文档库 最新最全的文档下载
当前位置:文档库 › 红外光谱等方法对某未知样品的定性定量分析

红外光谱等方法对某未知样品的定性定量分析

红外光谱等方法对某未知样品的定性定量分析
红外光谱等方法对某未知样品的定性定量分析

定性与定量分析

定性--用文字语言进行相关描述 定量--用数学语言进行描述 定性分析与定量分析应该是统一的,相互补充的;; 定性分析是定量分析的基本前提,没有定性的定量是一种盲目的、毫无价值的定量;; 定量分析使之定性更加科学、准确,它可以促使定性分析得出广泛而深入的结论 定量分析是依据统计数据,建立数学模型,并用数学模型计算出分析对象的各项指标及其数值的一种方法。定性分析则是主要凭分析者的直觉、经验,凭分析对象过去和现在的延续状况及最新的信息资料,对分析对象的性质、特点、发展变化规律作出判断的一种方法。相比而言,前一种方法更加科学,但需要较高深的数学知识,而后一种方法虽然较为粗糙,但在数据资料不够充分或分析者数学基础较为薄弱时比较适用,更适合于一般的投资者与经济工作者。因此,本章以后几节所做的分析基本上以定性分析为主。但是必须指出,两种分析方法对数学知识的要求虽然有高有低,但并不能就此把定性分析与定量分析截然划分开来。事实上,现代定性分析方法同样要采用数学工具进行计算,而定量分析则必须建立在定性预测基础上,二者相辅相成,定性是定量的依据,定量是定性的具体化,二者结合起来灵活运用才能取得最佳效果。 不同的分析方法各有其不同的特点与性能,但是都具有一个共同之处,即它们一般都是通过比较对照来分析问题和说明问题的。正是通过对各种指标的比较或不同时期同一指标的对照才反映出数量的多少、质量的优劣、效率的高低、消耗的大小、发展速度的快慢等等,才能为作鉴别、下判断提供确凿有据的信息。 应用: 在证据法学研究中,定性分析方法和定量分析方法各有长处,可以相辅相成。但是由于我国证据法学的研究人员比较熟悉定性分析方法,所以有必要特别强调定量分析方法的功能和重要性。例如,我们不仅要分析某个证据规则是好还是不好,而且要分析其利弊比例……等等 专利分析法分为定量分析和定性分析两种。定量分析即对专利文献的外部特征(专利文献的各种著录项目)按照一定的指标(如专利数量)进行统计,并对有关的数据进行解释和分析。定性分析是以专利的内容为对象,按技术特征归并专利文献,使之有序化的分析过程。通常情况下需要将二者结合才能达到较好的效果。 定性分析与定量分析应该是统一的,相互补充的;定性分析是定量分析的基本前提,没有定性的定量是一种盲目的、毫无价值的定量;定量分析使定性分析更加科学、准确,它可以促使定性分析得出广泛而深入的结论。 定量分析是依据统计数据,建立数学模型,并用数学模型计算出分析对象的各项指标及其数值的一种方法。 定性分析则是主要凭分析者的直觉、经验,凭分析对象过去和现在的延续状况及最新的信息资料,对分析对象的性质、特点、发展变化规律作出判断的一种方法。相比而言,前一种方法更加科学,但需要较高深的数学知识,而后一种方法虽然较为粗糙,但在数据资料不够充分或分析者数学基础较为薄弱时比较适用,更适合于一般的投资者与经济工作者。但是必须指出,两种分析方法对数学知识的要求虽然有高有低,但并不能就此把定性分析与定量分析截然划分开来。事实上,现代定性分析方法同样要采用数学工具进行计算,而定量分析则必须建立在定性预测基础上,二者相辅相成,定性是定量的依据,定量是定性的具体化,二者结合起来灵活运用才能取得最佳效果。 不同的分析方法各有其不同的特点与性能,但是都具有一个共同之处,即它们一般都是通过比较对照来分析问题和说明问题的。正是通过对各种指标的比较或不同时期同一指标的对照才反映出数量的多少、质量的优劣、效率的高低、消耗的大小、发展速度的快慢等等,才能作为鉴别、下判断提供确凿有据的信息。数学的时候,才能称得上是一门科学。数学的时候,才能称得上是一门科学。 我所接触的稿件基本上都是运用科技统计数字作定量分析的。按常规推理,这种定量分析有扎实的统计数

