文档库 最新最全的文档下载
当前位置:文档库 › 衍射光强实验报告

衍射光强实验报告

衍射光强实验报告
衍射光强实验报告

教学目的 1、观察单缝衍射现象,加深对衍射理论的理解;

2、学会使用衍射光强实验系统,并能用其测定单缝衍射的光强分布;

3、形成实事求是的科学态度和严谨、细致的工作作风。

重点:SGS-3型衍射光强实验系统的调整和使用

难点:1)激光光线与光电仪接收管共轴调节;2)光传感器增益度的正确调整

讲授、讨论、实验演示相结合

3学时

一、实验简介

光的衍射现象是光的波动性的一种表现。衍射现象的存在,深刻说明了光子的运动

是受测不准关系制约的。因此研究光的衍射,不仅有助于加深对光的本性的理解,也是

近代光学技术(如光谱分析,晶体分析,全息分析,光学信息处理等)的实验基础。

衍射导致光强在空间的重新分布,利用光电传感元件探测光强的相对变化,是近

代技术中常用的光强测量方法之一。

二、实验目的

1、学会SGS-3型衍射光强实验系统的调整和使用方法;

2、观察单缝衍射现象,研究其光强分布,加深对衍射理论的理解;

3、学会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律;

4、学会用衍射法测量狭缝的宽度。

三、实验原理

1、单缝衍射的光强分布

当光在传播过程中经过障碍物时,如不透明物体的边缘、小孔、细线、狭缝等,

一部分光会传播到几何阴影中去,产生衍射现象。如果障碍物的尺寸与波长相近,那么

这样的衍射现象就比较容易观察到。

单缝衍射[single-slit diffraction]有两种:一种是菲涅耳衍射[Fresnel diffraction],单

缝距离光源和接收屏[receiving screen]均为有限远[near field],或者说入射波和衍

射波都

是球面波;另一种是夫琅禾费衍射[Fraunhofer diffraction],单缝距离光源和接收屏

均为

无限远[far field]或相当于无限远,即入射波和衍射波都可看作是平面波。

在用散射角[scattering angle]极小的激

光器(<产生激光束[laser beam],

通过一条很细的狭缝(~0.3mm 宽),

在狭缝后大于0.5m 的地方放上观察屏,

就可以看到衍射条纹,它实际上就是夫琅

禾费衍射条纹,如图1所示。 当激光照射在单缝上时,根据惠更斯—菲涅耳原理[Huygens-Fresnel principle],单

缝上每一点都可看成是向各个方向发射球面子波的新波源。由于子波迭加的结果,在屏 上可以得到一组平行于单缝的明暗相间的条纹。

激光的方向性强,可视为平行光束。宽度为d 的单缝产生的夫琅禾费衍射图样

[pattern],其衍射光路图满足近似条件:

D x ≈≈θθsin ()d D >>

产生暗条纹[dark fringes]的条件是:

λθk d =sin ()Λ,3,2,1±±±=k (1)

暗条纹的中心位置为:

d

D k x λ= (2) 两相邻暗纹之间的中心是明纹次极大的中心[center of bright fringes]。 由理论计算可得,垂直入射于单缝平面的平行光经单缝衍射后光强分布

[intensity

distribution of light]的规律为:

式中,d 是狭缝宽[width],λ是波长D 是单缝位置到光电池[photocelll] 如图2所示。

当θ相同,即x 到的光强相同的图样是平行于狭缝的条纹。当0=β时, 图2

0x =,0I I =,在整个衍射图样中,此处光强最强,称为中央主极大[central main

maximum];中央明纹最亮、最宽,它的宽度为其他各级明纹宽度的两倍。

当()Λ,2,1±±==k k πβ,即d

D k x λ=时,0I =,在这些地方为暗条纹。暗条纹是 以光轴为对称轴,呈等间隔、左右对称的分布。中央亮条纹的宽度x ?可用1±=k 的两 条暗条纹间的间距确定,2D x d

λ?=;某一级暗条纹的位置与缝宽d 成反比,d 大,x 小,各级衍射条纹向中央收缩;当d 宽到一定程度,衍射现象便不再明显,只能看到中 央位置有一条亮线,这时可以认为光线是沿几何直线传播的。

次极大[secondary maximum]明纹与中央明纹的相对光强分别为:

2、衍射障碍宽度d 的测量

由以上分析,如已知光波长λ,可得单缝的宽度计算公式为 x

D k d λ= (5) 因此,如果测到了第k 级暗条纹的位置x ,用光的衍射可以测量细缝的宽度d 。同 理,如已知单缝的宽度d ,可以测量未知的光波长λ。

3、光电检测

光的衍射现象是光的波动性的一种表现。研究光的衍射现象不仅有助于加深对光 本质的理解,而且能为进一步学好近代光学技术打下基础。衍射使光强在空间重新分布, 利用光电元件测量光强的相对变化,是测量光强的方法之一,也是光学精密测量的常用 方法。

当在小孔屏位置处放上硅光电

池和一维光强读数装置,与数字检

流计(也称光点检流计)相连的硅

光电池可沿衍射展开方向移动,那

么数字检流计所显示出来的光电流 的大小就与落在硅光电池上的光强成正比,实验装置如图3所示。

根据硅光电池的光电特性可知,光电流和入射光能量成正比,只要工作电压不太 小,光电流和工作电压无关,光电特性是线性关系。所以当光电池与数字检流计构成的

(4)

回路内电阻恒定时,光电流的相对强度就直接表示了光的相对强度。

由于硅光电池的受光面积较大,而实际要求测出各个点位置处的光强,所以在硅光电池前装一细缝光栏(0.5mm),用以控制受光面积,并把硅光电池装在带有螺旋测微装置的底座上,可沿横向方向移动,这就相当于改变了衍射角。

四、实验仪器

SGS-3型衍射光强实验系统:①单色光源:Ne

He 激光器;②衍射器件:可调单缝、多缝板、多孔板、光栅;③接收器件:光传感器、光电流放大器、白屏;④光具座:1m硬铝导轨。

附1:二维调节滑动座

这是光具座上使用的一种有特殊装置的滑动座,4个旋钮分列两侧,其中一侧有3个,上方的用于调节光学器件(如狭缝)在竖直平面内的转角,使器件铅直,中间的用于横向调节;下面的用于锁定滑动座在导轨上的位置。

附2:移动测量架

主要机构是一个百分鼓轮控制精密丝杠,使一个可调狭缝往复移动,并由指针在直尺上指示狭缝的位置,狭缝前后分别有进光管和安装光电探头的圆套筒。鼓轮转动一周,狭缝移动1mm,所以鼓轮转动一个小格,狭缝(连同光电探头)只移动0.01mm。

附3:光传感器

主要由硅光电探测器用于相对光强测量,波长范围:200-1050nm。

附4:数显光电流放大器

通过XS12K3P接插件(航空插头)与光传感器连接,可在与测量相对光强有关的实验中使用。该仪器操作简便,前面板上除数字显示窗和开关外,只设一个增益调节旋钮。如遇较高光强超出增益调节范围而溢出(窗口显示“1”),可酌情减小增益或减小狭缝宽度,以恢复正常显示。

