PCB板天线:这种天线也可以认为是单极子天线的变形,只是将天线辐射体做在PCB板上。这种天线可以为外置,由PCB走线和过孔共同 绕成螺旋状,也可以是内置形式,并允许多种几何结构。 (4)陶瓷介质天线:即将天线做在高介电常数的陶瓷材料上,从而达到减小尺寸的目的。手机蓝牙天线多采用陶瓷介质天线的形式。 2.所有手机天线都可以认为是从对称振子和接地单极子天线的基础上发展而来,所以这一讲主要给出对称振子和接地单极子天线的理论分析。 二、对称振子(Dipole)天线 1.对称振子的结构 对称振子由两根同样粗细、同样长度的直导线构成,在中间的两个端点馈电。每 根导线的长度是,它又称为对称振子的臂长。在谐振条件下,为四分之波长。 这种天线结构简单,适用于多个波段。它可以作为独立的天线使用,也可以作为复杂天线(如天线阵)的单元或面天线的组成部分(如馈源)。手机使用的所有天线都可以以这种天线为出发点作进一步的分析。 2.对称振子分析

对称振子的分析可以采用集总等效电路法。可以将它看做由终端开路的两根长导线的电流分布张开所形成。无耗开路长线上的电流是正弦分布的,对称振子上的电流也近似按正弦分布,波型与臂长的电长度有关。 取对称振子中心为坐标原点,振子轴沿x轴,则对称振子的电流分布可以近似表示为: (1) 其中是波腹电流,是对称振子的电流传输相移常数,(是 振子上的波长),如果不考虑损耗,则,其中和分别是自由空间的相移常数和波长。 (1)式还可以写成:

相关文档