文档库 最新最全的文档下载
当前位置:文档库 › 泥水平衡盾构机施工总结

泥水平衡盾构机施工总结

泥水平衡盾构机施工总结
泥水平衡盾构机施工总结

泥水平衡盾构机施工总结

————————————————————————————————作者: ————————————————————————————————日期:

土压平衡盾构与泥水平衡盾构的结构原理

2土压平衡盾构与泥水平衡盾构的结构原理 傅德明 上海市土木工程学会 1 土压平衡盾构的结构原理 土压平衡盾构的基本原理 土压平衡盾构属封闭式盾构。盾构推进时,其前端刀盘旋转掘削地层土体,切削下来的土体进入土舱。当土体充满土舱时,其被动土压与掘削面上的土、水压基本相同,故掘削面实现平衡(即稳定)。示意图如图所示。由图可知,这类盾构靠螺旋输送机将碴土(即掘削弃土)排送至土箱,运至地表。由装在螺旋输送机排土口 处的滑动闸门或旋转漏斗控制出土量,确保掘削面稳定。 1.1.1 稳定掘削面的机理及种类 土压盾构稳定掘削面的机理,因工程地质条件的不同而不同。通常可分为粘性土和砂质土两类,这里分别进行叙述。 1.1.1.1 粘性土层掘削面的稳定机理 因刀盘掘削下来的土体的粘结性受到破坏,故变得松散易于流动。即使粘聚力大的土层,碴土的塑流性也会增大,故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进行控制。对塑流性大的松软土体也可采用专用土砂泵、管道排土。 地层含砂量超过一定限度时,土体流性明显变差,土舱内的土体发生堆积、压密、固结,致使碴土难于排送,盾构推进被迫停止。解决这个问题的措施是向土舱内注水、空气、膨润土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。 1.1.1.2 砂质土层掘削面的稳定机理 就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。当地下水位较高、水压较大时,靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和水压。再加上掘削土体自身的流动性差,所以在无其它措施的情况下,掘削面稳定极其困难。为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌,改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。 1.1.1.3 土压盾构的种类 按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表1。 表1 土压盾构的种类 图1 土压盾构基本形状

泥水盾构操作规程

盾构机掘进基本操作指导书 (包括刀盘转速、掘进速度、油缸推力、方向姿态等控制) 1、安全操作规程 1.1.基本注意事项 (1).遵守岗位内安全规程 ●盾构机操作、维修人员必须是受过专业训练的,必须具备相应的操作资格。 ●进行机械操作或维修时,请遵守相关的技术资料和项目部下发的文件中所 有安全规则、注意事项及顺序。 ●身体不适、服用药物(催眠药)时及酒后不要操作, 因为发生危机时,容易造成判断失误。 ●多人共同作业时,一定要设指挥员,根据制定的方案操作。 (2).设臵安全联锁装臵 ●请确认所有的防护装臵、防护罩是否装在正常位臵。如果破损,请马上修理。 ●请认真了解盾构联锁、溢流阀等安全装臵。 ●请勿随便调节盾构联锁装臵、溢流阀。 解除盾构联锁装臵请参照盾构联锁装臵的使用说明。 ●一旦误用安全装臵,将会造成重大人身事故。 (3).电气、液压的设定,不要随便变更 ●为防止电气火灾,请勿变更热继电器等设定值。 ●为防止盾构机损伤,请勿变更溢流阀压力等液压设定值。 (4).正确穿戴工作服和安全保护用品 过肥的服装、饰品等有可能被机械部件上的物品钩住,有油的工作服因易 燃,也不得穿用。 ●请勿忘记根据工作内容穿戴保 护眼镜、安全帽、口罩、手套等。 特别是用锤子打击销子等金属片、 异物时可能飞散,必须使用保护眼 镜、安全帽、手套等保护用具。

1.2.盾构掘进过程中的注意事项 (1).掘进中必须特别注意的事项 ●掘进中,机器有时会突然侧滚。所以进入掘进机内时,请充分注意因突然侧滚造 成的跌倒、滚落。 特别是在高处时,必须要用安全带。 ●因传送带或土沙压送泵运转中的振动,造成后续台车的翻到,伤及 作业者的危险性是存在的,请切实装好防翻部件,并认真确认。(2).注意电机的散热 ●电机散热装臵周围闭塞时,就不能散热,有损伤内部、发生火灾的可能, 因此,请保持电机散热装臵的正常运转,不要挡住电机前后风路。(3).推进油缸靴撑和管片间的注意事项 ●推进油缸靴撑和管片间有夹住手脚的危险。注意不要把手脚臵于其间。(4).注意异常声音、异常情况等 ●如果对器具的异音、异常不加以注意,零部件将可能破损而飞散,并有因部件 飞散而造成人员伤害的危险。 机器发生异音、异常时,请立即中止掘进,进行点检、维修。