红外图谱分析方法大全

红外光谱图解析 一、分析红外谱图 (1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。 公式:不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子); T:化合价为3价的原子个数(主要是N原子); O:化合价为1价的原子个数(主要是H原子)。 F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了 举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。 (2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。 (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔—2200~2100 cm^-1 烯—1680~1640 cm^-1 芳环—1600、1580、1500、1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。 (4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。 (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。 二、记住常见常用的健值 1.烷烃 3000-2850 cm-1C-H伸缩振动 1465-1340 cm-1C-H弯曲振动 一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。 2.烯烃 3100~3010 cm-1烯烃C-H伸缩 1675~1640 cm-1C=C伸缩 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃 2250~2100 cm-1C≡C伸缩振动 3300 cm-1附近炔烃C-H伸缩振动 4.芳烃 3100~3000 cm-1芳环上C-H伸缩振动 1600~1450 cm-1C=C 骨架振动 880~680 cm-1C-H面外弯曲振动) 芳香化合物重要特征:一般在1600,1580,1500和1450 cm-1可能出现强度不等的4

红外光谱定量上的实际应用

红外光谱在实际中的应用 毛志强 化学与生命科学学院化学0802班学号:200823140211 摘要:本文介绍了红外光谱的最新发展,阐述中红外光谱法(MIR),近红外分析法(NIR)的基本原理,比较了二者红外光谱定性,定量分析的基本原理和方法,对新近发展的近红外光谱分析法中漫反射光谱法和透射光谱法做出了简介,列举其在日常生活和工业生产上的应用,对红外光谱分析法的发展前景做出展望。 关键词:中红外光谱法(MIR);近红外分析法(NIR);漫反射光谱法;透射光谱法;红外光谱定性;定量分析 前言 红外光谱是是由于分子在振动能级(包括转动能级)间跃迁产生的吸收光谱。红外光介于微波区和和可见光区之间,根据波长不同,分为三个区段:近红外区(13000 cm-1—4000cm-1 ),中红外区(4000cm-1—400cm-1),远红外区(400cm-1—10cm-1)。其中,中红外区是绝大多数有机化合物或药物的基频吸收区,是红外光谱研究的主要区段。近红外区是OH,NH和CH的倍频或组频吸收区,近年来其应用和发展异常迅猛,越来越受人们重视,有人认为这一发展“是一场分析技术的革命[1]”。 在过去近半个世纪里,因为该区域吸收信号弱,谱峰重叠,解析困难,几乎没有对该区域进行应用开发的研究。仪器的数字化和化学计量学的发展解决了光谱信息的提取和背景干扰,并且取得了巨大的成就。由于该区域的官能团OH,NH和CH几乎覆盖绝多数部分的化工产品,农牧业产品,所以红外分析技术可应用于石油化工,基本有机工业,精细有机化工,制药,生物体液分析,食品,饮料,烟草,纺织,造纸和化妆等行业。同时它也是政府质量监督部门,环境保护部门常规监控分析的有力手段。本文着重对应用比较广泛的傅里叶中红外光谱法(MIR),近红外光谱法(NIR)原理和应用及其优点和缺陷进行了介绍[2]。 正文

定性分析与定量分析

定性分析和定量分析的概念及两者的关系1.什么叫定性分析 定性分析就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。 2.什么叫定量分析 定量分析是对社会现象的数量特征、数量关系与数量变化的分析。投资分析师使用数学模块对公司可量化数据进行的分析。通过分析对公司经营给予评价并做出投资判断。定量分析的对象主要为财务报表,如资金平衡表、损益表、留存收益表等。其功能在于揭示和描述社会现象的相互作用和发展趋势。 3.定性分析和定量分析的关系 定性分析与定量分析应该是统一的,相互补充的;定性分析是定量分析的基本前提,没有定性的定量是一种盲目的、毫无价值的定量;定量分析使定性分析更加科学、准确,它可以促使定性分析得出广泛而深入的结论。定量分析是依据统计数据,建立数学模型,并用数学模型计算出分析对象的各项指标及其数值的一种方法。定性分析则是主要凭分析者的直觉、经验,凭分析对象过去和现在的延续状况及最新的信息资料,对分析对象的性质、特点、发展变化规律作出判断的一种方法。 相比而言,前一种方法更加科学,但需要较高深的数学

