文档库 最新最全的文档下载
当前位置:文档库 › 第十四章 第一节 导数的概念与运算

第十四章 第一节 导数的概念与运算

导数的概念及运算

导数的概念及运算 一、选择题 1.设曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=( ) A.0 B.1 C.2 D.3 解析∵y=e ax-ln(x+1),∴y′=a e ax- 1 x+1 ,∴当x=0时,y′=a-1.∵ 曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D. 答案 D 2.若f(x)=2xf′(1)+x2,则f′(0)等于( ) A.2 B.0 C.-2 D.-4 解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2, ∴f′(0)=2f′(1)=-4. 答案 D 3.(2017·西安质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) 解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C. 答案 C 4.(2017·石家庄调研)已知曲线y=ln x的切线过原点,则此切线的斜率为( ) A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则 y′|x=x 0= 1 x ,切线方程为y-ln x0= 1 x (x-x0),因为切线过点(0,0),所

以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1 e . 答案 C 5.(2016·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则 g ′(3)=( ) A.-1 B.0 C.2 D.4 解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-1 3,∴f ′(3)=- 1 3 ,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×? ???? -13=0. 答案 B 二、填空题 6.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数, f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________. 解析 f ′(x )=a ? ? ???ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a , 又f ′(1)=3,所以a =3. 答案 3 7.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________. 解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1 x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=0

苏教版 导数的概念及运算

导数的概念及运算 一、填空题 1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为________. 解析 由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. 答案 e 2.设y =x 2e x ,则y ′=________. 解析 y ′=2x e x +x 2e x =()2x +x 2 e x . 答案 (2x +x 2)e x 3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于________. 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 -1 4.(2015·苏北四市模拟)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 解析 由y ′=2ax ,又点(1,a )在曲线y =ax 2上,依题意得k =y ′|x =1=2a =2,解得a =1. 答案 1 5.(2015·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________. 解析 y ′|x =0=(-2e -2x )|x =0=-2,故曲线y =e -2x +1在点(0,2)处的切线方程为y =-2x +2,易得切线与直线y =0和y =x 的交点分别为(1,0),? ?? ?? 23,23,故围 成的三角形的面积为12×1×23=1 3. 答案 13 6.(2015·长春质量检测)若函数f (x )=ln x x ,则f ′(2)=________. 解析 ∵f ′(x )=1-ln x x 2,∴f ′(2)=1-ln 2 4.

北师大文科数学高考总复习练习:导数的概念及运算 含答案

第三章导数及其应用 第1讲导数的概念及运算 基础巩固题组 (建议用时:40分钟) 一、选择题 1.设y=x2e x,则y′= () A.x2e x+2x B.2x e x C.(2x+x2)e x D.(x+x2)e x 解析y′=2x e x+x2e x=(2x+x2)e x. 答案 C 2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)等于 () A.-e B.-1 C.1 D.e 解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x , ∴f′(1)=2f′(1)+1,则f′(1)=-1. 答案 B 3.曲线y=sin x+e x在点(0,1)处的切线方程是 () A.x-3y+3=0 B.x-2y+2=0 C.2x-y+1=0 D.3x-y+1=0 解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0. 答案 C 4.(2017·成都诊断)已知曲线y=ln x的切线过原点,则此切线的斜率为

() A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则y′|x =x0=1 x0 ,切线方程为y-ln x0=1 x0(x-x0),因为切线过点(0,0),所以-ln x0 =-1,解得x0=e,故此切线的斜率为1 e. 答案 C 5.(2017·昆明诊断)设曲线y=1+cos x sin x在点? ? ? ? ? π 2,1处的切线与直线x-ay+1=0 平行,则实数a等于 () A.-1 B.1 2 C.-2 D.2 解析∵y′=-1-cos x sin2x ,∴=-1. 由条件知1 a =-1,∴a=-1. 答案 A 二、填空题 6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________. 解析因为y′=2ax-1 x ,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线 平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2. 答案1 2 7.(2017·长沙一中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x) 在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.