五、实验内容与步骤

按图4安装好各实验装置。开启光电流放大器,预热10-20分钟。

图4

1-激光器,2-单缝,3-光导轨,4-小孔屏,5-光电探头,6-一维测量装置,

7-数字检流计

(一)准备工作

以一维测量架上光电探头的轴线为基准,调节光学系统中各光学元件同轴等高。

1、转动测量架上的百分手轮,将光电探头调到适当位置

2、调节激光器水平

(1)将移动光靶装入一个有横向调节装置的普通滑座上。移动光靶,使光靶平面和测量架进光口平行。并通过横向调节装置,使靶心对准光电探头进光口正中心;

(2)接通激光器电源,沿导轨来回移动光靶,调节激光器架上的六个方向控制手钮,使得光点始终打在靶心上;

3、取下光靶,装上白屏

将狭缝放进有横向调节装置的滑座上,调整狭缝同轴等高。同时将狭缝固定在距离光传感器850mm左右(注:由于光传感器接受面距导轨上的刻度尺有一固定距离,所以在读刻度尺的读数时要加上约60mm)。

(二)观察衍射图样

白屏放在光传感器前,观察衍射图样。根据衍射斑的状况,适当调节狭缝宽度。致使衍射图样清晰,各级分开的距离适中,便于测量。

(三)测量

1、取下白屏,接通光电流放大器电源

转动百分鼓轮,横向微移测量架,使衍射中央主极大进入光传感器接收口,左右移动的同时,观察数显值。若数显值出现1,说明光能量太强,应

(1)逆时针调节光电流放大器的增益,建议示值在1500左右

(2)调节光传感器侧面的测微头,减小入射面到接收面上的能量

注意:如果狭缝的宽度一旦确定,那么在整个数据测量过程中都不得改动

2、按直尺和鼓轮上的读数和光电流放大器数字显示,记下光电探头位置和相对光强数值

3、在略小于中央主极大处开始记录数据

选定任意单方向转动鼓轮,每转动0.1mm(百分鼓轮上的10个格),记录1次数据,直到测完0-2级极大和1-3级极小为止。

注意:在读数前,应绕选定的单方向旋转几圈后再开始读数,避免回程差

附:激光器的功率输出或光传感器的电流输出有些起伏,属于正常现象。使用前 经10-20min 预热,可会好些。实际上,接收装置显示数值的起伏变化小于10%时,对 衍射图样的绘制并无明显影响。

六、实验数据记录与数据处理

1、数据记录表格(m 9108.632-?=λ)

坐 标()mm x 相对强度 I

坐 标()mm x 相对强度 I 坐 标()mm x 相对强度 I 坐 标()mm x 相对强度 I 29

865 141 16 34

962 93 17 38

1046 59 19 52

1143 39 21 60

1227 26 23 68

1324 20 26 74

1412 17 28 78

1512 15 29 82

1604 17 29 85

1677 20 32 86

1730 25 32 87

1777 32 33 84

1820 39 34 78

1854 48 33 71

1863 55 32 63

1864 63 30 54

1853 69 30 44

1832 73 29 35

1795 76 26 28

1749 78 23 22

1697 77 22 18

1622 74 20 16

1540 69 18 16

1440 64 17 20

1346 58 16 26

1260 52 15 39

1157 46 14 64

1045 40 14 88

927 33 14 135

826 28 14 180

721 24 15 226

636 20 15 290

548 18 15 375

465 16 16 447

395 15 16 549

318 15 19 669

252 14 19 771 194 14 20

2、数据处理

1)按测得的数据画出相对光强I 与被测点到中央级的距离x 的函数关系曲线

2)从图中找出极大值和极小值的位置,以及各极大值对应光强值,列出表格 项目

极大值 极小值 级数

0 1 2 1 2 3 坐标位置

()mm x

相对强度I 1864 78 34 15 14 14 ①1-3级暗条纹与中央主极大之间距离

狭缝测量值0.175mm =测d ,mm D 850=,m 7108.632-?=λ,根据公式d D k x λ= 可得1-3级暗条纹与中央主极大之间距离的计算值: mm d D

x 07.310175.010850108.6323391=????==---λ级计 mm d D x 15.610

175.010850108.632223392=?????==---λ级计 mm d D x 22.910175.010850108.6323333

93=?????==---λ级计

1-3级暗条纹与中央主极大之间距离的测量值:

mm x 10.325.4635.491=-=级测

mm x 00.625.4625.522=-=级测

mm x 90.825.4615.553=-=级测

1-3级暗条纹与中央主极大之间距离的百分误差比为: %98.0%10007.310.307.3%1001111=?-=?-=级计级测级计级x x x E

%44.2%10015.600.615.6%1002222=?-=?-=级计级测级计级x x x E %47.3%10022.990.822.9%1003333=?-=?-=级计级测级计级x x x E

②1-2级明条纹与中央主极大之间的相对光强比

1-2级明条纹与中央主极大之间的相对光强比的测量值:

042.0186478011===测测测I I A 018.01864

34022===测测测I I A 1-2级明条纹与中央主极大之间的相对光强比的理论值:

047.01=理A 017.02=理A

1-2级明条纹与中央主极大之间的相对光强比的百分误差比为:

%64.10%100047.0042.0047.0%1001111=?-=?-=理

测理级A A A E %88.5%100017.0018.0017.0%1002222=?-=?-=理测

理级A A A E

3)计算狭缝宽度d

1级暗条纹与中央主极大之间距离的测量值mm x 10.31=级测,根据公式x D k d λ=可 得狭缝宽度的计算值: mm x D d 174.010

10.31085010632.833-91=????==--级测计λ 狭缝测量值0.175mm =测d ,则狭缝宽度的百分误差比为: %57.0%100175.0174.0175.0%100=?-=?-=测计

测d d d E

七、注意事项

1、单面测微狭缝不允许超过零位,以保证刃口不被损坏。

2、光传感器对光非常敏感,不允许用激光器或其他强光照射。

3、激光器电源的正负极不允许错接。激光管两端的高压引线头千万不要拔出,激光电源空载输出电压高达数千伏,要警惕误触。

4、激光束光强极高,切勿用眼睛对视,防止视网膜遭永久性损伤。

5、测量过程中要防止回程误差。即测量开始时,应将百分鼓轮按原方向转几圈,才开始读数测量;测量过程中百分鼓轮只能沿一个方向旋转,一旦反转,数据无效,须重新调整再开始读数。

6、保护光学元件的光学表面,不得触摸光学元件的光学表面。

7、实验完成后,不可调动仪器,要等老师检查完数据并认可后才能关机。

八、实验指导要点

1、简要说明本实验的作用及在近代光学技术中的地位。

2、简要介绍本实验内容、原理,主要包括:

1)衍射产生的条件及衍射条纹的获得;

2)单缝夫朗禾费衍射满足的条件,光强的计算公式,理论的光强分布曲线。

3、仪器结构及使用说明

1)激光器的结构及使用注意事项;

2)一维光强测量光具座和光电流放大器的结构及使用注意事项。

4、单缝衍射的调节及光强分布的测量

1)讲解和演示操作步骤

2)分析说明容易出现的错误,如:

激光器调平:主要是激光器支架上的控制手钮因调节不当,过度扭转,与激光管接触不好,导致调平困难。所以利用白屏调节激光束是否进入光电探头的进光口,这样操作简便,提高效率,且对实验结果无影响。

光传感器增益调节:主要是将增益调节过大,会把外界光、光电探头本身的暗电流等因素扩大,造成测的数据误差过大。所以要适当调节增益,减少广电探头进光口狭缝的宽度,来控制进入光电探头光的能量大小。

5、强调实验结果的误差分析以及课后思考题的解答要求

九、实验思考题

1、激光器输出的光强如有变动,对单缝衍射图样和光强分布曲线有无影响?具体 说明有什么影响?