知识,而后一种方法虽然较为粗糙,但在数据资料不够充分或分析者数学基础较为薄弱时比较适用,更适合于一般的投资者与经济工作者。但是必须指出,两种分析方法对数学知识的要求虽然有高有低,但并不能就此把定性分析与定量分析截然划分开来。事实上,现代定性分析方法同样要采用数学工具进行计算,而定量分析则必须建立在定性预测基础上,二者相辅相成,定性是定量的依据,定量是定性的具体化,二者结合起来灵活运用才能取得最佳效果。 不同的分析方法各有其不同的特点与性能,但是都具有一个共同之处,即它们一般都是通过比较对照来分析问题和说明问题的。正是通过对各种指标的比较或不同时期同一指标的对照才反映出数量的多少、质量的优劣、效率的高低、消耗的大小、发展速度的快慢等等,才能作为鉴别、下判断提供确凿有据的信息。

红外光谱的定量分析

红外光谱的定量分析 红外光谱法在分析和另一应用是对混合物中各组分进行定量分析。红外光谱定量分析是借助于对比吸收峰强度来进行的,只要混合物中的各组分能有一个持征的,不受其他组分干扰的吸收峰存在即可。原则上液体、圆体和气体样品都对应用红外光谱法作定量分析:1.定量分析原理 红外定量分析的原理和可见紫外光谱的定量分析一样,也是基于比耳-朗勃特(Beer-Lambert)定律。 Beer定律可写成:A=abc 式和A为吸光度(absorbance),也可称光密度(optical density),它没有单位。系数a称作吸收系数(absorptivity),也称作消光系数(extinction coeffieient),是物质在单位浓度和单位厚度下的吸光度,不同物质有不同的吸收系数a值。且同一物质的不同谱带其a值也不相同,即a值是与被测物质及所选波数相关的一个系数。因此在测定或描述吸收系数时,一定要注意它的波数位置。当浓度c选用mol·L-1为单位,槽厚b以厘米为单位时,则a值的单位为:L·cn-1·mol-1,称为摩尔吸收系数,并常用ε表示。吸收系数是物质具有的特定数值,文献中的数值理应可以通用。但是,由于所用仪器的精度和操作条件的不同,所得数值常有差别,因此在实际工作中,为保证分析的准确度,所用吸收系数还得借助纯物质重新测定。 在定量分析中须注意下面两点: 1)吸光度和透过率是不同的两个概念、透过率和样品浓度没有正比关系,但吸光度与浓度成正比。 2)吸光度的另一可贵性使它具有加和性。若二元和多元混合物的各组分在某波数处都有吸收,则在该波数处的总吸光度等于各级分吸光度的算术和:但是样品在该波数处的总透过率并不等于各组分透过率的和; 2.定量分析方法的介绍 红外光谱定量方法主要有测定谱带强度和测量谱带面积购两种。此外也有采用谱带的一阶导数和二阶导数的计算方法,这种方法能准确地测量重叠的谱带,甚至包括强峰斜坡上的肩峰。 红外光谱定量分忻可以采用的方沦很多,下面我们介绍几种常用的测定方法。 (1)直接计算法 这种方法适用于组分简单、特征吸收带不重叠、且浓度与吸收度呈线性关系的样品。 应用(4-35)式,从谱图上读取透过率数值,按A=ln(I0/I)(I0为入射光强度,I为透射光强度)的关系计算出A值,再按(4-35)式算出组分含量c,从而推算出质量分数。这一方法的前提是需用标准样品测得a值。分析精度要求不高时,可用文献报导的a值。 (2)工作曲线法 这种方法适用于组分简单.特征吸收谱带重叠较少,而浓度与吸收度不完全呈线性关系的样品。 将一系列浓度的标准样品的湾液.在同一吸收池内测出需要的谱带,计算出吸收度值作为纵坐标,再以浓度为横坐标,作出徊应的工作曲线。由于是在同一吸收池内测量,故可获得A~c的实际变化曲线。

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

第三章-红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

如何解析红外光谱图解读.doc

1 如何解析红外光谱图一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: n4:化合价为4价的原子个数(主要是C原子), n3:化合价为3价的原子个数(主要是N原子), n1:化合价为1价的原子个数(主要是H,X原子) (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-