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研究

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研 究 摘要:本文以南京纬三路过江隧道工程超大直径泥水平衡盾构机穿越江中深槽段施工为例,通过对风险源的分析与应对措施研究,提出了超大泥水平衡盾构长距离穿越深水浅覆土地区应对措施。 1.工程背景 南京纬三路过江通道工程采用直径14.93m泥水平衡盾构,盾构穿越江中深槽段总长度为586m,该段掘进全部位于江中段,是工程中风险最高、难度最大的施工区段。在该段深槽线路范围内,线路位于右偏R=1500m的圆曲线内,线路为V字型,坡度从-3.892%过最低点(SDK4+780)后变为2.45%。江底最低覆土深度为14.46m(到盾构机顶部),水深最深为34.9m(2009年9月数据)。江中段地质情况见表1。 表1 地质分层分段情况表 2.施工风险分析 2.1地质勘测准确性风险 由于江底深水地质勘测难度大、成本高,准确性也难以保证,江底隧道地质勘探具有极大的局限性,遇到未勘查清楚的不良地质或存在未查明的地下障碍物的风险十分可能发生。因此,施工准备阶段和施工过程中,需要通过对筛分渣样的分析达到地质预测的目的,可部分揭示开挖面前方地层情况。同时江底可能会出现特异性的障碍物,如废弃铁块、沉船等影响盾构掘进。 2.2盾构机的适应性、可靠性风险 盾构机选型极大程度上是工程成功的决定性因素,盾构机穿越江底掘进过程中,盾构机选型尤为重要,主要表现在以下几个方面: (1)刀盘、刀具磨损:盾构机长距离掘进对刀盘、刀具磨损大;在软硬不均的地层及卵石地层掘进时,刀具不可避免的产生卡刀或偏磨等问题。 (2)泥浆泵及管路磨损、堵塞:泥水循环回路泥浆中的砂石成分会磨损泥浆泵及排送管路,导致盾构机排渣不畅; (3)主轴承磨损,密封件防水失效:因主轴承在长距离掘进被磨损可能导致密封件防水失效,泥浆向盾构机内渗漏,保压系统失衡; (4)盾尾密封:盾尾密封系统的不适应性或受管片及周围土体的磨损影响,导致盾构间隙增大或油脂仓保压失效,盾构机发生渗漏; (5)数据采集系统、传感器失灵:受开挖面恶劣条件影响,盾构工作面数据采集系统、传感器有失效风险,盾构掘进参数或正面舱压等指标无法准确显示; (6)液压推进系统漏油:液压推进系统漏油,推力不足可能导致盾构后退风险; (7)注浆管路堵塞:由于浆液残留结块等原因可能导致注浆管路堵塞,无法进行正常的同步注浆; (8)主轴承断裂:由于主轴承磨损或在掘进复杂地层中偏心力矩致过大可导致主轴承断裂。 2.3江底冒浆风险 由于隧道穿越复合地层、上软下硬地层控制难度大,卵砾石层、粉砂岩层等地层表现为孔隙较大的特点,要依据地层条件及时调整泥浆质量和泥水压力,加

泥水盾构机安全操作规程汇总

目录 盾构 盾构主机安全操作规程 (3) 土压仓作业安全操作规程 (7) 刀具更换安全操作规程 (9) 人仓作业安全操作规程 (10) 后备套系统管线延伸安全操作规程 (14) 注浆泵安全操作规程 (16) 管片安装机安全操作规程 (17) 油脂泵安全操作规程 (18) 常规 门吊安全操作规程 (20) 门吊钢丝绳使用规范 (21) 机车安全操作规程 (22) 装载机安全操作规程 (24) 挖掘机安全操作规程 (25) 空压机机安全操作规程 (26) 移动空压机安全操作规程 (27) 电动空压机安全操作规程 (29) 通风机安全操作规程 (30) 6M3砂浆车安全操作规程 (30) 18M3矿车安全操作规程 (31)

注浆机安全操作规程 (31) CO2气体保护焊机安全操作规程 (31) 电焊机安全操作规程 (34) 对焊机安全操作规程 (34) 卷扬机安全操作规程 (35) 切割机安全操作规程 (36) 套丝切管机安全操作规程 (37) 折弯机安全操作规程 (37) 充电机安全操作规程 (38) 电气设备安全操作规程 (40) 手持电动工具安全操作规程 (41) 水泵安全操作规程 (43) 厢式变电站安全操作规程 (44) 千斤顶及泵站安全操作规程 (45) 搅拌站安全操作规程 (46)

盾构主机安全操作规程 1、盾构操作人员必须身体健康,能够适应较长时间的洞内工作,无色盲\无视觉及听觉障碍,能吃苦耐劳并具有较强的责任心; 2、盾构操作人员必须具有一定的专业基础并经过专门的专业培训,具有一定的机械、电气及土木工程知识,对盾构机机械结构、电气配置、基本工作原理及盾构施工过程有一定的了解; 3、盾构操作人员必须经过专门的安全知识培训,并且熟悉盾构及地下工程施工的相关安全知识,掌握必备的防护技能。

盾构施工介绍

盾构施工介绍 一、盾构机选型 盾构的机型是指在根据工程地质和水文地质条件,盾构所采用的最有效的开挖面支护形式。 1.选型依据 (1) 土质条件、岩性、(抗压、抗拉、粒径、成分等个参数) (2) 开挖面稳定(自立性能) (3) 隧道埋深、地下水位 (4) 设计隧道的断面 (5) 环境条件、沿线场地(附近管线和建筑物及其结构特性) (6) 衬砌类型 (7) 工期 (8) 造价 (9) 宜用的辅助工法 (10) 设计路线、线形、坡度 (11)电气等其他设备条件 地层渗透系数对于盾构的选型是一个很重要的因素。通常,当地层的渗透系数小于10-7m/s时,可以选用土压平衡盾构机;渗透系数大于10-4 m/s时,一般选用泥水盾构;介于两者之间的既可以用土压平衡的,也可用泥水盾构。根据地层渗透系数与盾构类型的关系,若地层以各种级配富水的砂层、砂砾层为主时,宜选用泥水盾构;其它地层宜选用土压平衡盾构。我们一号井的盾构机选用海瑞克生产的S592盾构机。 二、盾构机介绍 1.TBM概述 机器类型土压平衡盾构安装功率 4000千瓦 TBM长度+后配套长度约88米 TBM重量约750吨 曲率半径(最小) 500米 2.盾构概述 (1)盾构钢结构

前盾(直径) 8800毫米(长度) 2800毫米 中盾(直径) 8785毫米(长度) 3000毫米 盾尾(直径) 8770毫米(长度) 4100毫米加4排密封刷(2)盾尾铰接油缸(被动) 数量 15个 行程 150毫米 标准推力在215巴时6500千牛 (3)掘进 主推进油缸数量 19×2个 行程 2500毫米 推力在350巴时70000牛 (4)人孔闸 数量 1个类型平行闸 前舱容积 2430升前舱容纳人数 2个 主舱容积 4170升主舱容纳人数 4个 工作压力 6巴 (5)螺旋输送机 数量 1台长度 15175毫米 功率 400 千瓦速度 0-22.1/分钟扭矩(额定) 217千牛米 3.刀盘概述 开挖直径 8830毫米重量(含刀具) 116吨 滚刀(一圈) 45 滚刀(中心) 4 滚刀直径 432毫米齿刀 58 中间刀具 1 铲刀 16 磨损保护 3个传感器 4.主驱动概述 主驱动电动马达 14个 功率 14×160千瓦速度 0-4.2 /分钟