答:(1)对单缝衍射图样无影响。因为λθk d =sin ,而θθ≈sin ,则d k λθ≈。在 d 、k 和λ相同时,θ相等,与光强无关,各级条纹位置不变,衍射图样不变。

(2)对光强分布曲线有影响。因衍射角θ并不变动,即D x ?=θ不变化,光强 分布曲线的横坐标不变,而纵坐标变化,则光强分布曲线一定变化。但激光器的功率输 出有起伏是不可避免的,属正常现象。实际上只要起伏变化小于10%时,对光强分布 曲线并无明显影响。

2、如以矩形孔代替单缝,其衍射图样在长边方向展开得宽,还是在短边方向上展 开得宽些?为什么? 答:在长边方向上展开得宽些。因为d

k λθ≈,衍射角θ与单缝宽度d 成反比。缝 变窄时,衍射角比较大;缝加宽时,衍射角减小,各级条纹向中央收缩。所以,在长边 方向上展开得宽些。

附录1、实验操作评分标准

1、按规定完成预习任务。(5分)

2、测量原理清楚、激光器连线、使用正确。(10分)

3、实验操作规范、准确。(15分)

4、干涉条纹质量高。(20分)

5、测量数据合理、记录科学。(35分)

6、在规定时间内完成实验项目。(10分)

7、仪器收拾整齐,仪器使用记录填写完整。(5分)

附录2、实验报告评分标准

1、实验名称、目的、仪器、原理的表述是否完整、合理。(15分)

2、实验内容与步骤的描述是否清晰、完整、正确。(15分)

3、数据记录是否完整、准确,数据处理是否正确、清楚、详尽,误差是否在允 许范围内。(40分)

4、实验结果分析是否正确、合理,有无改进建议。(10分)

5、完成老师指定的思考题。(10分)

6、文字、图和表格是否清楚、工整。(5分)

7、是否及时提交实验报告。(迟交一周扣5分)

注:

1、实验操作、实验报告评分以等级的形式给出:A+(95分),A(90分),_A (85分);B+(80分),依此类推,D为不及格。

2、有下列情况实验成绩将作调整:

1)实验有新发现,见解独特、有创新,实验成绩评定后,提高一档。

2)迟到,操作成绩降一档。

3)缺席,该次成绩按0分记。

4)无故迟交报告,实验报告成绩降一档。

5)篡改实验数据,实验操作或实验报告成绩降一档。

6)抄袭报告或数据、实验成绩为0分。

全息照相实验实验报告

物理与光电工程学院 光电信息技术实验报告 姓名:张皓景 学号: 班级:光信息科学与技术专业2011级2班实验名称:全息照相实验 任课教师:裴世鑫

一、实验目的 1.了解光学全息照相的基本原理及其主要特点。 2.学习全息照相的拍摄方法和实验技术。 3.了解全息照相再现物像的性质、观察方法。 二、实验仪器 三、实验装置示意图 5底片 图1 全息照相光路 四、实验原理 全息照相是一种二步成像的照相技术。第一步采用相干光照明,利用干涉原理,把物体

在感光材料(全息干版)处的光波波前纪录下来,称为全息图。第二步利用衍射原理,按一定条件用光照射全息图,原先被纪录的物体光波的波前,就会重新激活出来在全息图后继续传播,就像原物仍在原位发出的一样。需要注意的是我们看到的“物”并不是实际物体,而是与原物完全相同的一个三维像。 1.全息照相的纪录——光的干涉 由光的波动理论知道,光波是电磁波。一列单色波可表示为: 2cos(t )r x A πω?λ=+- (1) 式中,A 为振幅,ω 为圆频率,λ 为波长,φ 为波源的初相位。 一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加: 12cos(t )n i i i i i r x A πω?λ==+- ∑ (2) 因此,任何一定频率的光波都包含着振幅(A )和位相(ωt+φ-2πr/λ)两大信息。 全息照相的一种实验装置的光路如图(1)所示。激光器射出的激光束通过分光板分成两束,一束经透镜扩束后照射到被摄物体上,再经物体表面反射(或透射)后照射到感光底片(全息干版)上,这部分光叫物光。另一束经反射镜改变光路,再由透镜扩大后直接投射到全息干版上,这部分光称为参考光。由于激光是相干光,物光和参考光在全息底片上叠加,形成干涉条纹。因为从被摄物体上各点反射出来的物光,在振幅上和相位上都不相同,所以底片上各处的干涉条纹也不相同。强度不同使条纹明暗程度不同,相位不同使条纹的密度、形状不同。因此,被摄物体反射光中的全部信息都以不同明暗程度和不同疏密分布的干涉条纹形式记录下来,经显影、定影等处理后,就得到一张全息照片。这种全息照片和普通照片截然不同,一般在全息照片上只有通过高倍显微镜才能看到明暗程度不同、疏密程度不同的干涉条纹。由于干涉条纹密度很高,所以要求记录介质有较高的分辨率,通常达1000 条线/毫米以上,故不能用普通照相底片拍摄全息图。 2.全息照相的再现——光的衍射 由于全息照相在感光板上纪录的不是被摄物的直接形象,而是复杂的干涉条纹,因此全息照片实际上相当于一个衍射光栅,物象再现的过程实际是光的衍射现象。要看到被摄物体的像,必须用一束同参考光的波长和传播方向完全相同的光束照射全息照片,这束光叫再现光。这样在原先拍摄时放置物体的方向上就能看到与原物形象完全一样的立体虚像。如图2 所示把拍摄好的全息底片放回原光路中,用参考光波照射全息片时,经过底片衍射后有三部分光波射出。 0 级衍射光——它是入射再现光波的衰减。 +1 级衍射光——它是发散光,将形成一个虚像。如果此光波被观察者的眼睛接收,就等于接收了原被摄物发出的光波,因而能看到原物体的再现像。

4光的衍射参考答案

《大学物理(下)》作业 No.4 光的衍射 (电气、计算机、詹班) 一 选择题 1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄, 同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 (A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动 [ A ] [参考解] 一级暗纹衍射条件:λ?=1sin a ,所以中央明纹宽度 a f f f x λ ??2sin 2tan 211=≈=?中。衍射角0=?的水平平行光线必汇聚于透镜主 光轴上,故中央明纹向上移动。 2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹 (A )间距变大 (B )间距变小 (C )不发生变化 (D )间距不变,但明纹的位置交替变化 [ C ] [参考解] 单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。 3.波长λ=5500?的单色光垂直入射于光栅常数d=2×10- 4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 (A )2 (B )3 (C )4 (D )5 [ B ] [参考解 ]