1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动 (2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动 1600~1450cm-1, C-H面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。 C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。 2 5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收, 自由羟基O-H的伸缩振动:3650~3600cm-1,为尖锐的吸收峰, 分子间氢键O-H伸缩振动:3500~3200cm-1,为宽的吸收峰; C-O 伸缩振动:1300~1000cm-1,O-H 面外弯曲:769-659cm-1 6. 醚特征吸收:1300~1000cm-1 的伸缩振动, 脂肪醚:1150~1060cm-1 一个强的吸收峰 芳香醚:1270~1230cm-1(为Ar-O伸缩),1050~1000cm-1(为R-O伸缩) 7.醛和酮: 醛的特征吸收:1750~1700cm-1(C=O伸缩),2820,2720cm-1(醛基C-H

红外光谱解析法

如何分析一张已经拿到手的xx谱图呢? 你可以按如下步骤来: (1)首先依据谱图推出化合物碳架类型: 根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2其中: F: 化合价为4价的原子个数(主要是C原子), T: 化合价为3价的原子个数(主要是N原子), O: 化合价为1价的原子个数(主要是H原子), 例如: 比如苯: C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800cm^-1区域C-H伸缩振动吸收;以3000 cm^-1为界: 高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm^-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔2200~2100 cm^-1 烯1680~1640 cm^-1

芳环1600,1580,1500,1450 cm^-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm^-1的三个峰,说明醛基的存在。 至此,分析基本搞定,剩下的就是背一些常见常用的健值了! ……………………………………………………………………………………………………… 1.烷烃: C-H伸缩振动(3000-2850cm^-1) C-H弯曲振动(1465-1340cm^-1) 一般饱和烃C-H伸缩均在3000cm^-1以下,接近3000cm^-1的频率吸收。 2.烯烃: 烯烃C-H伸缩(3100~3010cm^-1) C=C伸缩(1675~1640 cm^-1) 烯烃C-H面外弯曲振动(1000~675cm^1)。 3.炔烃: 伸缩振动(2250~2100cm^-1) 炔烃C-H伸缩振动(3300cm^-1附近)。 4.芳烃:3100~3000cm^-1芳环上C-H伸缩振动 1600~1450cm^-1 C=C骨架振动

紫外光谱法与红外光谱法

部分一紫外光谱法与红外光谱法 摘要:光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法,紫外光谱法(UV),红外光谱法(IR)都是属于光谱法。 一、原理不同 1、紫外光谱(UV) 分子中价电子经紫外光照射时,电子从低能级跃迁到高能级,此时电子就吸收了相应波长的光,这样产生的吸收光谱叫紫外光谱。紫外光谱是由于分子中价电子的跃迁而产生的。 紫外吸收光谱的波长范围是100-400nm(纳米), 其中100-200nm 为远紫外区,200-400nm为近紫外区, 一般的紫外光谱是指近紫外区。 2、红外光谱法(IR) 分子与红外辐射的作用,使分子产生振动和转动能级的跃迁所得到得吸收光谱,属于分子光谱与振转光谱范畴。利用样品的红外吸收光谱进行定性、定量分析及测定分子结构的方法称之红外光谱法。 红外光区的波长范围是0.76—500 μm,近红外0.76—2.5μm中红外 2.5—25μm远红外波长25—500μm 。 二、仪器对比

三、分析目的 1、紫外吸收光谱由电子能级跃迁引起紫外线波长短、频率高、光子能量大,能引起分子外层电子的能级跃迁。电子跃迁虽然伴随着振动及转动能级跃迁,但因后者能级差小,常被紫外曲线所淹没。除某些化合物蒸气(如苯等)的紫外吸收光谱会显现振动能级跃起迁外,一般不显现。因此,紫外吸收光谱属电子光谱。光谱简单。 2、中红外吸收光谱由振—转能级跃迁引起,红外线的波长比紫外线长,光子能量比紫外线小得多,只能收起分子的振动能级并伴随转动能级的跃迁,因而中红外光谱是振动—转动光谱,光谱复杂。 3、紫外吸收光谱法只适用于芳香族或具有共轭结构的不饱和脂肪族化合物及某些无物的定性分析,不适用于饱和有机化合物。红外吸收光谱法不受此限,在中红外区,能测得所有有机化合物的特征红外光谱,用于定性分析及结构研究,而且其特征性远远高于紫外吸收光谱,除此之外,红外光谱还可以用于某些无机物的研究 4、红外光谱的特征性比紫外光谱强。因为紫外光谱主要是分子的∏电子或n电子跃迁所产生的吸收光谱。因此,多数紫外光谱比较简单,特征性差。 UV-Vis主要用于分子的定量分析,但紫外光谱(UV)为四大波谱之一,是鉴定许多化合物,尤其是有机化合物的重要定性工具之一。红外光谱主要用于化合物鉴定及分子结构表征,亦可用于定量分析。