泥水平衡盾构机施工总结

泥水平衡盾构机施工总结 本工程是我单位常规直径地铁盾构第一次采用泥水盾构机施工。在施工、操作方面可借鉴经验不多,造成在施工中走过了不少弯路,出现了许多问题。泥水盾构机操作的基本原则是:控制切口压力在技术交底范围内稳定和盾构机姿态在设计要求范围内的前提下,实现盾构机正常掘进。切口压力的稳定是保证地面沉降、安全掘进的前提条件,而盾构机姿态决定隧道走向是否与设计路线符合,成型隧道符合设计要求的先决条件。如果在掘进期间,切口压力不稳定,波动较大的话,轻则沉降较大,重则引起地面塌方。所以在操作泥水盾构机的时候,每一个操作手必须清楚的明白,保证切口压力稳定的重要性。而盾构机姿态是决定我们的施工是否按设计路线施工,如果出现姿态超限,轻则隧道管片出现错台、开裂、漏水等质量问题,重则需要联系设计单位和业主,进行调线。通过一年多的泥水盾构机施工经验,结合自己以前土压平衡盾构机的操作经验,对泥水盾构机的施工和质量控制方面的一些想法做如下总结。 一.工程概况: 东莞市城市快速轨道交通R2线工程(东莞火车站~东莞虎门站段)[2303A标:榴花公园站、茶山站~榴花公园站区间]土建工程施工项目,位于方中路上的茶山站后,正线隧道与出入段线隧道并行约100m由东向西穿越宽约200米的寒溪河,进入东岸大片农田(此时出入段线进入寒溪河东岸的东城车辆段)、通过中间风井及河西岸的数幢别墅后进入莞龙路。线路继续沿莞龙路前行,绕避了数架人行天

桥后到达榴花公园前的榴花公园站结束。 本标段起讫里程YDK2+298.728~ YDK5+502.598,包含1个明挖车站(【榴花公园站】)和1个区间(【茶山站~榴花公园站区间】),1条出段线盾构隧道(【中间风井~出段线盾构井】),1条入段线盾构隧道(【茶山站~入段线盾构井】)。其中正线段茶山站~榴花公园站区间左线起讫里程为:ZDK2+301.000~ZDK3+497.720、 ZDK3+653.485~ZDK4+118.812,左线长1662.041m; 右线起讫里程为:YDK2+298.728~YDK3+434.162、YDK3+601.659~ YDK4+110.000,右线长1643、775m;区间正线总长3406.628m。其中ZDK3+653.485~ZDK3+746.000、YDK3+601.659~ YDK3+690.000采用矿山法开挖,盾构管片衬砌。 二.操作注意事项: (一)泥浆粘度控制 在泥水盾构中,泥浆的作用有两种:维持开挖面稳定和运送弃土。泥水盾构机施工时稳定开挖面的原理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制掌子面变形和地面沉降;在掌子面形成弱透水性泥膜,保持泥水压力有效作用于掌子面。泥浆作为一种运输介质将开挖下来的渣土以流体形式输送,经地面泥水处离处理设备分离,将处理过的渣土运至弃土场。 泥浆的比重和粘度等性能决定它稳定开挖面和携带渣土的能力。(1)泥浆比重 为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥

泥水平衡盾构机施工方案

针对本项目的特性技术方案简述 施工技术篇 一、工程概述 二、总体施工部署及施工思路 2.1 初步施工安排 2.2 总体计划 2.3 工程管理目标 2.4 施工的前准备工作 2.5 施工组织管理 2.6 项目施工总体思路及工艺 2.7 施工总平面图布置规划 三、重点、关键和难点工程的施工方案、工艺及其措施简述 3.1 重点、关键和难点工程分析及应对措施 3.1.1 城市中心区的和谐施工 3.1.2 交通疏解、管线改迁及征地拆迁对工程前期推进影响大 3.1.3 盾构始发与到达施工难度大 3.1.4 基坑安全施工 3.1.5 顶管施工重难点分析及应对措施 3.1.6 泥水盾构刀盘、刀具设计 3.2 本项目主要工程施工方案及工艺简述 3.2.1 竖井(工作井)施工 3.2.2 顶管施工 3.2.3 盾构施工 3.2.4 管道功能性试验 3.2.5 其他附属及机电安装工程 四、交通疏导方案规划 4.1 交通疏导原则及规定 4.2 交通疏解实施程序 4.3 交通疏解方案

五、地下管线及其他地上地下设施的保护加固措施 5.1 地下管线保护措施 5.2 建构筑物保护措施 六、施工保障措施 6.1 施工质量保障措施 6.1.1 质量目标 6.1.2 质量保证体系 6.1.3 质量保证制度 6.1.4 主要工程施工质量控制措施 6.2 施工安全保障措施 6.2.1 安全目标 6.2.2 安全保证体系 6.2.3 安全保证制度 6.2.4 主要工程施工安全控制措施 6.3 应急预案 6.3.1 应急救援中心的职责 6.3.2 信息报告及处理 6.3.3 应急决策及响应 6.3.4 应急救援的资源配置 6.4 文明施工及环境保护措施 6.4.1 管理体系 6.4.2 文明施工措施 6.4.2 环境保护措施 七、本项目拟配备的机械设备情况