(完整word版)导数的概念、导数公式与应用

导数的概念及运算 知识点一:函数的平均变化率 (1)概念: 函数中,如果自变量在处有增量,那么函数值y也相应的有增量△ y=f(x 0+△x)-f(x ),其比值叫做函数从到+△x的平均变化率,即。 若,,则平均变化率可表示为,称为函数从 到的平均变化率。 注意: ①事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; ②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。 ③是自变量在处的改变量,;而是函数值的改变量,可以是0。函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。 (2)平均变化率的几何意义 函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。 如图所示,函数的平均变化率的几何意义是:直线AB的斜率。 事实上,。 作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。

知识点二:导数的概念: 1.导数的定义: 对函数,在点处给自变量x以增量,函数y相应有增量。若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。 即:(或) 注意: ①增量可以是正数,也可以是负数; ②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。 2.导函数: 如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。 注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在 处的函数值,反映函数在附近的变化情况。 3.导数几何意义: (1)曲线的切线 曲线上一点P(x 0,y )及其附近一点Q(x +△x,y +△y),经过点P、Q作曲线的割线PQ, 其倾斜角为当点Q(x 0+△x,y +△y)沿曲线无限接近于点P(x ,y ), 即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。 若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。 即:。

高中导数的概念与计算练习题带答案

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C . ln 2 2 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()s i n f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x = 等于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1)1 ()2ln f x ax x x =-- (2)2 ()1x e f x ax =+ (3)21 ()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

导数的概念与计算练习题带答案

导数的概念与计算练习 题带答案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点 P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C .ln 22 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()sin f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x =等 于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1) 1 ()2ln f x ax x x =-- (2) 2 ()1x e f x ax = + (3)21()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

导数的概念及运算专题训练

导数的概念及运算专题训练 基础巩固组 1.已知函数f(x)=+1,则--的值为() A.- B. C. D.0 2.若f(x)=2xf'(1)+x2,则f'(0)等于() A.2 B.0 C.-2 D.-4 3.已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则曲线y=f(x)在横坐标为1的点处的切线方程是() A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=0 4.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的距离的最小值为() A.1 B. C. D. 5.已知a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f'(x),且f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为() A.y=3x+1 B.y=-3x C.y=-3x+1 D.y=3x-3 6.设曲线y=sin x上任一点(x,y)处切线的斜率为g(x),则函数y=x2g(x)的部分图象可以为() 7.一质点做直线运动,由始点经过t s后的距离为s=t3-6t2+32t,则速度为0的时刻是() A.4 s末 B.8 s末 C.0 s末与8 s末 D.4 s末与8 s末 8.函数y=f(x)的图象在点M(2,f(2))处的切线方程是y=2x-8,则=. 9.(2018天津,文10)已知函数f(x)=e x ln x,f'(x)为f(x)的导函数,则f'(1)的值为. 10.已知函数f(x)=x++b(x≠0)在点(1,f(1))处的切线方程为y=2x+5,则a-b=. 11.函数f(x)=x e x的图象在点(1,f(1))处的切线方程是. 12.若函数f(x)=x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是. 综合提升组 13.已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0 14.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(- 1)=() A. B.- C. D.-或 15.直线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.

高中数学一轮复习 第1讲 导数的概念及其运算

第1讲 导数的概念及其运算 1.已知函数3 2 ()32f x ax x =++,若f′(-1)=4,则a 的值等于( ) A.193 B.163 C.133 D.103 【答案】 D 【解析】 f′2 ()36x ax x f =+,′(-1)=3a 10643 a -=,=. 2.设y=-2e x sinx,则y′等于( ) A.-2e x cosx B.-2e x sinx C.2e x sinx D.-2e (x sinx+cosx) 【答案】 D 【解析】 ∵y=-2e x sinx, ∴y′=(-2e )x ′sinx+(-2e )(x sinx)′ =-2e x sinx-2e x cosx =-2e (x sinx+cosx). 3.已知3 270()x m f x mx m <,=+,且f′(1)18≥-,则实数m 等于( ) A.-9 B.-3 C.3 D.9 【答案】 B 【解析】 由于f′2 27()3x mx m =+,故f′27(1)183m m ≥-?+≥ -18 , 由m<0得2 27318318270m m m m +≥-?++≤?2 3(3)m +0≤,故m=-3. 4.设曲线11 x y x +=-在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于( ) A.2 B.12 C.12 - D.-2 【答案】 D 【解析】 因为y′22(1) x -= ,-所以切线斜率k=y′|3 x ==1 2-,而此切线与直线ax+y+1=0垂直, 故有()1k a ?-=-,因此12a k ==-. 5.已知12()f x =sin2x+sinx,则f′(x)是( ) A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数 D.非奇非偶函数 【答案】 B 【解析】 f′12()x =cos 22x ?+cosx=cos2x+cosx =2cos 21x -+cosx=2(cos 29148)x +-. 故f′(x)是既有最大值2,又有最小值98-的偶函数,选B 项.