如何解析红外光谱图

如何解析红外光谱图——红外识谱歌 红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。 解析红外光谱的时候,我们可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。但很多时候我们手边并没有化合物的标准红外光谱或红外光谱谱图库,这时候就需要自己对红外谱图进行解析。解析红外谱图最重要的是确定化合物的官能团。要想快速分辨官能团,需要知道红外谱图中常见官能团的峰位置和峰形。下面分享一些红外谱图歌,方便大家快速解析红外谱图。 红外谱图歌 2960、2870是甲基,2930、2850亚甲峰。1470碳氢弯,1380甲基显。二个甲基同一碳,1380分二半。面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烃。末端烯烃此峰强,只有一氢不明显。化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。910端基氢,再有一氢990。

顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。 炔氢伸展三千三,峰强峰形大而尖。三键伸展二千二,炔氢摇摆六百八。 芳烃呼吸很特别,1600~1430,1650~2000,取代方式区分明。900~650,面外弯曲定芳氢。五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。C-O伸展吸收大,伯仲叔基易区别。1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。苯环若有甲氧基,碳氢伸展2820。次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。缩醛酮,特殊醚,1110非缩酮。酸酐也有C-O键,开链环酐有区别,开链峰宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。吸电效应波数高,共轭则向低频移。张力促使振动快,环外双键可类比。

红外光谱分析法习题含答案

红外光谱分析法试题 一、简答题 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 2.以亚甲基为例说明分子的基本振动模式. 3.何谓基团频率?它有什么重要用途? 4.红外光谱定性分析的基本依据是什么?简要叙述红外定性分析的过程. 5.影响基团频率的因素有哪些? 6.何谓指纹区?它有什么特点和用途? 二、选择题 1.在红外光谱分析中,用 KBr制作为试样池,这是因为 ( ) A KBr晶体在 4000~ 400cm -1 范围内不会散射红外光 B KBr在 4000~ 400 cm -1 范围内有良好的红外光吸收特性 C KBr在 4000~ 400 cm -1 范围内无红外光吸收 D 在 4000~ 400 cm -1 范围内,KBr 对红外无反射 2.一种能作为色散型红外光谱仪色散元件的材料为 ( ) A 玻璃 B 石英 C 卤化物晶体 D 有机玻璃 3.并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) A 分子既有振动运动,又有转动运动,太复杂 B 分子中有些振动能量是简并的 C 因为分子中有 C、H、O以外的原子存在 D 分子某些振动能量相互抵消了 4.下列四种化合物中,羰基化合物频率出现最低者为 ( ) A I B II C III D IV 5.在下列不同溶剂中,测定羧酸的红外光谱时,C=O伸缩振动频率出现最高者为 ( ) A 气体 B 正构烷烃 C 乙醚 D 乙醇 6.水分子有几个红外谱带,波数最高的谱带对应于何种振动? ( )

A 2个,不对称伸缩 B 4个,弯曲 C 3个,不对称伸缩 D 2个,对称伸缩 7.苯分子的振动自由度为( ) A 18 B 12 C 30 D 31 8.在以下三种分子式中C=C双键的红外吸收哪一种最强? (1) CH3-CH = CH2(2) CH3-CH = CH-CH3(顺式)(3) CH3-CH = CH-CH3(反式)( ) A(1)最强 B (2)最强 C (3)最强 D 强度相同 9.在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带( ) A 向高波数方向移动 B 向低波数方向移动 C 不移动 D 稍有振动 10.以下四种气体不吸收红外光的是( ) A H2O B CO 2 C HCl D N2 11.某化合物的相对分子质量Mr=72,红外光谱指出,该化合物含羰基,则该化合物可能的分子式为( ) A C4H8O B C3H4O 2 C C3H6NO D (1) 或(2) 12.红外吸收光谱的产生是由于( ) A 分子外层电子、振动、转动能级的跃迁 B 原子外层电子、振动、转动能级的跃迁 C 分子振动-转动能级的跃迁 D 分子外层电子的能级跃迁 13. Cl2分子在红外光谱图上基频吸收峰的数目为( ) A 0 B 1 C 2 D 3 14.红外光谱法试样可以是( ) A 水溶液 B 含游离水 C 含结晶水 D 不含水 15.能与气相色谱仪联用的红外光谱仪为( ) A 色散型红外分光光度计 B 双光束红外分光光度计 C 傅里叶变换红外分光光度计 D 快扫描红外分光光度计 16.试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰,频率最小的是( ) A C-H B N-H C O-H D F-H 17.已知下列单键伸缩振动中C-C C-N C-O键力常数k/(N?cm-1) 4.5 5.8 5.0吸收峰波长λ/μm 6 6.46 6.85问C-C, C-N, C-O键振动能级之差⊿E顺序为( ) A C-C > C-N > C-O B C-N > C-O > C-C C C-C > C-O > C-N D C-O > C-N > C-C 18.一个含氧化合物的红外光谱图在3600~3200cm -1有吸收峰,下列化合物最可能的是( )