泥水平衡盾构机在不同地质层掘进的操作控制

泥水平衡盾构机在不同地质层掘进的操作控制 摘要:泥水平衡盾构适合多种恶劣环境施工,尤其是穿江越海。本文以南水北调穿黄隧道为实例,简述泥水盾构掘进在不同地质层中的风险和操作控制。 关键字:泥水盾构机;地质层;操作 工程简介 1、工程概况:南水北调中线穿黄隧洞包括3450m过黄河隧洞和800m邙山隧洞,采用一台泥水平衡式盾构机自北向南推进,埋深45m隧道施工。隧道直径9m,采用预制混凝土管片拼装支护方式。 2、工程地质:根据勘探资料,隧道大约由以下地质层构成:1)全土层:由黄土状粉质壤土、古土壤、淤泥、粉质粘土、淤泥质粘土、粉质壤土、淤泥质粉质粘土、砂壤土中的一种或几种组成,所占隧洞总长度的13.2% ;2)全砂层:由粉砂、细砂、中砂、粗砂、含砾砂中的一种或几种组成,所占隧洞总长度的25.6%;3)复合层:由全土层和全砂层中的任何两种或以上组成,所占隧洞总长度的15.0%;4)砂砾石层:只要含有砂砾石层就作为单独的一层,所占隧洞总长度的34.5%;5)钙质结核土层:层中只要含有钙质结构就作为单独的一层,所占隧洞总长度的11.7%;地质结构复杂多变。 盾构机的选择 1、盾构机的分类与区别 隧道掘进机(Tunnel Boring Machine简称TBM)大体分为硬岩掘进机、土压平横盾构机、泥水平衡盾构机和顶管机四类。硬岩掘进机用于地质稳定性较好的隧道工程,比如岩石层,一般用于山体隧道;顶管机一般用于距离短、直径小,地质疏松的小型直线隧道;土压平衡盾构(EPB)一般用于沙、水含量较少的地质,它是通过螺旋输送机出渣同时控制出渣量来保持压力平衡;泥水平衡盾构(slurry)用于地质变化大、条件比较恶劣的环境下,通过进、排泥浆管道出渣同时保持泥浆在气垫仓的液位保持盾构平衡,并且地面配备泥水分离设备。他们的区别主要在于出渣方式不同。本工程可使用加泥式土压平衡盾构和泥水平衡盾构。但土压平衡盾构一般只适应0.3MPa以下的水压,本工程水压高达0.45MPa,因此选用泥水平衡盾构。 2、加压式泥水平衡盾构工作原理 泥水平衡盾构是通过对泥浆压力进行调节和控制建立平衡、保证掘进的,采用膨润土悬浮液(俗称泥浆)作为支护材料。泥浆有两个作用:1)、在隧道开挖仓形成泥膜,支撑掌子面,防止隧道上方坍塌;2)、将掘进开挖出的渣土通过进、排泥浆将渣土悬浮于膨润土浆液中,通过管道泵出至配套的泥水处理设备进行分离。泥浆再通过沉淀调制,重复使用。泥水盾构适用的地质范围较大,从软弱砂

盾构法特点总结

地下工程 盾构法施工过程涉及的力学问题分析 专业:土木工程系 班级: 1009 姓名: 日期: 2013/04/27 南京过江隧道(盾构施工) 一、南京过江隧道简介 南京长江隧道于2008年5月开工到2009年8月22日全线胜利贯通,是南京城市总体规划确定的“五桥一隧”过江隧道之一,是南京跨江发展战略的标准基础设施项目,工程位于南京长江大桥和长江三桥之间,南起南京市和西新城区,北至浦口江、珠江镇,全长5853

米,由越江隧道、将西周大桥和接线道路三部分组成,隧道建筑长度3790米,其中盾构段长3020米。 南京长江隧道分左右两条隧道,每条隧道设置三车道,设计行车速度为80Km/h。盾构设计内经,外径。圆形衬砌环用环宽2m、厚、每环由10块管片组成。 图1 南京长江 图2 南京长江越江隧道 图3 隧道盾构段 图4 盾构隧道直径 二、南京过江隧道施工 南京长江隧道是当今世界上直径最大的盾构隧道之一,其江底埋深达60多米,水压高达每平方厘米公斤,兼地质情况复杂,地层透水性强,一次掘进距离长达3公里多,面临着多项世界级难题和挑战,泥水平衡式盾构机(如图6)是水下隧道施工最安全最先进的设备。泥水平衡式盾构机施工隧道(如图;图;图) 图泥水平衡式盾构机施工隧道

图泥水平衡式盾构机施工隧道 图泥水平衡式盾构机施工隧道 图6 泥水平衡式盾构机 三、盾构机设计与工作原理介绍 南京长江隧道,根据本工程的特点和地质条件专门定制了两台超大直径溺水平衡式盾构机进行施工,下面展示这两台盾构机的设计和工作原理: 盾构机主要包括主机和三个后配套车架,总重多达四千多吨,主机最前端是开挖地层的刀盘,直径达米,刀盘上安装有先行刀,重行刮刀和边缘铲刀等类型的刀具200多把,刀盘的六个主刀壁在正常的大气压下进土,维护人员可以通过中心人闸进入主刀壁。 图7 盾构机的直径 图8 刀盘维护人员 对磨损的刀具进行更换,为了检测刀具的磨损,部分刀具内部安装了传感器感应系统,一旦传感器发出信号,整个刀盘上设计有77把可设置常压更换的刀具,这些刀具安装在刀闸中,当刀具磨损,需要更换刀具时,工作人员进入刀盘腹壁内,将刀具通过刀闸回缩,刀

泥水盾构施工管理介绍

5.1盾构机选型 5.1.1盾构机的选型原则和依据 盾构机选型是盾构隧洞能否优质、安全、快速建成的关键工作之一,选型时主要遵照以下原则: (1)选择的盾构机机型和功能必须满足本标段线路条件、工期、施工条件和环境等要求。 (2)选用的盾构机按本标段的地质条件,进行有针对性的设计与制造,要求其性能与本标段内的工程地质、水文地质条件相适应。 (3)选用的盾构机应具有良好的性能和可靠性。 (4)类似地质、施工条件下盾构选型、施工实例及其效果。 (5)盾构机制造商的知名度、业绩、信誉和技术服务。 (6)依据南水北调中线一期穿黄工程上游线隧洞土建及设备安装施工招标文件及第三卷图纸,为选用盾构机机型的重要依据。 5.1.2盾构隧洞线路条件及混凝土管片 (1)隧洞由邙山隧洞段和过黄河隧洞段组成,最大开挖直径9030mm,总长4250m的直线隧洞。 (2)线路纵坡有三:邙山隧洞约4.91%,过河隧洞段有0.1%和0.2%两种,变坡点竖曲线半径为800m。见5.1-1南水北调中线穿黄隧洞示意图