导数的概念、几何意义及其运算

导数的概念、几何意义及其运算 常见基本初等函数的导数公式和常用导数运算公式 : +-∈==N n nx x C C n n ,)(;)(01''为常数; ;sin )(cos ;cos )(sin ''x x x x -== a a a e e x x x x ln )(;)(''==; e x x x x a a log 1 )(log ;1)(ln ''== 法则1: )()()]()([' ''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u += 法则3: )0)(() ()()()()(])()([2' ''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾: 1.导数的定义:函数)(x f y =在0x 处的瞬时变化率 x x f x x f x y o x x ?-?+=??→?→?)()(lim lim 000称为函数)(x f y =在0x x =处的导数,记作)(0/ x f 或0/x x y =,即x x f x x f x f x ?-?+=→?) ()(lim )(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈, 都对应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/ x f 。称这个函数)(/ x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/ y ,即)(/ x f =/ y = x x f x x f x ?-?+→?) ()(lim 0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数 )(x f y =在0x 处的导数0 /x x y =,就是导函数)(/ x f 在0x 处的函数值,即0 / x x y == )(0/x f 。 2. 由导数的定义求函数)(x f y =的导数的一般方法是: (1).求函数的改变量 )()(f x f x x f -?+=?; (2).求平均变化率 x x f x x f x ?-?+= ??)()(f ; (3).取极限,得导数/ y =x x ??→?f lim 0。 3.导数的几何意义:函数)(x f y =在0x 处的导数是曲线)(x f y =上点()(,00x f x )处的切线的斜率。 基础练习: 1.曲线324y x x =-+在点(13), 处的切线的倾斜角为( ) A .30° B .45° C .60° D .120° 2.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1 B . 1 2 C .1 2 - D .1 -

高三数学一轮复习——导数的概念及运算

高三数学一轮复习——导数的概念及运算 考试要求 1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数y =c ,y =x ,y =x 2,y =x 3,y =1 x ,y =x 的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f (ax +b ))的导数;6.会使用导数公式表. 知 识 梳 理 1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ?→ f (x 0+Δx )-f (x 0)Δx =0lim x ?→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ?→Δy Δx = lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数 如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 称为函数y =f (x )在开区间内的导 函数. 3.导数公式表 基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0

完整版导数的概念与计算练习题带答案

导数概念与计算 4 2 若函数f(x) ax bx c ,满足f '⑴ 2,贝y f'( 1)( 已知点P 在曲线f(x) x 4 x 上,曲线在点P 处的切线平行于直线 3x y 0,则点P 的 坐标为( ) A . (0,0) B . (1,1) C . (0,1) D . (1,0) 已知f(x) xln x ,若 f '(X 。) 2,则 X 。 ( ) 2 In 2 D . In2 A . e B . e C . 2 曲线y e r 在点 A(0,1)处的切线斜率为( ) A . 1 B . 2 C . e 1 D .- e 设 f °(x) sin x , f'x) f o '(x) , f 2(x) f 1 '(x) ,…,f n 1(x) f n '(x) , n N ,则 f 2013(X ) 等于( ) A . si n x B . si nx C . cosx D . cosx 已知函数 f (x) 的 勺导函数为f '(x),且满足 f(x :)2xf '(1) Inx ,则 f'(1)( ) A . e B . 1 C . 1 D . e 曲线y Inx 在与x 轴交点的切线方程为 _____________________ 过原点作曲线y e x 的切线,则切点的坐标为 _____________ ,切线的斜率为 求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (3) f (x) x ^ax 2 ln(1 x) 2 (5)y xe 1 cosx 1. 2. 3. 4. 5. 6. 7. & 9. B . 2 C . 2 D . 0 (1) f (x) ax 1 2ln x x (2) f(x) x e 2 1 ax (4) y xcosx sin x (6) y