红外谱图解析方法大全

红外光谱解析顺口溜 红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。样品来源制样法,物化性能多联系。识图先学饱和烃,3000以下看峰形。2960、2870甲基,2930、2850亚甲峰。1470碳氢弯,1380甲基显。 二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烷。末端烯烃此峰强,只有一氢不明显。化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。910端基氢,再有一氢990。 顺式二氢690,反式移至970; 单氢出峰820,干扰顺式难确定。 炔氢伸展3300,峰强很大峰形尖。 三键伸展2200,炔氢摇摆680。 芳烃呼吸很特征,1600~1430。1650~2000,取代方式区分明。900~650,面外弯曲定芳氢。 五氢吸收有两峰,700和750; 四氢只有750,二氢相邻830; 间二取代出三峰,700、780,880处孤立氢 醇酚羟基易缔合,3000处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动, 900上下反对称,800左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别,开链强宽1100,环酐移至1250。 羰基伸展1700,2720定醛基。 吸电效应波数高,共轭则向低频移。张力促使振动快,环外双键可类比。2500到3300,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸、 酸酐千八来偶合,双峰60严相隔, 链状酸酐高频强,环状酸酐高频弱。羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。1180甲酸酯,1190是丙酸, 1220乙酸酯,1250芳香酸。 1600兔耳峰,常为邻苯二甲酸。 氮氢伸展3400,每氢一峰很分明。 羰基伸展酰胺I,1660有强峰; N-H变形酰胺II,1600分伯仲。 伯胺频高易重叠,仲酰固态1550; 碳氮伸展酰胺III,1400强峰显。 胺尖常有干扰见,N-H伸展3300,叔胺无峰仲胺单,伯胺双峰小而尖。1600碳氢弯,芳香仲胺千五偏。

红外光谱图解析方法

红外识谱歌 红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。 看图要知红外仪,弄清物态液固气。样品来源制样法,物化性能多联系。 识图先学饱和烃,三千以下看峰形。 2960、2870是甲基,2930、2850亚甲峰。 1470碳氢弯,1380甲基显。 二个甲基同一碳,1380分二半。 面内摇摆720,长链亚甲亦可辨。 烯氢伸展过三千,排除倍频和卤烷。 末端烯烃此峰强,只有一氢不明显。 化合物,又键偏,~1650会出现。 烯氢面外易变形,1000以下有强峰。 910端基氢,再有一氢990。 顺式二氢690,反式移至970;单氢出峰820,干扰顺式难确定。 炔氢伸展三千三,峰强很大峰形尖。三键伸展二千二,炔氢摇摆六百八。 芳烃呼吸很特征,1600~1430。1650~2000,取代方式区分明。 900~650,面外弯曲定芳氢。 五氢吸收有两峰,700和750;四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。 C-O伸展吸收大,伯仲叔醇位不同。 1050伯醇显,1100乃是仲,1150叔醇在,1230才是酚。 1110醚链伸,注意排除酯酸醇。 若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。 苯环若有甲氧基,碳氢伸展2820。 次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。 缩醛酮,特殊醚,1110非缩酮。 酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。 羰基伸展一千七,2720定醛基。 吸电效应波数高,共轭则向低频移。 张力促使振动快,环外双键可类比。 二千五到三千三,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸、酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。 羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。 1740酯羰基,何酸可看碳氧展。 1180甲酸酯,1190是丙酸,1220乙酸酯,1250芳香酸。 1600兔耳峰,常为邻苯二甲酸。 氮氢伸展三千四,每氢一峰很分明。 羰基伸展酰胺I,1660有强峰;N-H变形酰胺II,1600分伯仲。 伯胺频高易重叠,仲酰固态1550;碳氮伸展酰胺III,1400强峰显。 胺尖常有干扰见,N-H伸展三千三,叔胺无峰仲胺单,伯胺双峰小而尖。 1600碳氢弯,芳香仲胺千五偏。 八百左右面内摇,确定最好变成盐。