图1 南水北调中线穿黄隧洞示意图 (3)过河段隧洞围土有单一粘土结构、上砂下土结构和单一砂土结构三种。 (4)主要地质问题有: —砂层中石英颗粒含量高40%-70%,刀具磨损加剧; —刀具检查地点和检查方式; —换刀地点及加固方式选择; —常压下换刀作业和气压下的换刀作业; —遇到枯树和大孤石的处理; —局部有抗压强度达16.5MPa砂岩等。 (5)隧洞外层采用通用环混凝土楔形管片衬砌,每环的楔形量为34.8mm。管环外径8.7m,内径7.9m,管片宽度1.6m,由7块管片组成,错缝拼装,每块管片所对应圆心角51.4286度。管片重量约6.2t。 5.2土压平衡式盾构机与混合式盾构机的基本掘进构成 5.2.1土压平衡式盾构机的基本掘进构成 盾构法施工从气压式盾构机开始到当今广泛使用土压平衡式盾

泥水式盾构机发展概况及工作原理

泥水式盾构机发展概况及工作原理 泥水式盾构机 1发展概况 泥水式盾构机是通过有一定压力的泥浆来支撑稳固开挖面;由旋转刀盘、悬臂刀头或水力射流等进行土体开挖;开挖下来的土料与泥水混合以泥水状态由泥浆泵进行输运。泥水式盾构机适用于各种松散地层,有无地下水均可。采用泥水式盾构机进行施工的隧洞工程都说明它是一种低沉降及安全的施工方法,在稳定的地层中其优点更加明显。 最初的泥水盾构要追溯到一百多年前的Greathead及Haag的专利。由于高透水性地层用压缩空气支撑隧洞开挖面非常困难,1874年,Greathead开发了用流体支撑开挖面的盾构,开挖出的土料以泥水流的方式排出。1896年Haag在柏林为第一台德国泥水式盾构申请了专利,该盾构以液体支撑开挖面,其开挖室是有压和密封的。1959年E.C.Gardner成功地将以液体支撑开挖面应用于一台用于建造排污隧洞的直径为3.35m的盾构。1960年Schneidereit引进了用膨润土悬浮液来支撑开挖面,而H.Lorenz的专利提出用加压的膨润土液来稳固开挖面。1967年第一台有切削刀盘并以水力出土、直径为3.1m的泥水盾构在日本开始使用。在德国,第一台以膨润土悬浮液支撑开挖面的盾构由Wayss&Freytag开发并投入使用。 泥水式盾构机的发展有三种历程,即日本历程、英国历程和德国历程。到目前则只有日本和德国两个主要的发展体系。日本的发展历程导致当今的泥水盾构,德国的发展历程导致水力盾构。以日本的泥水盾构为基础发展了土压平衡盾构,而德国的水力盾构导致很多不同的机型,如混合型盾构,悬臂刀头泥水盾构及水 力喷射盾构等。德国和日本体系的主要区别是,德国式的在泥水舱中设置了气压舱,便于人工正面控制泥水压力,构造简单;日本式的泥水密封舱中全是泥水,要有一套自动控制泥水平衡的装置。

盾构培训总结docx

浅谈盾构陈国全 盾构在我国发展迅速,尤其是近些年的城市轨道交通建设,盾构显得尤为重要,盾构是集隧道施工中的开挖、出土、支护、衬砌等多项作业于一体的联合施工机械,其将隧道的施工过程形成了工厂化的流水性作业。机械专业性强,人工操作少,施工方便等明显特点。 盾构的分类: 盾构的分类方法很多,常见的有两种分类方法:根据施工环境的不同,盾构的“类型”分为软土盾构和复合盾构两类。 软土盾构是指适用于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩条件下的一类盾构。软土盾构的主要特点是刀盘仅安装切刀和刮刀,无需滚刀。 复合盾构是指既适用于软土、又适用于硬岩的一类盾构,主要用于既有软土又有硬岩的复杂地层施工。复合盾构的主要特点是刀盘既安装有切刀和刮刀,又安装有滚刀 盾构按支护地层的形式主要分为自然支护式、机械支护式、压缩空气支护式、 泥浆支护式、土压平衡支护式五种机型。目前应用最广的是土压平衡盾构(土压 平衡支护式)和泥水盾构(泥浆支护式)两种机型。 土压平衡盾构的工作原理:土压平衡盾构是在机械式盾构的前部设置隔板,在刀盘的旋转作用下,刀具切削开挖面的泥土,破碎的泥土通过刀盘开口进入土仓,使土仓和排土用的螺旋输送机内充满切削下来的泥土,依靠盾构千斤顶的推力通过隔板给土仓内的土碴加压,使土压作用于开挖面以平衡开挖面的水土压力。 泥水平衡盾构的工作原理:泥水加压平衡盾构(slurry pressure balance shield),简称SPB盾构或泥水盾构。是在机械式盾构的前部设置隔板,与刀盘之间形成泥水仓,开挖面的稳定是将泥浆送入泥水仓内,在开挖面上用泥浆形成不透水的泥膜,通过该泥膜的张力保持水压力,以平衡作用于开挖面的土压力和水压力。开挖的土砂以泥浆形式输送到地面,通过泥水处理设备进行分离,分离后的泥水进行质量调整,再输送到开挖面。 泥水盾构根据泥水仓构造形式和对泥浆压力的控制方式的不同,泥水盾构分为:1.直接控制型2.间接控制型.德国采用间接控制型泥水盾构,其泥水系统由泥