专题1.导数的概念及其运算

导数的概念及其运算 考纲导视 (一)考纲要求: 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义,求函数y =c ,y =x ,y =x 2,y =x 1的导数. 4.能利用给出的8个基本初等函数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数[仅限于形如f (ax +b )的复合函数]的导数. (二)考纲研读: 1.函数y =f (x )在点x 0处的导数记为f ′(x 0),它表示y =f (x )在点P (x 0,y 0)处切线的斜率,即k = f ′(x 0).导数源于物理,位移、速度的导数都有明显的物理意义. 2.对于多项式函数的导数,可先利用导数的运算法则将其转化成若干个与8个基本初等函数有关的和差积商形式,再进行求导. 基础过关 (一)要点梳理: 1.函数y =f (x )从x 1到x 2的平均变化率: 函数y =f (x )从x 1到x 2的平均变化率为fx 2-fx 1x 2-x 1 ,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx . 2.函数y =f (x )在x =x 0处的导数: (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0 fx 0+Δx -fx 0Δx =lim Δx →0 Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 fx 0+Δx -fx 0Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). (3)物理意义:在物理学中,如果物体运动的规律是 s =s (t ),那么该物体在时刻 t 0 的瞬时速度 v =s ′(t 0);如果物体运动的速度随时间变化的规律是 v =v (t ),则该物体在时刻 t 0 的瞬时加速度为 a =v ′(t 0)。 3.函数f (x )的导函数:称函数f ′(x )=lim Δx →0 fx +Δx -fx Δx 为f (x )的导函数,导函数有时也记作y ′. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)????fx gx ′=f xgx -fxg x g 2x (g (x )≠0).

变化率与导数、导数的计算知识点与题型归纳

1 ●高考明方向 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1 x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则 求简单函数的导数. ★备考知考情 由近几年高考试题统计分析可知,单独考查导数运算的题目很少出现,主要是以导数运算为工具,考查导数的几何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014广东理科10、文科11. 2014广东理科10 曲线52-=+x y e 在点()0,3处的切线方程为 ; 2014广东文科11 曲线53=-+x y e 在点()0,2-处的切线方程为 ;

一、知识梳理《名师一号》P39 知识点一导数的概念 (1)函数y =f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化 率lim Δx→0Δy Δx =lim Δx→0 f x +Δx-f x0 Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x . (2)称函数f′(x)=lim Δx→0f x+Δx-f x Δx 为f(x)的导 函数. 注意:《名师一号》P40 问题探究问题1 f′(x)与f′(x )有什么区别 f′(x)是一个函数,f′(x )是常数, f′(x )是函数f′(x)在点x0处的函数值. 例.《名师一号》P39 对点自测1 1.判一判 (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( ) (2)f′(x0)与[f(x0)]′表示的意义相同.( ) (3)f′(x0)是导函数f′(x)在x=x0处的函数值.( ) 2

14导数的定义及导数的计算

第11节 导数的定义及导数的计算 (14) 一.知识要点: 1.导数的定义:割线1l 的斜率=00()() f x x f x y x x +?-?=??,当x ? 趋于0时得到()f x 在0x 处切线的斜率:0000()()lim lim l x x f x x f x y k x x ?→?→+?-?==??也称()f x 在0x 处的导数。 2.导函数的定义:若()f x 在区间(,)a b 上的每一点x 处都有导数,导数记为 ()f x ',则0 ()() ()lim x f x x f x f x x ?→+?-'=?,称()f x '为()f x 的导函数。 3.导数的几何意义:()f x 在0x 处的导数值等于曲线()f x 在点00(,())P x f x 处切线的斜率。即:0()l k f x '=. 4.常见导数公式:0C '= 1 ()x x α αα-'= (sin )cos x x '= (cos )sin x x '=- ()ln x x a a a '=()x x e e '= 1(log )ln a x x a '= 1 (ln )x x '= 5.导数运算法则: (1).[]()()()()f x g x f x g x '''±=± (2)[]()()()()()()f x g x f x g x f x g x '''?=?+? (3)2 ()()()()()()()f x f x g x f x g x g x g x ''' ??-=???? 6.复合函数求导:(理) (()),(),()y f g x y f u u g x ===设,则()().y f u u x '''=? 二.考点评析 例1.利用导数定义求函数的导数 (1)2 348y x x =-+ (2)1y x x =+ y x l 1 l f(x 0) f(x 0+x) y x x 0x 0+x O y x L f(x) P(x 0,f(x 0)) o x 0

导数的概念及运算(基础+复习+习题+练习)