由光栅方程λ?k d ±=sin 及衍射角2 π ?< 可知,观察屏可能察到的光谱线 的最大级次64.310 550010210 6 =??=<--λd k m ,所以3=m k 。 4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。 [ D ] [参考解] 参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。或由缺级条件分析亦可。 二 填空题 1.惠更斯——菲涅耳原理的基本内容是:波阵面上各面积元发出的子波在观察点P 的 相干叠加 ,决定了P 点合振动及光强。 2.在单缝夫琅和费衍射实验中,屏上第三级暗纹对应的单缝处波阵面可划分为 6 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是 明 纹。 [参考解] 由单缝衍射条件(其中n 为半波带个数,k 为对应级次)可知。 ???? ???±?+±=?==,各级暗纹 ,次极大,主极大λλλ?δk k n a 2 )12(02sin 3.如图所示的单缝夫琅和费衍射中,波长λ的单色光垂直入 射在单缝上,若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中CD BC AB ==,那么光线1和2在P 点的相位差为 π 。

物理实验报告测量单缝衍射的光强分布

实验名称:测量单缝衍射的光强分布 实验目的: a .观察单缝衍射现象及其特点; b .测量单缝衍射的光强分布; c .应用单缝衍射的规律计算单缝缝宽; 实验仪器: 导轨、激光电源、激光器、单缝二维调节架、小孔屏、一维光强测量装置、WJH 型数字式检流计。 实验原理和方法: 光在传播过程中遇到障碍物时将绕过障碍物,改变光的直线传播,称为光的衍射。当障碍物的大小与光的波长大得不多时,如狭缝、小孔、小圆屏、毛发、细针、金属丝等,就能观察到明显的光的衍射现象,亦即光线偏离直线路程的现象。光的衍射分为夫琅和费衍射与费涅耳衍射,亦称为远场衍射与近场衍射。本实验只研究夫琅和费衍射。理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。单缝的夫琅和费衍射光路图如下图所示。 a. 理论上可以证明只要满足以下条件,单缝衍射就处于夫琅和费衍射区域: L a 82>>λ或8 2 a L >>λ 式中:a 为狭缝宽度;L 为狭缝与屏之间的距离;λ为入射光的波长。 可以对L 的取值范围进行估算:实验时,若取m a 4 101-?≤,入射光是Ne He -激光,其波长为632.80nm ,cm cm a 26.12 ≈=λ,所以只要取cm L 20≥,就可满足夫琅和费衍射的 远场条件。但实验证明,取cm L 50≈,结果较为理想。 b. 根据惠更斯-费涅耳原理,可导出单缝衍射的相对光强分布规律:

20 )/(sin u u I I = 式中: λ?π/)sin (a u = 暗纹条件:由上式知,暗条纹即0=I 出现在 λ?π/)sin (a u =π±=,π2±=,… 即暗纹条件为 λ?k a =sin ,1±=k ,2±=k ,… 明纹条件:求I 为极值的各处,即可得出明纹条件。令 0)/(sin 22=u u du d 推得 u u tan = 此为超越函数,同图解法求得: 0=u ,π43.1±,π46.2±,π47.3±,… 即 0sin =?a ,π43.1±,π46.2±,π47.3±,… 可见,用菲涅耳波带法求出的明纹条件 2/)12(sin λ?+±k a ,1=k ,2,3,… 只是近似准确的。 单缝衍射的相对光强分布曲线如下图所示,图中各级极大的位置和相应的光强如下: ?sin 0 a /43.1π± a /46.2π± a /47.3π± I 0I 0047.0I 0017.0I 0018.0.I

光强分布的测量

图1 单缝衍射相对光强分布曲线图 9087848178757269666360575451484542 由图1可知: 1,当x=69时I=I0 ,出现主极大。此时,衍射图样光强最强,表现为中央亮纹。 2,夫琅禾费光强呈对称分布,主极大两侧次极大是等间距对称分

布。 3,光强分布只有一个主极大,而在其两侧分布有多个次极大,且两极间必有一极小,在衍射图样中表现为暗纹。 4,在主极大两侧的次极大相对光强比主极大小得多,中央明纹最宽最亮。 3.计算单缝宽度: D=82.0cm 第一级暗条纹: X=(76-62)/2=7cm b1=kλD/X=1×650×10∧﹣9×0.82/(7×10∧﹣3)=0.076mm 第二级暗条纹: X=(82-55)/2=13.5 cm b2=kλD/X=2×650×10∧﹣9×0.82/(13.5×10∧﹣3)=0.079mm 第三级暗条纹: X=(90-48)/2=21cm b3=kλD/X=3×650×10∧﹣9×0.82/(21×10∧﹣3)=0.076mm k=(b1+b1+b1)/3=(0.76+0.79+0.76)/3=0.077mm 分析误差:实验误差有可能来自于环境附加光强的影响以及转动螺旋侧位装置的过程中由于转动一周又向回转的原因以及其他操作所引起的误差等。

2.双缝衍射数据的处理:

图2双缝衍射相对光强分布曲线图 4.衍射现象的规律和特征: 以上图样依次为GS1,GS2 ,SK1/2/3, JK ,双缝衍射示意图。 由图可知: GS1衍射呈矩形分布,亮纹为点型,且以中央处最亮,向外亮度依 次递减。 GS2衍射呈线型分布,亮纹为点型,且以中央处最亮,向两侧亮 度依次递减。 SK1/2/3 衍射呈同心圆分布,以中央处为最亮,向外侧亮度依次 递减。

《光的衍射》答案.docx

第7章光的衍射 一、选择题 1(D), 2(B), 3(D), 4(B), 5(D), 6(B), 7(D), 8(B), 9(D), 10(B) 二、填空题 (1). 1.2mm, 3.6mm (2). 2, 4 ⑶.N2, N (4). 0, ±1, ±3, ........... (5)? 5 (6). 更窄更亮 (7). 0.025 ⑻.照射光波长,圆孔的肓径 (9). 2.24X104 (10). 13.9 三、计算题 1.在某个单缝衍射实验中,光源发出的光含冇两种波长佥和几2,垂直入射于单缝上.假如 入的第一级衍射极小与几2的第二级衍射极小相重合,试问 (1)这两种波氏Z间冇何关系? (2)在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? 解:(1)由单缝衍射暗纹公式得 a sin £ = lAj a sin 02 = 2A2 由题意可知&]=2,sin O x = sin 0. 代入上式可得入=2A2 (2) a sin = 2k{A2(k\ = 1,2, .......... ) sin&] = 2k l A2 la a sin g =灯兄2 (k2=1,2, ............) sin= k2A2 la 若k2=2k\,贝Ij0]=仇,即2i的任一k\级极小都有弘的2k\级极小与之重合. 2.波长为600 nm (1 nm=10 9 m)的单色光垂直入射到宽度为a=0.10 mm的单缝上,观察夫琅禾费衍射图样,透镜焦距戶1.0 m,屏在透镜的焦平面处.求: (1)中央衍射明条纹的宽度△/(); (2)第二级喑纹离透镜焦点的距离七 解:(1)对于第一级暗纹, 有a sin?仟2 因0很小,故tg卩仟sin卩i = 2/a 故中央明纹宽度A.¥()= 2/tg }=2fA / ? = 1.2 cm