盾构培训总结

篇一:盾构培训总结docx 浅谈盾构陈国全 盾构在我国发展迅速,尤其是近些年的城市轨道交通建设,盾构显得尤为重要,盾构是集隧道施工中的开挖、出土、支护、衬砌等多项作业于一体的联合施工机械,其将隧道的施工过程形成了工厂化的流水性作业。机械专业性强,人工操作少,施工方便等明显特点。 盾构的分类: 盾构的分类方法很多,常见的有两种分类方法:根据施工环境的不同,盾构的“类型”分为软土盾构和复合盾构两类。 软土盾构是指适用于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩条件下的一类盾构。软土盾构的主要特点是刀盘仅安装切刀和刮刀,无需滚刀。 复合盾构是指既适用于软土、又适用于硬岩的一类盾构,主要用于既有软土又有硬岩的复杂地层施工。复合盾构的主要特点是刀盘既安装有切刀和刮刀,又安装有滚刀 盾构按支护地层的形式主要分为自然支护式、机械支护式、压缩空气支护式、泥浆支护式、土压平衡支护式五种机型。目前应用最广的是土压平衡盾构(土压平衡支护式)和泥水盾构(泥浆支护式)两种机型。 土压平衡盾构的工作原理:土压平衡盾构是在机械式盾构的前部设置隔板,在刀盘的旋转作用下,刀具切削开挖面的泥土,破碎的泥土通过刀盘开口进入土仓,使土仓和排土用的螺旋输送机内充满切削下来的泥土,依靠盾构千斤顶的推力通过隔板给土仓内的土碴加压,使土压作用于开挖面以平衡开挖面的水土压力。 泥水平衡盾构的工作原理:泥水加压平衡盾构(slurry pressure balance shield),简称spb 盾构或泥水盾构。是在机械式盾构的前部设置隔板,与刀盘之间形成泥水仓,开挖面的稳定是将泥浆送入泥水仓内,在开挖面上用泥浆形成不透水的泥膜,通过该泥膜的张力保持水压力,以平衡作用于开挖面的土压力和水压力。开挖的土砂以泥浆形式输送到地面,通过泥水处理设备进行分离,分离后的泥水进行质量调整,再输送到开挖面。 泥水盾构根据泥水仓构造形式和对泥浆压力的控制方式的不同,泥水盾构分为:1.直接控制型2.间接控制型.德国采用间接控制型泥水盾构,其泥水系统由泥浆和空气双重回路组成。在盾构的泥水仓内插装一道半隔板,在半隔板前充以压力泥浆,在半隔板后面盾构轴心线以上部分充以压缩空气,形成空气缓冲层,气压作用在半隔板后面与泥浆的接触面上,由于接触面上气、液具有相同压力,因此只要调节空气压力,就可以确定和保持在开挖面上相应的泥浆支护压力。 土压平衡盾构的三种工作模式:根据地质条件、水位和压力情况,盾构机有敞开式、闭合(epb)式和半敞开式三种掘进模式。1)敞开式:在前方掌子面足够稳定并且涌水能够被控制,可以采用“敞开式”作业。 2)半敞开式:用于含水,且水压为1~1.5bar,掌子面可以稳定的地层中。半敞开式作业时隧道掘进速度近似于敞开式作业。 3)epb模式:用于围岩不稳定、水压压力高、水量大时。采用epb模式施工时,可以用泡沫系统改善碴土的流动情况。 土压平衡盾构的构成:盾构机主要由9大部分组成,他们分别是刀盘、盾体、主驱动、人舱、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 刀盘是一个带有多个进料槽的切削盘体,位于盾构机的最前部,用于切削土体。刀盘上可根据被切削土质的软硬而选择安装硬岩刀具或软土刀具。土压平衡盾构的刀盘有两种形式:1)面板式 2)辐条式。 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状筒体,呈前大后小锥形分布。中盾和前盾通过法兰以螺栓连接。中盾内侧的周边位置装有推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后部已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力。推进油缸按照安装布置被分成

泥水盾构施工要点

掌握土压仓内土砂塑性流动性的方法 塑流化改良控制是土压平衡式盾构施工的最重要要素之一,要随时把握土压仓内土砂的塑性流动性。一般按以下方法掌握塑流性状态。 1.根据排土性状 取样测定(或根据经验目视)土砂的坍落度,以把握土压仓内土砂的流动状态。采用的坍落度控制值取决于土质、改良材料性状与土的输送方式。 2.根据土砂输送效率 按螺旋输送机转数计算的排土量与按盾构推进速度计算的排土量进行比较,以判断开挖土砂的流动状态。一般情况下,土压仓内土砂的塑性流动性好,盾构掘进就正常,两者高度相关。 3.根据盾构机械负荷 根据刀盘油压(或电压)、刀盘扭矩、螺旋输送机扭矩、千斤顶推力等机械负荷变化,判断土砂的流动状态。一般根据初始掘进时的机械负荷状况和地层变化结果等因素,确定开挖土砂的最适性状和控制值的容许范围。 泥水平衡盾构掘进中泥浆的作用 泥水平衡式盾构掘进时,泥浆起着两方面的重要作用: 一是依靠泥浆压力在开挖面形成泥膜或渗透区域,开挖面土体强度提高,同时泥浆压力平衡了开挖面土压和水压,达到了开挖面稳定的目的;二是泥浆作为输送介质,担负着将所有挖出土砂运送到工作井外的任务。 因此,泥浆性能控制是泥水平衡式盾构施工的最重要要素之一。 泥水平衡盾构掘进对泥浆的性能指标要求 泥浆性能包括: 物理稳定性、化学稳定性、相对密度、黏度、pH值、含砂率。

土压平衡式盾构出土运输方法与排土量控制 土压平衡式盾构的出土运输(二次运输)一般采用轨道运输方式。 土压平衡式盾构排土量控制方法分为重量控制与容积控制两种。重量控制有检测运土车重量、用计量漏斗检测排土量等控制方法。容积控制一般采用比较单位掘进距离开挖土砂运土车台数的方法和根据螺旋输送机转数推算的方法。我国目前多采用容积控制方法。 泥水平衡式盾构排土量控制方法 泥水平衡式盾构排土量控制方法分为容积控制与干砂量(干土量)控制. 容积控制方法如下,检测单位掘进循环送泥流量Q1与排泥流量Q2,按下式计算排土体积Q3:Q3= Q2-Q1 对比Q3与Q,当Q>Q3时,一般表示泥浆流失(泥浆或泥浆中的水渗入土体);Q<Q3时,一般表示涌水(由于泥水压低,地下水流入)。正常掘进时,泥浆流失现象居多。 干砂量表征土体或泥浆中土颗粒的体积 干砂量控制方法是,检测单位掘进循环送泥干砂量V1与排泥干砂量V2,按下式计算排土干砂量V3,V3= V2-V1 对比V3与V,当V>V3时,一般表示泥浆流失;V<V3时,一般表示超挖。 盾构管片拼装成环方式 盾构推进结束后,迅速拼装管片成环。除特殊场合外,大都采取错缝拼装。在纠偏或急曲线施工的情况下,有时采用通缝拼装。 盾构管片拼装顺序 一般从下部的标准(A型)管片开始,依次左右两侧交替安装标准管片,然后拼装邻接(B型)管片,最后安装楔形(K型)管片。