导数的概念及运算 一,导数的概念 1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数 ()y f x =相应地有增量)()(00x f x x f y -?+=?,如果0→?x 时,y ?与x ?的比 x y ??(也叫函数的平均变化率)有极限即 x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即0000()() ()lim x f x x f x f x x ?→+?-'=? 在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因 此,导数的定义式可写成 000000 ()()()() ()lim lim x o x x f x x f x f x f x f x x x x ?→→+?--'==?-. 2.求函数()y f x =的导数的一般步骤:()1求函数的改变量)()(x f x x f y -?+=? ()2求平均变化率 x x f x x f x y ?-?+= ??)()(;()3取极限,得导数y '=()f x '=x y x ??→?0lim 3.导数的几何意义: 导数0000()() ()lim x f x x f x f x x ?→+?-'=?是函数)(x f y =在点0x 处的瞬时变化率,它 反映的函数)(x f y =在点0x 处变化.. 的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果 )(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 000()()()y f x f x x x -='- 4.导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一 个),(b a x ∈,都对应着一个确定的导数()f x ',从而构成了一个新的函数()f x ', 称这个函数()f x '为函数)(x f y =在开区间内的导函数,简称导数,也可记作y ',即()f x '=y '=x x f x x f x y x x ?-?+=??→?→?)()(lim lim 00 函数)(x f y =在0x 处的导数0 x x y =' 就是函数)(x f y =在开区间),(b a )) ,((b a x ∈

2017届高三数学一轮复习第三篇导数及其应用第1节导数的概念与计算基丛点练理

第三篇导数及其应用 第1节导数的概念与计算 【选题明细表】 知识点、方法题号 导数的概念与运算1,2,9,11 导数的几何意义3,4,5,6,7,8,10 导数的综合12,13,14,15 基础对点练(时间:30分钟) 1.(2016莆田模拟)已知f(x)=ln x,则f′(e)的值为( D ) (A)1 (B)-1 (C)e (D) 解析:因为f(x)=ln x, 所以f′(x)=, 则f′(e)=. 2.(2016榆林模拟)函数y=x2sin x的导数为( A ) (A)y′=2xsin x+x2cos x (B)y′=2xsin x-x2cos x (C)y′=x2sin x+2xcos x (D)y′=x2sin x-2xcos x 解析:y′=(x2)′sin x+x2 (sin x)′=2xsin x+x2cos x. 3.(2016山西大学附中模拟)曲线y=在点(4,e2)处的切线与坐标轴所围三角形的面积为( A ) (A)e2(B)2e2(C)4e2(D)e2 解析:曲线y=在点(4,e2)处的切线斜率为k=e2,切线为y-e2=e2(x-4),令x=0,y=-e2,令y=0

得x=2,所以S=e2. 4.(2016北京房山模拟)如图,直线l是曲线y=f(x)在x=4处的切线,则f′(4)等于( A ) (A) (B)3 (C)4 (D)5 解析:直线过点(0,3),(4,5), 所以直线斜率k=,即f′(4)=. 5.(2016成都模拟)函数f(x)=2ln x+x2-bx+a(b>0,a∈R)在点(b,f(b))处的切线斜率的最小值是( B ) (A)2 (B)2(C)(D)1 解析:因为f(x)=2ln x+x2-bx+a, 所以f′(x)=+2x-b, 所以k=f′(b)=+2b-b=+b≥2, 当且仅当=b时取等号, 即b=时,k取得最小值2. 6.设曲线y=在点(,1)处的切线与直线x-ay+1=0平行,则实数a等于( A ) (A)-2 (B)1 (C)-1 (D)2 解析:因为y′= =,

导数的概念及运算

导数概念及其意义 自主梳理 1.函数的平均变化率 一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1- y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商________________________=Δy Δx 称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率. 2.函数y =f (x )在x =x 0处的导数 (1)定义:函数y =f (x)在点x 0处的瞬时变化率______________通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即______________________________. (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0))的____________.导函数y =f ′(x )的值域即为_切线斜率的取值范围. 3.函数f (x )的导函数 如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作____________. 4.基本初等函数的导数公式表 原函数 导函数 f (x )=C f ′(x )=______ f (x )=x α (α∈Q *) f ′(x )=______ (α∈Q *) F (x )=sin x f ′(x )=__________ F (x )=cos x f ′(x )=____________ f (x )=a x (a >0,a ≠1) f ′(x )=____________(a >0,a ≠1) f (x )=e x f ′(x )=________ f (x )=lo g a x (a >0,a ≠1,且x >0) f ′(x )=__________(a >0, a ≠1,且x >0) f (x )=ln x f ′(x )=__________ 5.导数运算法则 (1)[f (x )±g (x )]′=__________;(2)[f (x )g (x )]′=______________; (3)????f (x )g (x )′=______________ [g (x )≠0].