定量分析方法和定性分析方法的特点和优劣是什么

定量分析方法和定性分析方法的特点和优劣是什么? 定性分析:定性分析是对研究结果的"质"的分析。定性分析有两种含义:一种是专指作为研究方法的定性研究,如观察法和访谈法就是两种定性研究方法;另一种是作为研究结果的分析手段的定性分析和研究。与此相对应,还可以将定性分析划为两种不同的层次:一种是研究结果本身就是定性的描述材料,数字化的水平较低甚至没有数量化。另一种是与定量分析密切结合的定性分析。定性分析是建立在描述基础上的逻辑分析和推断。用于定性分析的资料,通常是描述性的资料(包括描述性的数量统计),如文字、图片等。为了使分析顺利进行,保证结论的正确性,研究资料必须要充分、全面,这就要求研究者在收集研究结果时应该把握尽可能多的信息。在丰富的资料背景下进行逻辑分析,才能准确地揭示各种现象的内在联系。 定量分析是依据统计数据,建立数学模型,并用数学模型计算出分析对象的各项指标及其数值的一种方法。定性分析则是主要凭分析者的直觉、经验,凭分析对象过去和现在的延续状况及最新的信息资料,对分析对象的性质、特点、发展变化规律作出判断的一种方法。 相比而言,前一种方法更加科学,但需要较高深的数学知识,而后一种方法虽然较为粗糙,但在数据资料不够充分或分析者数学基础较为薄弱时比较适用,更适合于一般的投资者与经济工作者。因此,本章以后几节所做的分析基本上以定性分析为主。但是必须指出,两种分析方法对数学知识的要求虽然有高有低,但并不能就此把定性分析与定量分析截然划分开来。事实上,现代定性分析方法同样要采用

数学工具进行计算,而定量分析则必须建立在定性预测基础上,二者相辅相成,定性是定量的依据,定量是定性的具体化,二者结合起来灵活运用才能取得最佳效果。 不同的分析方法各有其不同的特点与性能,但是都具有一个共同之处,即它们一般都是通过比较对照来分析问题和说明问题的。正是通过对各种指标的比较或不同时期同一指标的对照才反映出数量的多少、质量的优劣、效率的高低、消耗的大小、发展速度的快慢等等,才能为作鉴别、下判断提供确凿有据的信息。 另外,通常接触到的市场调查中,小组座谈会、深度访谈等是定性研究的具体方法,而大量的问卷调查、电话访问等是定量研究,大体上可以这么讲!市场研究基本上要经历:定性研究——定量研究——定性研究,这样一个简单的过程

红外光谱基团解析方法

按基团顺序解析红外吸收光谱的方法如下。 1、首先查对νC=O 1850~1600cm-1(s)最强大的吸收是否存在,如存在,则可进一步查对下列羰基化合物是否存在。 ①酰胺查对νN-H约3500 cm-1(m-s),有时为等强度双峰是否存在。 ②羧酸查对νO-H3300~2500 cm-1宽而散的吸收峰是否存在。 ③醛查对CHO基团的νC-H约2720cm-1和2830 cm-1特征吸收峰是否存在。 ④酸酐查对νC=O约1820 cm-1和约1760cm-1的双峰是否存在。 ⑤酯查对νC-O1300~1000 cm-1(m-s),特征吸收峰是否存在。(两个吸收峰) ⑥酮查对以上基团吸收都不存在时,则此羰基化合物很可能是酮;另外,酮的 νas,C-C-C在1300~1000 cm-1有一弱吸收峰。 2、如果谱图上无νC=O吸收带,则可查对是否为醇、酚、胺、醚等化合物。 ①醇或酚查对是否存在νO-H3600~3200