泥水盾构机操作总结

泥水盾构机操作总结 泥水盾构机操作的基本原则是:在控制切口环压力在要求范围内稳定和盾构机姿态在设计要求范围内的前提下,实现盾构机正常掘进。切口环压力的稳定是保证隧道正常、安全掘进的前提条件,而盾构机姿态决定隧道走向是否与设计路线符合,成型隧道符合设计要求的先决条件。如果在掘进期间,切口环压力不稳定,波动较大的话,轻则沉降较大,重则引起地面塌方。所以在操作泥水盾构机的时候,每一个操作手必须清楚的明白,保证切口环压力稳定的重要性。而盾构机姿态是决定我们的施工是否按设计路线施工,如果出现姿态超限,轻则隧道管片出现错胎、崩缺、漏水等质量问题,重则需要联系设计单位和业主,进行调线。通过几个月的盾构机实际操作,我对自己操作泥水盾构机和质量控制方面的一些想法做如下总结。 (一)泥浆粘度控制 在泥水盾构中,泥浆的作用有两种:维持开挖面稳定和运送弃土。泥水盾构机施工时稳定开挖面的机理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制开挖面变形和地基沉降;在开挖面形成弱透水性泥膜,保持泥水压力有效作用于开挖面。泥浆作为一种运输介质将开挖下来的弃土以流体形式输送,经泥水分离处理设备滤除废渣,将泥水分离。泥浆的比重和粘度等性能决定它稳定开挖面和携带渣土的能力。

(1)泥浆比重 为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥浆比重应比较高。从理论上讲,泥水比重最好能达到开挖土体的密度。但是,泥浆比重大会引起泥浆泵超负荷运转以及泥水处理困难;泥浆比重小虽可减轻泥浆泵的负荷,但因泥粒渗走量增加,泥膜形成慢,对开挖面稳定不利。因此,在选定泥浆比重时,必须充分考虑土体的地层结构,在保证开挖面的稳定的同时也要考虑泥水分离设备的处理能力。一般情况下,在砂层中,泥浆比重要求偏大一些,在1.20~1.25g/cm3,在粘土层中应当偏小一点,一般在1.10~1.15g/cm3。 (2)泥水粘度 泥水必须具有适当的粘性,以收到以下效果: ①防止泥水中的粘土、砂粒在土仓内的沉积,保持开挖面稳定; ②提高粘性,增大阻力防止逸泥; ③使开挖下来的弃土以流体输送,经泥水分离处理设备滤除废渣,将泥水分离。泥浆粘度低,达不到携带弃土能力和稳定开挖面的要求,粘度太高会影响它的运输能力,易形成堵管。在我们的掘进过程中,一般情况下,在全断面3-1,3-2砂层中,粘度控制在35s~40s,上部有3-1,3-2砂层,中低部为少量4-1粘土时,粘度控制在25~30s,中上部是4-1粘土层,下部有6、7、8号层时,粘度控制在20-25s。在实际掘进中,我们应当结合地层分布情况、泥水分离系统的出渣情况、进出口泥浆粘度和比重的差值、环流系统是否顺畅、地表沉降等原因综合考虑。

盾构实习总结

第一篇盾构实习总结 《2017盾构地铁实习工作总结》 盾构地铁实习工作总结 监理工作总结报告 一、工程概况 (一)建设单位名称兰州市城市轨道交通有限公司 (二)监理项目名称兰州市城市轨道交通1号线一期工程世纪大道~迎门滩试验段盾构区间 (三)建设地点兰州市安宁区银安路敷设 (四)监理项目所在地周边场地较为空旷,多为农户区及砂石场,现状道路宽50米,结合全线工程筹划,区间采用盾构法施工,以R=450m的曲线向东南偏转,由世纪大道站始发,延道路下方敷设,最后进入迎门滩站接收。

(五)区间设计里程为ZDK12+26247~ZDK12+90896(长链1174m),YDK12+33247~YDK12+90896,左线长65823m,右线长57649m。 二、合理的盾构机选型 盾构机的选型主要包括盾构类型的选择,如泥水平衡盾构还是土压平衡盾构;盾构机具体结构的选择,如刀盘型式、刀具配置、开口位置及开口率、推进千斤顶行程等。盾构机的选型不仅直接关系到设备的购置费,更与造价的合理性有关。不合理的选型,一方面会因为设备的预留储备过多,设备的利用率低,从而造成设备购置费用占整个工程造价的比重过高,形成不必要的浪费;另一方面,如果所选盾构不具有很好的地层适应性,不仅会造成高能耗低产出,而且会造成工期的延迟,从而最终导致工程造价的剧增。因此,合理而科学的盾构选型应结合拟建隧道的功能、总长度、埋深、地质条件,沿线地面建筑物、地下构筑物和管线等环境条件,以及对地表变形的控制要求等做综合的分析后决定,从而使得所选盾构产生最大的费效比。 三、监理工作成效 1、盾构始发准备工作 (1)、施工准备工作