单缝衍射光强分布实验报告

单缝衍射光强分布实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

单缝衍射光强分布 【实验目的】 1.定性观察单缝衍射现象和其特点。 2.学会用光电元件测量单缝衍射光强分布,并且绘制曲线。 【实验仪器】 【实验原理】 光波遇到障碍时,波前受到限制 而进入障碍后方的阴影区,称为衍 射。衍射分为两类:一类是中场衍 射,指光源与观察屏据衍射物为有限远时产生的衍射,称菲涅尔衍射;一类是远场衍射,指光源与接收屏距衍射物相当于无限远时所产生的衍射,叫夫琅禾费衍射,它就是平行光通过障碍的衍射。 夫琅禾费单缝衍射光强I =I 0 (sin β)2β2;其中β=πa sin θλ;a 为缝宽,θ 为衍射角,λ为入射光波长。 上图中θ为衍射角,a 为缝宽。 【实验内容】 (一) 定性观察衍射现象 1.按激光器、衍射板、接收器(屏)的顺序在光节学导轨上放置仪 器,调节光路,保证等高共轴。衍射板与接收器的间距不小于1m 。 2.观察不同形状衍射物的衍射图样,记录其特点。 (二)测量单缝衍射光强分布曲线 仪器名称 光学导轨 激光器 接收器 数字式检流计 衍射板 型号

1.选择一个单缝,记录缝宽,测量-2到+2级条纹的光强分布。要求至少测30个数据点。 2.测量缝到屏的距离L。 3.以sinθ为横坐标,I/I0为纵坐标绘制曲线,在同一张图中绘出理论曲线,做比较。 【实验步骤】 1.摆好实验仪器,布置光路如下图 顺序为激光器—狭缝—接收器—数字检流计,其中狭缝与出光口的距离不大于10cm,狭缝与接收器的距离不小于1m。 2.调节激光器水平,即可拿一张纸片,对准接收器的中心,记下位置,然后打开激光器,沿导轨移动纸片,使激光器的光点一直打纸片所记位置,即光线打过来的高度要一致。 3.再调节各光学元件等高共轴,先粗调,即用眼睛观察,使得各个元件等高;再细调,用尺子量取它们的高度(狭缝的高度,激光器出光口的高度,接收器的中心),调节升降旋钮使其等高,随后用一纸片,接到光源发出的光,以其上的光斑位置作为参照,依次移动到各个元件前,调节他们的左右(即调节接收器底座的平移螺杆,狭缝底座的平移螺杆)高低,使光线恰好垂直照到元件的中心。 4.调节狭缝宽度,使光束穿过,可见衍射条纹,调节宽度,使条纹中心亮纹的宽度约为5mm,且使得条纹最亮,而数字检流计的读数最大,经过上述调节后,上述任何一个旋钮的改变都会使读数变小。

光强分布的测量

光强分布的测量实验 一、实验目的 1.观察单缝衍射现象,加深对衍射理论的理解。 2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律。 3.学会用衍射法测量微小量。 4. 验证马吕斯定律。 二、实验原理 如图1所示, 图1 夫琅禾费单缝衍射光路图 与狭缝E 垂直的衍射光束会聚于屏上P 0处,是中央明纹的中心,光强最大,设为I 0,与光轴方向成Ф角的衍射光束会聚于屏上P A 处,P A 的光强由计算可得: 式中,b 为狭缝的宽度,λ为单色光的波长,当0=β时,光强最大,称为主极大,主极大的强度决定于光强的强度和缝的宽度。 当πβk =,即: 2 20 sin ββ I I A =)sin (λ φ πβb = b K λφ=sin ) ,,,???±±±=321(K

时,出现暗条纹。 除了主极大之外,两相邻暗纹之间都有一个次极大,由数学计算可得出现这些次极大的位置在β=±1.43π,±2.46π,±3.47π,…,这些次极大的相对光强I/I 0依次为0.047,0.017,0.008,… 图2 夫琅禾费衍射的光强分布 夫琅禾费衍射的光强分布如图2所示。 图3 夫琅禾费单缝衍射的简化装置 用氦氖激光器作光源,则由于激光束的方向性好,能量集中,且缝的宽度b 一般很小,这样就可以不用透镜L 1,若观察屏(接受器)距离狭缝也较远(即D 远大于b )则透镜L 2也可以不用,这样夫琅禾费单缝衍射装置就简化为图3,这时, 由上二式可得 三、实验装置 激光器座、半导体激光器、导轨、二维调节架、一维光强测试装置、分划板 、可调狭缝、平行光管、起偏检偏装置、光电探头 、小孔屏、 数字式检流计、专用测量线等。 D x /tan sin =≈φφx D K b /λ=

光的衍射参考答案

光的衍射参考解答 一 选择题 1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚 透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 (A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动 [ A ] [参考解] 一级暗纹衍射条件:λ?=1sin a ,所以中央明纹宽度a f f f x λ ??2sin 2tan 211=≈=?中。衍射角0 =?的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。 2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹 (A )间距变大 (B )间距变小 (C )不发生变化 (D )间距不变,但明纹的位置交替变化 [ C ] [参考解] 单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。 3.波长λ=5500?的单色光垂直入射于光栅常数d=2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 (A )2 (B )3 (C )4 (D )5 [ B ] [参考解] 由光栅方程λ?k d ±=sin 及衍射角2 π ?< 可知,观察屏可能察到的光谱线的最大级次 64.310 550010210 6 =??=<--λd k m ,所以3=m k 。 4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。 [ D ] [参考解] 参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。或由缺级条件分析亦可。 二 填空题 1.惠更斯——菲涅耳原理的基本内容是:波阵面上各面积元发出的子波在观察点P 的 相干叠加 ,决定了P 点合振动及光强。 2.在单缝夫琅和费衍射实验中,屏上第三级暗纹对应的单缝处波阵面可划分为 6 个半波带,若将缝宽缩小

物理实验报告5_测量单缝衍射的光强分布(完整资料).doc

此文档下载后即可编辑 实验名称:测量单缝衍射的光强分布 实验目的: a.观察单缝衍射现象及其特点; b.测量单缝衍射的光强分布; c.应用单缝衍射的规律计算单缝缝宽; 实验仪器: 导轨、激光电源、激光器、单缝二维调节架、小孔屏、一维光强测量装置、WJH型数字式检流计。 实验原理和方法: 光在传播过程中遇到障碍物时将绕过障碍物,改变光的直线传播,称为光的衍射。当障碍物的大小与光的波长大得不多时,如狭缝、小孔、小圆屏、毛发、细针、金属丝等,就能观察到明显的光的衍射现象,亦即光线偏离直线路程的现象。光的衍射分为夫琅和费衍射与费涅耳衍射,亦称为远场衍射与近场衍射。本实验只研究夫琅和费衍射。理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。单缝的夫琅和费衍射光路图如下图所示。 a. 理论上可以证明只要满足以下条件,单缝衍射就处于夫琅和费衍射区域:

L a 82 >>λ或82a L >>λ 式中:a 为狭缝宽度;L 为狭缝与屏之间的距离;λ为入射光的波长。 可以对L 的取值范围进行估算:实验时,若取m a 4101-?≤,入射光是Ne He -激光,其波长为632.80nm ,cm cm a 26.12 ≈=λ,所以只 要取cm L 20≥,就可满足夫琅和费衍射的远场条件。但实验证明,取cm L 50≈,结果较为理想。 b. 根据惠更斯-费涅耳原理,可导出单缝衍射的相对光强分布规律: 20 )/(sin u u I I = 式中: λ?π/)sin (a u = 暗纹条件:由上式知,暗条纹即0=I 出现在 λ?π/)sin (a u =π±=,π2±=,… 即暗纹条件为 λ?k a =sin ,1±=k ,2±=k ,… 明纹条件:求I 为极值的各处,即可得出明纹条件。令 0)/(sin 22=u u du d 推得 u u tan = 此为超越函数,同图解法求得: 0=u ,π43.1±,π46.2±,π47.3±,… 即 0sin =?a ,π43.1±,π46.2±,π47.3±,… 可见,用菲涅耳波带法求出的明纹条件 2/)12(sin λ?+±k a ,1=k ,2,3,… 只是近似准确的。 单缝衍射的相对光强分布曲线如下图所示,图中各级极大的位置和相应的光强如下: ?sin 0 a /43.1π± a /46.2π± a /47.3π±

单缝衍射光强分布的测定

实验名称: 单缝衍射光强分布的测定 实验时间: 实验者: 院系: 学号: 指导教师签字: 实验目的: 1.测定单缝衍射的相对光强分布; 2.测定半导体激光器激光的波长。 实验仪器设备: 光具座 半导体激光器 可调单缝 硅光电池 光电检流器 移测显微镜 光屏 实验原理: 1. 夫琅禾费衍射 当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。 衍射通常分为两类:一类是满足衍射屏离光源或接收屏的距离为有限远的衍射,称为菲涅耳衍射;另一类是满足衍射屏与光源和接收屏的距离都是无限远的衍射,也就是照射到衍射屏上的入射光和离开衍射屏的衍射光都是平行光的衍射,称为夫琅禾费衍射。 以波长为λ的单色平行光(实验用散射角极小的 激光器产生激光束)垂直通过单缝,经衍射后,在屏 上可以得到一组平行于单缝的明暗相间的条纹(夫琅禾费衍射条纹)。如图所示。根据惠更斯——菲涅耳原 理,可知 2 20 sin ββ θI I = 由θλ π βsin a = 得 220 ) s i n () s i n ( s i n λ θπλθ πθa a I I = 0I I θ叫做相对光强 暗纹条件 ) 0,,2,1(a sin =±±==θλ θI k k (θ很小,故θθθ≈≈tan sin ,) 中央明纹两侧暗条纹之间的角宽 a 2λ θ= ? 相邻两暗条纹之间角宽a λθ=?’ 0=θ时,0I I =θ,此时光强最大,为主最大。 其两侧相邻两暗条纹间都有一个次最大,角位置分别为 。,、、 a 47.3a 46.2a 43.1sin λ λλθ±±±= 相应的 008.0017.0047.00、、 =I I θ 得到单缝衍射相对光强分布曲线

工程光学习题解答 第十二章 光的衍射

第十二章 光的衍射 1. 波长为500nm 的平行光垂直照射在宽度为0.025mm 的单缝上,以焦距为50cm 的会 聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)第一亮纹和第二亮纹的强度。 解:(1)零强度点有sin (1,2, 3....................)a n n θλ==±±± ∴中央亮纹的角半宽度为0a λ θ?= ∴亮纹半宽度29 0035010500100.010.02510 r f f m a λ θ---???=??===? (2)第一亮纹,有1sin 4.493a π αθλ = ?= 9 13 4.493 4.493500100.02863.140.02510rad a λθπ--??∴= ==?? 2 1150100.02860.014314.3r f m mm θ-∴=?=??== 同理224.6r mm = (3)衍射光强2 0sin I I αα?? = ??? ,其中sin a παθλ= 当sin a n θλ=时为暗纹,tg αα=为亮纹 ∴对应 级数 α 0 I I 0 0 1 1 4.493 0.04718 2 7.725 0.01694 . . . . . . . . . 2. 平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为 2 0sin[(sin sin )](sin sin )a i I I a i πθλπθλ?? -??=????-?? 式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图12-50) (2)中央亮纹的角半宽度为cos a i λ θ?=

单缝衍射实验实验报告

单缝衍射实验 一、实验目的 1.观察单缝衍射现象,了解其特点。 2.测量单缝衍射时的相对光强分布。 3.利用光强分布图形计算单缝宽度。 二、实验仪器 He-Ne激光器、衍射狭缝、光具座、白屏、光电探头、光功率计。 三、实验原理 波长为λ的单色平行光垂直照射到单缝上,在接收屏上,将得到单缝衍射图样,即一组平行于狭缝的明暗相间条纹。单缝衍射图样的暗纹中心满足条件: (1) 式中,x为暗纹中心在接收屏上的x轴坐标,f为单缝到接收屏的距离;a为单缝的宽度,k为暗纹级数。在±1级暗纹间为中央明条纹。中间明条纹最亮,其宽度约为其他明纹宽度的两倍。 实验装置示意图如图1所示。 图1 实验装置示意图 光电探头(即硅光电池探测器)是光电转换元件。当光照射到光电探头表面时在光电探头的上下两表面产生电势差ΔU,ΔU的大小与入射光强成线性关系。光电探头与光电流放大器连接形成回路,回路中电流的大小与ΔU成正比。因此,通过电流的大小就可以反映出入射到光电探头的光强大小。 四、实验内容 1.观察单缝衍射的衍射图形;

2.测定单缝衍射的光强分布; 3.利用光强分布图形计算单缝宽度。 五、数据处理 ★(1)原始测量数据 将光电探头接收口移动到超过衍射图样一侧的第3级暗纹处,记录此处的位置读数X(此处的位置读数定义为0.000)及光功率计的读数P。转动鼓轮,每转半圈(即光电探头每移动0.5mm),记录光功率测试仪读数,直到光电探头移动到超过另一侧第3级衍射暗纹处为止。实验数据记录如下: 将表格数据由matlab拟合曲线如下:

★ (2)根据记录的数据,计算单缝的宽度。 衍射狭缝在光具座上的位置 L1=21.20cm. 光电探测头测量底架座 L2=92.00cm. 千分尺测得狭缝宽度 d’=0.091mm. 光电探头接收口到测量座底座的距离△f=6.00cm. 则单缝到光电探头接收口距离为f= L2 - L1+△f=92.00cm21.20cm+6.00cm=76.80cm. 由拟合曲线可读得下表各级暗纹距离: 各级暗纹±1级暗纹±2级暗纹±3级暗纹 距离/mm 10.500 21.500 31.200 单缝宽度/mm 0.093 0.090 0.093 单缝宽度计算过程: 因为λ=632.8nm.由d =2kfλ/△Xi,得 d1=(2*1*768*632.8*10^-6)/10.500 mm=0.093mm. d2=(2*2*768*632.8*10^-6)/21.500 mm=0.090mm.