cm-1(s,宽)和νC-O1300~1000 cm-1(s)特征吸收。 ②胺查是否存在νN-H3500~3100cm-1和δN-H1650~1580 cm-1(s)特征吸收。 ③醚查是否存在νC-O-C1300~1000cm-1特征吸收,且无醇、酚的νO-H3600~3200 cm-1特征吸收。 3、查对是否存在C=C双键或芳环。 ①查对有无链烯的νC=C(约1650cm-1)特征吸收;有无芳环的νC=C(约1600cm-1和约1500cm-1)特征吸收; ②查对有无链烯或芳环的ν=C-H(约3100cm-1)特征吸收。 4、查对是否存在C≡C 或C≡N 叁键吸收带。 ①查对有无νC≡C(约2150cm-1,w,尖锐)特征吸收;查有无ν≡C-H(约3300 cm-1,m,尖锐)特征吸收; ②查对有无νC≡N(2260~2220 cm-1,m-s)特征吸收。 5、查对是否存在硝基化合物查对有无νas,(约1560cm-1,s)和νs,NO2(约1350 cm-1)NO2 特征吸收。

红外光谱在定量分析中的应用_张秀萍

收稿日期:2007-01-30 修回日期:2007-03-30 基金项目:河北省教育厅基金(N o.2004325);河北师范大学基金(L 2005Y13) 通讯联系人:何书美.女,硕士,副教授,研究方向:红外光谱,化学分析. 第23卷第4期V ol.23 N o.4分析科学学报 JO U RN AL O F A N AL Y T ICA L SCIEN CE 2007年8月A ug.2007 文章编号:1006-6144(2007)04-0484-05 红外光谱在定量分析中的应用 张秀萍,何书美* (河北师范大学实验中心,石家庄050016) 摘 要:本文对近十年红外光谱在定量分析中的应用进行了概述。偏最小二乘法,一阶 导数、二阶导数等化学计量法在定量分析中得到了普遍的应用,反射、探针、漫反射等 技术的发展拓宽了红外光谱定量分析的领域。固体、液体、气体均可计量的优势更加突 出。实现了单一物质,二元或多元物质的定量测定。 关键词:红外光谱定量分析;反射;漫反射;探针;一阶导数;二阶导数 中图分类号:O657.33 文献标识码:A 1 前言 红外分光光度计的狭缝远比一般光电比色计宽,故通过的光的波长范围大,加之吸收池、溶剂和制备技术不易标准化等各方面因素,使其准确度和精密度较紫外光谱为低[1]。但红外光谱测试技术具有多样性,如透射、反射、漫反射、探针、遥控等,可根据被测物质的性质灵活应用。同时,对物质的状态也不拘一格,因此拓宽了红外光谱的定量范围。另外,基于混合物的红外光谱是每个纯成分的加和,利用光谱中的特定峰,定量分析可以通过直接测定混合物的红外光谱来实现,而略去了对样品进行繁琐的前处理。这两点都是其他定量测试仪器无法比拟的。红外光谱的谱带较多,选择余地较大,所以能较方便地对单组分或多组分进行定量分析。红外光谱定量分析,具有简便、直观、快捷的特点。其定量方法通常有标准曲线法、联立方程式求解法、补偿法(即差示法)、吸收强度比法等。但定量分析中干扰因素较多,分析结果的误差也较大,并且因红外光谱在绘制时变数较多,吸光系数不宜采用文献值而应实际测定。与其他仪器相比,红外光谱的摩尔吸收系数较小,灵敏度较低,所以只适用于常量组分分析,而不适于微量组分的测定。2 单一组分的定量分析 2.1 红外光谱定量分析在药物中的应用 程存归等[2]应用漫反射技术获得了红外光谱图,采用峰面积法对盐酸雷尼替丁片剂中的盐酸雷尼替丁进行定量分析,最佳分析峰位1754.28cm -1,发现质量分数在10%以内,线性良好;还相继对氟糠唑、头孢氨苄进行了测定[3,4],测定结果与药典中的高效液相色谱法一致。顾春菊等 [5]以KSCN 为内标,对氧化纤维素中的羧基进行了测定,定量分析峰1738cm -1。 尿囊素是一种国内外尚未普遍使用的外用药。王磊[6]研究了用红外光谱测定尿囊素的方法,提出了以KSCN 做内标、利用尿囊素的特征吸收带1772cm -1定量检测尿囊素。实际样品测定与化学分析结果进行比较,相对偏差在10%以内。乌头是临床上常用中药,一般要炮制减毒后才能使用。乌头及炮制品的毒性,主要来源于乌头中含有一类在结构中带有羰基的酯型生物碱。薛燕等[7]利用红外漫反射技术对其含量进行了测定,结果表明,该类生物碱的吸光度与标准品的浓度呈线性关系,在0.25~4mg/mL 范围内线性良好。484

相关文档