地铁盾构监理工作总结

监理工作总结报告 一、工程概况 (一)建设单位名称:兰州市城市轨道交通有限公司 (二)监理项目名称:兰州市城市轨道交通1号线一期工程世纪大道~迎门滩试验段盾构区间 (三)建设地点:兰州市安宁区银安路敷设 (四)监理项目所在地周边场地较为空旷,多为农户区及砂石场,现状道路宽50米,结合全线工程筹划,区间采用盾构法施工,以R=450m 的曲线向东南偏转,由世纪大道站始发,延道路下方敷设,最后进入迎门滩站接收。 (五)区间设计里程为:ZDK12+266.247~ZDK12+907.896(长链11.174m),YDK12+333.247~YDK12+907.896,左线长652.823m,右线长574.649m。 二、合理的盾构机选型 盾构机的选型主要包括:盾构类型的选择,如泥水平衡盾构还是土压平衡盾构;盾构机具体结构的选择,如刀盘型式、刀具配置、开口位置及开口率、推进千斤顶行程等。盾构机的选型不仅直接关系到设备的购置费,更与造价的合理性有关。不合理的选型,一方面会因为设备的预留储备过多,设备的利用率低,从而造成设备购置费用占整个工程造价的比重过高,形成不必要的浪费;另一方面,如果所选盾构不具有很好的地层适应性,不仅会造成高能耗低产出,而且会造成工期的延迟,从而最终导致工程造价的剧增。因此,合理而科学

的盾构选型应结合拟建隧道的功能、总长度、埋深、地质条件,沿线地面建筑物、地下构筑物和管线等环境条件,以及对地表变形的控制要求等做综合的分析后决定,从而使得所选盾构产生最大的费效比。 三、监理工作成效 1、盾构始发准备工作 (1)、施工准备工作 盾构始发阶段是控制盾构掘进施工的首要环节。监理要求施工单位编制专项盾构区间实施性施工组织设计,严格审查后方可实施;在盾构始发前各项准备工作中监理监督施工单位做好充分的技术、人员、材料、设备准备,并对盾构是否具备出洞条件予以审查,确保盾构在安全可靠的前提下能顺利出洞。 (2)、盾构始发基座设置 盾构始发前需将盾构机准确的搁置在符合设计轴线的始发基座上,待所有准备工作就绪后,沿设计轴线向地层内掘进施工。因此,盾构出洞前盾构始发基座定位的准确与否,直接影响到盾构机始发姿态好坏。监理在检查盾构始发基座时,重点复核了以下内容: ①洞门位置及尺寸 在基座设置前,测量监理工程师对洞口实际的净尺寸、直径、洞门中心的平面位置及高程进行复核。 ②盾构始发基座位置 盾构始发基座的设置依据不仅包括洞门中心的位置、还包括设计坡度与平面方向。在始发基座设置完毕,为确保盾构机能以最佳的

泥水平衡盾构机

安徽砼宇新产品:泥水平衡盾构机 安徽砼宇特构科技有限公司是一家以生产混凝土管材、装配式检查井、装配式箱涵以及异型砼构件为主的高新技术企业。公司成立于2007年6月,专注从事新型混凝土构件研发、生产、销售和服务与非开挖管道施工项目。 多年来,企业一直以新产品研发并转化应用为目标,而经过近几年公司的不断努力、创新、发展,目前又一新产品项目——第一台直径1.5米F型顶进管道使用的泥水平衡盾构机诞生。这是公司由传统的水泥构件产品走向另一装备制造业高端行业的新的发展成果。 由于泥水平衡机器不需要开挖地面层,能穿越地面构筑物和地下管线及公路、铁路、河道,节省大量的投资和时间,这项技术的快速发展也使市政工程需敷设的大量上、下水道、煤气、电力、通信工程时,对城区的交通、噪音、粉尘的危害和影响大大降低。是真正的无污染、高效率的施工技术。 机器通过加压泥水或泥浆(通常为膨润土悬浮液)来稳定开挖面,在机械式盾构的刀盘的后侧,其刀盘后面有一个密封隔板,把水、粘土及其添加剂混合制成的泥水,经输送管道压入泥水仓,待泥水充满整个泥水仓,并具有一定压力,形成泥水压力室,开挖土料与泥浆混合由泥浆泵输送到洞外分离场,经分离后泥浆重复使用。 8月31日,我公司泥水平衡机器已于上午11时在工友的协助下发往铜陵工地。建设单位为铜陵市义安区住房和城乡建设局,施工单

位为铜陵营造有限责任公司,使用项目于铜陵市东部城区钟鸣路。 产品技术参数 1、最大回转力110KN/m;回转速度2.8rp/m; 2、纠偏油缸数量4只;油压31.5MPa;行程50mm; 3、最大纠偏角度3° 产品具体参数

产品内部细节图:

土压平衡盾构与泥水平衡盾构的结构原理

2土压平衡盾构与泥水平衡盾构的结构原理 上海市土木工程学会 1土压平衡盾构的结构原理 1.1土压平衡盾构的基本原理 图1土压盾构基本形状 土压平衡盾构属封闭式盾构。盾构推进时,其前端刀盘旋转掘削地层土体,切削下来的土体进入土舱。当土体充满土舱时,其被动土压与掘削面上的土、水压基本相同,故掘削面实现平衡(即稳定)。示意图如图6.1所示。由图可知,这类盾构靠螺旋输送机将碴土(即掘削弃土)排送至土箱,运至地表。由装在螺旋输送机排土口处的滑动闸门或旋转漏斗控制出土量,确保掘削面稳定。 1.1.1稳定掘削面的机理及种类 土压盾构稳定掘削面的机理,因工程地质条件的不同而不同。通常可分为粘性土和砂质土两类,这里分别进行叙述。 1.1.1.1粘性土层掘削面的稳定机理 因刀盘掘削下来的土体的粘结性受到破坏,故变得松散易于流动。即使粘聚力大的土层,碴土的塑流性也会增大,故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进行控制。对塑流性大的松软土体也可采用专用土砂泵、管道排土。 地层含砂量超过一定限度时,土体流性明显变差,土舱内的土体发生堆积、压密、固结,致使碴土难于排送,盾构推进被迫停止。解决这个问题的措施是向土舱内注水、空气、膨润土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。 1.1.1.2砂质土层掘削面的稳定机理

就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。当地下水位较高、水压较大时,靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和水压。再加上掘削土体自身的流动性差,所以在无其它措施的情况下,掘削面稳定极其困难。为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌,改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。 1.1.1.3土压盾构的种类 按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表1。 表1土压盾构的种类

相关文档
相关文档 最新文档