实验七 CCD多道光强分布测量

实验七 CCD 多道光强分布测量 随着科技进步,当今先进的光谱实验室已不再使用照相干版法获得光谱图形,先进的光学实验室不再用测量望远镜或丝杠带动光电池来测量干涉、衍射花样的光强分布,所使用的 都是以CCD 器件为核 心构成的各种光学测量仪器。 LM99MP 单缝衍射仪/多道光强分布测量系统用线阵CCD 器件接收光谱图形和光强分布,经过微处理系统的分析处理,在监视器上显示出光强曲线,并以之为对象进行测量而展开实验。LM99MP 具有分辨率高(微米级),实时采集、实时处理和实时观测,物理现象显著,物理内涵丰富等明显的优点。 一、 实验目的 CCD 单缝衍射仪用于光学实验项目中作单缝、单丝、双缝、多缝、双光束等的干涉、衍射实验。通过采集系统实时获得曲线,测量其相对光强分布和衍射角,进而测量单缝的缝宽、单丝的直径、光源的波长、双缝的缝宽和缝间距、光栅常数、激光束发散角测量等。 二、 实验原理 光的衍射现象是光的波动性的一种表现,可分为菲涅耳衍射击与夫琅禾费衍射两类。菲涅耳衍射是近场衍射,夫琅禾费衍射是远场衍射,又称平行光衍射。见图8。将单色点光源放置在透镜L1的前焦面,经透镜后的光束成为平行光垂直照射在单缝AB 上,按惠更斯--菲涅耳原理,位于狭缝的波阵面上的每一点都可以看成一个新的子波源,他们向各个方向发射球面子波,这些子波相叠加经透镜L2会聚后,在L2的后焦面上形成明暗相间的衍射条纹,其光强分布规律为: 2 20sin ?? θI I =(1) 其中 ?π λ θ= a sin ,a 是单缝宽度,θ是衍射角,λ为入射光波长。 图1 单缝衍射 参见图2,由(1)式可见: 1、 当θ=0时,I I θ=0,为中央主极大的强度,光强最强,绝大部分的光能都落在中央明

衍射光强分布测量实验报告

衍射光强分布测量 査凡物理系 摘要:为了观察并验证单缝衍射和多缝衍射的图样以及它们的规律,本实验设计了基于水平光路的测量方法。运用自动光强记录仪来对衍射现象进行比较函数化的观察。实验观察到衍射条纹随着缝宽变窄而模糊和间距扩大,并且通过仪器对光强图样的位置定位和夫琅禾费光强的公式来计算单缝的缝宽。该实验装置结构简单、调节方便、条纹移动清晰。 关键词:衍射自动光强记录仪单缝多缝 The Experiment Of Light Distribution Of Diffraction Fan Zha Department of Physics Abstract: In order to observe and validate the rule of light distribution of single slit diffraction and multiple slits diffraction, the automatic grapher of light intensity is used in this experiment in a horizontal light path. We have verified that the diffraction stripes become dim and far away from each other since the slit(s) become narrow, and calculated the width of slit by using the formulas of light intensity. The experimental instrument is simple and convenient to adjust, and the moving interference fringes are clear. Key Words: diffraction automatic grapher of light intensity single slit multiple slits

光栅衍射实验报告

光栅衍射实验 系别 精仪系 班号 制33 姓名 李加华 学号 2003010541 做实验日期 2005年05月18日 教师评定____________ 一、0i =时,测定光栅常数和光波波长 光栅编号:___2____;?=仪___1’___;入射光方位10?=__7°6′__;20?=__187°2′__。 由衍射公式,入射角0i =时,有sin m d m ?λ=。 代入光谱级次m=2、绿光波长λ=546.1及测得的衍射角m ?=19°2′,求得光栅常数 ()2546.13349sin sin 192/60m m nm d nm λ??= ==+? cot cot 2m m m d d ?????==?=? ()4cot 192/601/60 5.962101802180ππ-????=+??=? ? ????? 445.96210 5.962103349 1.997d d nm nm --?=??=??= ()33492d nm =± 代入其它谱线对应的光波的衍射角,得 ()3349sin 2013/60sin 578.72 m nm d nm m ?λ?+?===黄1

()3349sin 209/60576.82 nm nm λ?+? = =黄2 ()3349sin 155/60435.72 nm nm λ?+?==紫 λ λ?== 578.70.4752nm nm λ?==黄1 576.80.4720nm nm λ?= =黄2 435.70.4220nm nm λ?==紫()578.70.5nm λ=±黄1,()576.80.5nm λ=±黄2,()435.70.4nm λ=±紫 由测量值推算出来的结果与相应波长的精确值十分接近,但均有不同程度的偏小。由于实验中只有各个角度是测量值(给定的绿光波长与级数为准确值),而分光计刻度盘读数存在的误差为随机误差,观察时已将观察显微镜中心竖直刻线置于谱线中心——所以猜测系统误差来自于分光镜调节的过程。 二、150'i =?,测量波长较短的黄线的波长 光栅编号:___2____;光栅平面法线方位1n ?=__352°7′__;2n ?=__172°1′__。

衍射光强分布测量实验报告.docx1

衍射光强分布的测量 1008406006 物理师范陈开玉 摘要:为了观察并验证单缝衍射和多缝衍射的图样以及它们的规律,本实验设计了基于水平光路的测量方法。运用自动光强记录仪来对衍射现象进行比较函数化的观察。实验观察到衍射条纹随着缝宽变窄而模糊和间距扩大,并且通过仪器对光强图样的位置定位和夫琅禾费光强的公式来计算单缝的缝宽。该实验装置结构简单、调节方便、条纹移动清晰。 关键词:衍射自动光强记录仪单缝多缝 一、引言 光的衍射现象是光的波动性的重要表现,并在实际生活中有较多应用,如运用单缝衍射测量物体之间的微小间隔和位移,或者用于测量细微物体的尺寸等。本实验要求通过观察、测量夫琅禾费衍射光强分布,加深对光的衍射现象的理解和掌握。 二、实验原理 1,衍射的定义: 波遇到障碍物或小孔后通过散射继续传播的现象。衍射现象是波的特有现象,一切波都会发生衍射现象,而光也是波的一种, 光在传播路径中,遇到不透明或透明的障碍物或者小孔(窄缝),绕过障碍物,产生偏离直线传播的现象称为光的衍射。衍射时产生的明暗条纹或光环,叫衍射图样2,光的衍射分为夫琅禾费衍射和菲涅尔衍射, 夫琅禾费衍射是指光源和观察点距障碍物为无限远,即平行光的衍射;而菲涅尔衍射是指光源和观察点距障碍物为有限远的衍射.本实验研究的只是夫琅禾费衍射.实际实验中只要满足光源与衍射体之间的距离u,衍射体至观察屏之间的距离v都远大于就满足了夫琅禾费衍射的条件,其中a为衍射物的孔径,λ为光源的波长. 3,单缝、单丝衍射原理:

如上图所示,a为单缝宽度,缝和屏之间的距离为v,为衍射角,其在观察屏上的位置为x,x离屏幕中心o的距离为OX=,设光源波长为λ,则有单缝夫琅禾费衍射的光强公式为: 式中是中心处的光强,与缝宽的平方成正比。 若将所成衍射图样的光强画成函数图象在坐标系中,则所成函数图象大致如下 除主极强外,次极强出现在的位置,它们是超越方程的根,其数值为: 对应的值为 当角度很小时,满足,则OX可以近似为 因而我们可以通过得出函数中次级强的峰值的横坐标只差来确定狭缝的宽度a 4,多缝衍射和干涉原理