最新导数的概念及运算

导数的概念及运算

导数的概念及运算 重点难点分析: 1.导数的定义、意义与性质: (1)函数的导数:对于函数f(x),当自变量x在x0处有增量Δx,则函数y相应地有改变量Δy=f(x0+Δx)-f(x0),这两个增量的比叫做函数y=f(x)在x0到x0+Δx之间的平均变化率,即 。如果当 Δx→0时,有极限,我们说函数在x0处可导,并把这个极限叫做f(x)在x0处的导数(或变化率)。记作f'(x0)或,即。 (2)导函数:如果函数y=f(x)在开区间(a,b)内每一点处可导,这时,对于开区间(a,b)内的每一个值x0,都对应着一个确定的导数f'(x0),这样就在开区间(a,b)内构成一个新的函数,我们把这一新函数叫做f(x)在区间 内的导函数,记作f'(x)或y',即。 (3)可导与连续的关系:如果函数y=f(x)在点x0处可导,那么函数y=f(x)在点x0处连续。 (4)导数的几何意义:过曲线y=f(x)上任意一点(x,y)的切线的斜率就是f(x)在x处的导数,即 。也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f'(x0),切线方程为y-y0=f'(x0)(x-x0)。 2.求导数的方法: (1)求函数y=f(x)在x0处导数的步骤: ①求函数的增量Δy=f(x0+Δx)-f(x0) ②求平均变化率 ③取极限,得导数。 (2)几种常见函数的导数公式: ① C'=0(C为常数); ② (x n)'=nx n-1 (n∈Q);

③ (sinx)'=cosx; ④ (cosx)'=-sinx; ⑤ (e x)'=e x; ⑥ (a x)'=a x lna ⑦; ⑧ (3)导数的四则运算法则: ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③ (4)复合函数的导数 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。 说明: 1.函数的导数实质是一个极限问题,不应理解为平均变化率,而是平均变化率的极限。2.求函数的导数要熟练掌握求导公式,特别是复合函数的导数要学会合理地分析 3.搞清导数的几何意义,为解决实际问题,如切线,加速度等问题打下理论基础。 典型例题: 例1.求下列函数的导数 ①y=(2x-3)5②③④y=sin32x 解析:①设u=2x-3,则y=(2x-3)5分解为y=u5,u=2x-3 由复合函数的求导法则得: y'=f'(u)u'(x)=(u5)'(2x-3)'=5u4·2=10u4=10(2x-3)4 ②设u=3-x,则可分解为, 。 ③

5导数的概念与运算(能力)

导数的概念与运算 【知识要点】 ⒈导数的概念及其几何意义 ⒉你熟悉常用的导数公式吗? ⒊导数的运算法则: ⑴两个函数四则运算的导数 ⑵复合函数的导数:x u x u y y '· ''=. 4.你会利用导数求曲线在某点处的切线方程吗? 【典型例题】 例1.导数的概念题 1.在曲线y =x 2 +1的图象上取一点(1,2)及邻近一点(1+△x ,2+△y ),则 x y ??为( ) A .△x + x ?1+2 B .△x -x ?1-2 C .△x +2 D .2+△x -x ?1 2.一质点的运动方程为s=5-3t 2 ,则在一段时间[1,1+△t]内相应的平均速度为( ) A . 3△t +6 B . -3△t +6 C . 3△t -6 D . -3△t -6 3.曲线2 4y x x =-上两点(4,0),(2,4)A B ,若曲线上一点P 处的切线恰好平行于弦 AB ,则点P 的坐标为( ) A.(1,3) B.(3,3) C.(6,12)- D.(2,4) 4.若函数2 ()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象是( ) 5.曲线3 2 242y x x x =--+在点(1 3)-,处的切线方程是 6.已知()23f '=,则()() 222lim n f x f x →+∞ --= C.

例2.(1)设函数2 ()(31)(23)f x x x x =+++,求(),(1)f x f ''-; (2)设函数32 ()25f x x x x =-++,若0()0f x '=,求0x 的值. (3)设函数()(2)n f x x a =-,求()f x '. 例3.曲线C :3 2 y ax bx cx d =+++在(0,1)点处的切线为1:1l y x =+ 在(3,4)点处的切线为2:210l y x =-+,求曲线C 的方程;

相关文档
相关文档 最新文档