《大学物理AII》作业 No 光的衍射 参考答案

《大学物理AII 》作业 No.06 光的衍射 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ ------------------------------------------------------------------------------------------------------- ****************************本章教学要求**************************** 1、理解惠更斯-菲涅耳原理以及如何用该原理解释光的衍射现象。 2、理解夫琅禾费衍射和菲涅耳衍射的区别,掌握用半波带法分析夫琅禾费单缝衍射条纹的产生,能计算明暗纹位置、能大致画出单缝衍射条纹的光强分布曲线;能分析衍射条纹角宽度的影响因素。 3、理解用振幅矢量叠加法求单缝衍射光强分布的原理。 4、掌握圆孔夫琅禾费衍射光强分布特征,理解瑞利判据以及光的衍射对光学仪器分辨率的影响。 5、理解光栅衍射形成明纹的条件,掌握用光栅方程计算主极大位置;理解光栅衍射条纹缺级条件,了解光栅光谱的形成以及光栅分辨本领的影响因素。 6、理解X 射线衍射的原理以及布拉格公式的意义,会用它计算晶体的晶格常数或X 射线的波长。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、当光通过尺寸可与(波长)相比拟的碍障物(缝或孔)时,其传播方向偏离直线进入障碍物阴影区,并且光强在空间呈现(非均匀分布)的现象称为衍射。形成衍射的原因可用惠更斯-菲涅耳原理解释,即波阵面上各点都可以看成是(子波的波源),其后波场中各点波的强度由各子波在该点的(相干叠加)决定。 2、光源和接收屏距离障碍物有限远的衍射称为(菲涅尔衍射或近场衍射);光源和接收屏距离障碍物无限远的衍射称为(夫琅禾费衍射)或者远场衍射。在实际操作中,远场衍射是通过(平行光)衍射来实现的,即将光源放置在一透镜的焦点上产生平行光照射障碍物,通过障碍物的衍射光再经一透镜会聚到接收屏上观察来实现。 3、讨论单缝衍射光强分布时,可采用(半波带法)和(振幅矢量叠加法)两种方法,这两种方法得到的单缝衍射暗纹中心位置都是一样的,暗纹中心位置= x (a kf λ ±)。两相邻暗纹中心之间的距离定义为(明纹)宽度,单缝衍射中央明

衍射光强实验报告

教学目的 1、观察单缝衍射现象,加深对衍射理论的理解; 2、学会使用衍射光强实验系统,并能用其测定单缝衍射的光强分布; 3、形成实事求是的科学态度和严谨、细致的工作作风。 重点:SGS-3型衍射光强实验系统的调整和使用 难点:1)激光光线与光电仪接收管共轴调节;2)光传感器增益度的正确调整 讲授、讨论、实验演示相结合 3学时 一、实验简介 光的衍射现象是光的波动性的一种表现。衍射现象的存在,深刻说明了光子的运动 是受测不准关系制约的。因此研究光的衍射,不仅有助于加深对光的本性的理解,也是 近代光学技术(如光谱分析,晶体分析,全息分析,光学信息处理等)的实验基础。 衍射导致光强在空间的重新分布,利用光电传感元件探测光强的相对变化,是近 代技术中常用的光强测量方法之一。 二、实验目的 1、学会SGS-3型衍射光强实验系统的调整和使用方法; 2、观察单缝衍射现象,研究其光强分布,加深对衍射理论的理解; 3、学会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律; 4、学会用衍射法测量狭缝的宽度。 三、实验原理 1、单缝衍射的光强分布 当光在传播过程中经过障碍物时,如不透明物体的边缘、小孔、细线、狭缝等, 一部分光会传播到几何阴影中去,产生衍射现象。如果障碍物的尺寸与波长相近,那么 这样的衍射现象就比较容易观察到。 单缝衍射[single-slit diffraction]有两种:一种是菲涅耳衍射[Fresnel diffraction],单 缝距离光源和接收屏[receiving screen]均为有限远[near field],或者说入射波和衍 射波都 是球面波;另一种是夫琅禾费衍射[Fraunhofer diffraction],单缝距离光源和接收屏 均为

单缝衍射光强分布实验报告.doc

单缝衍射光强分布 【实验目的】 1.定性观察单缝衍射现象和其特点。 2.学会用光电元件测量单缝衍射光强分布,并且绘制曲线。 【实验仪器】 【实验原理】 光波遇到障碍时,波前受到限制 而进入障碍后方的阴影区,称为衍 射。衍射分为两类:一类是中场衍 射,指光源与观察屏据衍射物为有 限远时产生的衍射,称菲涅尔衍射; 一类是远场衍射,指光源与接收屏距衍射物相当于无限远时所产生的衍射,叫夫琅禾费衍射,它就是平行光通过障碍的衍射。 夫琅禾费单缝衍射光强I =I 0 (sin β)2β2;其中β=πa sin θλ;a 为缝宽, θ为衍射角,λ为入射光波长。 上图中θ为衍射角,a 为缝宽。 仪器名称 光学导轨 激光器 接收器 数字式检流计 衍射板 型号

【实验内容】 (一)定性观察衍射现象 1.按激光器、衍射板、接收器(屏)的顺序在光节学导轨上放置仪器,调节光路,保证等高共轴。衍射板与接收器的间距不小于1m。 2.观察不同形状衍射物的衍射图样,记录其特点。 (二)测量单缝衍射光强分布曲线 1.选择一个单缝,记录缝宽,测量-2到+2级条纹的光强分布。要求至少测30个数据点。 2.测量缝到屏的距离L。 3.以sinθ为横坐标,I/I0为纵坐标绘制曲线,在同一张图中绘出理论曲线,做比较。 【实验步骤】 1.摆好实验仪器,布置光路如下图 顺序为激光器—狭缝—接收器—数字检流计,其中狭缝与出光口

的距离不大于10cm,狭缝与接收器的距离不小于1m。 2.调节激光器水平,即可拿一张纸片,对准接收器的中心,记下位置,然后打开激光器,沿导轨移动纸片,使激光器的光点一直打纸片所记位置,即光线打过来的高度要一致。 3.再调节各光学元件等高共轴,先粗调,即用眼睛观察,使得各个元件等高;再细调,用尺子量取它们的高度(狭缝的高度,激光器出光口的高度,接收器的中心),调节升降旋钮使其等高,随后用一纸片,接到光源发出的光,以其上的光斑位置作为参照,依次移动到各个元件前,调节他们的左右(即调节接收器底座的平移螺杆,狭缝底座的平移螺杆)高低,使光线恰好垂直照到元件的中心。 4.调节狭缝宽度,使光束穿过,可见衍射条纹,调节宽度,使条纹中心亮纹的宽度约为5mm,且使得条纹最亮,而数字检流计的读数最大,经过上述调节后,上述任何一个旋钮的改变都会使读数变小。 5.测量光强,先遮住接收器的光探头,选择合适的档位,并对读数进行调零,(若不能调零,则记下该处误差,在得到实验数据后减去),若在测量过程中需要换挡,则换挡需要调零。调节接收器底座的平移螺杆,观察检流计的读数,能够观察到第三暗纹的出现,单方向转动手轮,沿x方向每次转动,从左侧第三级暗条纹一直测到右边第三级暗纹,记录光电流大小和坐标位置。 6.记录缝宽和测量缝到光探头的距离。 【注意事项】

相关文档
相关文档 最新文档